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Preface

Intended Readers

This book is intended for three types of readers with an interest in financial risk
management: first, graduate and PhD students specializing in finance and economics;
second, market practitioners with a quantitative undergraduate or graduate degree;
third, advanced undergraduates majoring in economics, engineering, finance, or
another quantitative field.

I have taught the less technical parts of the book in a fourth-year undergraduate
finance elective course and an MBA elective on financial risk management. I covered
the more technical material in a PhD course on options and risk management and in
technical training courses on market risk designed for market practitioners.

In terms of prerequisites, ideally the reader should have taken as a minimum a
course on investments including options, a course on statistics, and a course on linear
algebra.

Software

A number of empirical exercises are listed at the end of each chapter. Excel spread-
sheets with the data underlying the exercises can be found on the web site accompa-
nying the book.

The web site also contains Excel files with answers to all the exercises. This way,
virtually every technique discussed in the main text of the book is implemented in
Excel using actual asset return data. The material on the web site is an essential part
of the book.

Any suggestions regarding improvements to the book are most welcome. Please
e-mail these suggestions to peter.christoffersen@rotman.utoronto.ca. Instructors who
have adopted the book in their courses are welcome to e-mail me for a set of Power-
Point slides of the material in the book.

New in the Second Edition

The second edition of the book has five new chapters and much new material in exist-
ing chapters. The new chapters are as follows:

mailto: peter.christoffersen@rotman.utoronto.ca
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xiv Preface

l Chapter 2 contains a comparison of static versus dynamic risk measures in light of
the 2007–2009 financial crisis and the 1987 stock market crash.

l Chapter 3 provides an brief review of basic probability and statistics and gives a
short introduction to time series econometrics.

l Chapter 5 is devoted to daily volatility models based on intraday data.

l Chapter 8 introduces nonnormal multivariate models including copula models.

l Chapter 12 gives a brief introduction to key ideas in the management of credit risk.

Organization of the Book

The new edition is organized into four parts:

l Part I provides various background material including empirical facts (Chapter 1),
standard risk measures (Chapter 2), and basic statistical methods (Chapter 3).

l Part II develops a univariate risk model that allows for dynamic volatility (Chapter
4), incorporates intraday data (Chapter 5), and allows for nonnormal shocks to
returns (Chapter 6).

l Part III gives a framework for multivariate risk modeling including dynamic corre-
lations (Chapter 7), copulas (Chapter 8), and model simulation using Monte Carlo
methods (Chapter 9).

l Part IV is devoted to option valuation (Chapter 10), option risk management
(Chapter 11), credit risk management (Chapter 12), and finally backtesting and
stress testing (Chapter 13).

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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1 Risk Management and Financial
Returns

1 Chapter Outline

This chapter begins by listing the learning objectives of the book. We then ask why
firms should be occupied with risk management in the first place. In answering this
question, we discuss the apparent contradiction between standard investment theory
and the emergence of risk management as a field, and we list theoretical reasons why
managers should give attention to risk management. We also discuss the empirical
evidence of the effectiveness and impact of current risk management practices in the
corporate as well as financial sectors. Next, we list a taxonomy of the potential risks
faced by a corporation, and we briefly discuss the desirability of exposure to each type
of risk. After the risk taxonomy discussion, we define asset returns and then list the
stylized facts of returns, which are illustrated by the S&P 500 equity index. We then
introduce the Value-at-Risk concept. Finally, we present an overview of the remainder
of the book.

2 Learning Objectives

The book is intended as a practical handbook for risk managers as well as a textbook
for students. It suggests a relatively sophisticated approach to risk measurement and
risk modeling. The idea behind the book is to document key features of risky asset
returns and then construct tractable statistical models that capture these features. More
specifically, the book is structured to help the reader

l Become familiar with the range of risks facing corporations and learn how to mea-
sure and manage these risks. The discussion will focus on various aspects of market
risk.

l Become familiar with the salient features of speculative asset returns.

l Apply state-of-the-art risk measurement and risk management techniques, which
are nevertheless tractable in realistic situations.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00001-4
c© 2012 Elsevier, Inc. All rights reserved.
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4 Background

l Critically appraise commercially available risk management systems and con-
tribute to the construction of tailor-made systems.

l Use derivatives in risk management.

l Understand the current academic and practitioner literature on risk management
techniques.

3 Risk Management and the Firm

Before diving into the discussion of the range of risks facing a corporation and
before analyzing the state-of-the art techniques available for measuring and manag-
ing these risks it is appropriate to start by asking the basic question about financial
risk management.

3.1 Why Should Firms Manage Risk?

From a purely academic perspective, corporate interest in risk management seems
curious. Classic portfolio theory tells us that investors can eliminate asset-specific
risk by diversifying their holdings to include many different assets. As asset-specific
risk can be avoided in this fashion, having exposure to it will not be rewarded in the
market. Instead, investors should hold a combination of the risk-free asset and the
market portfolio, where the exact combination will depend on the investor’s appetite
for risk. In this basic setup, firms should not waste resources on risk management,
since investors do not care about the firm-specific risk.

From the celebrated Modigliani-Miller theorem, we similarly know that the value
of a firm is independent of its risk structure; firms should simply maximize expected
profits, regardless of the risk entailed; holders of securities can achieve risk trans-
fers via appropriate portfolio allocations. It is clear, however, that the strict conditions
required for the Modigliani-Miller theorem are routinely violated in practice. In partic-
ular, capital market imperfections, such as taxes and costs of financial distress, cause
the theorem to fail and create a role for risk management. Thus, more realistic descrip-
tions of the corporate setting give some justifications for why firms should devote
careful attention to the risks facing them:

l Bankruptcy costs. The direct and indirect costs of bankruptcy are large and well
known. If investors see future bankruptcy as a nontrivial possibility, then the real
costs of a company reorganization or shutdown will reduce the current valuation of
the firm. Thus, risk management can increase the value of a firm by reducing the
probability of default.

l Taxes. Risk management can help reduce taxes by reducing the volatility of earn-
ings. Many tax systems have built-in progressions and limits on the ability to carry
forward in time the tax benefit of past losses. Thus, everything else being equal,
lowering the volatility of future pretax income will lower the net present value of
future tax payments and thus increase the value of the firm.
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l Capital structure and the cost of capital. A major source of corporate default is the
inability to service debt. Other things equal, the higher the debt-to-equity ratio, the
riskier the firm. Risk management can therefore be seen as allowing the firm to have
a higher debt-to-equity ratio, which is beneficial if debt financing is inexpensive
net of taxes. Similarly, proper risk management may allow the firm to expand more
aggressively through debt financing.

l Compensation packages. Due to their implicit investment in firm-specific human
capital, managerial level and other key employees in a firm often have a large and
unhedged exposure to the risk of the firm they work for. Thus, the riskier the firm,
the more compensation current and potential employees will require to stay with
or join the firm. Proper risk management can therefore help reduce the costs of
retaining and recruiting key personnel.

3.2 Evidence on Risk Management Practices

A while ago, researchers at the Wharton School surveyed 2000 companies on their risk
management practices, including derivatives uses. Of the 2000 firms surveyed, 400
responded. Not surprisingly, the survey found that companies use a range of meth-
ods and have a variety of reasons for using derivatives. It was also clear that not
all risks that were managed were necessarily completely removed. About half of the
respondents reported that they use derivatives as a risk-management tool. One-third
of derivative users actively take positions reflecting their market views, thus they may
be using derivatives to increase risk rather than reduce it.

Of course, not only derivatives are used to manage risky cash flows. Companies
can also rely on good old-fashioned techniques such as the physical storage of goods
(i.e., inventory holdings), cash buffers, and business diversification.

Not everyone chooses to manage risk, and risk management approaches differ from
one firm to the next. This partly reflects the fact that the risk management goals dif-
fer across firms. In particular, some firms use cash-flow volatility, while others use
the variation in the value of the firm as the risk management object of interest. It is
also generally found that large firms tend to manage risk more actively than do small
firms, which is perhaps surprising as small firms are generally viewed to be more risky.
However, smaller firms may have limited access to derivatives markets and further-
more lack staff with risk management skills.

3.3 Does Risk Management Improve Firm Performance?

The overall answer to this question appears to be yes. Analysis of the risk management
practices in the gold mining industry found that share prices were less sensitive to gold
price movements after risk management. Similarly, in the natural gas industry, better
risk management has been found to result in less variable stock prices. A study also
found that risk management in a wide group of firms led to a reduced exposure to
interest rate and exchange rate movements.

Although it is not surprising that risk management leads to lower variability—
indeed the opposite finding would be shocking—a more important question is whether
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6 Background

risk management improves corporate performance. Again, the answer appears to
be yes.

Researchers have found that less volatile cash flows result in lower costs of capi-
tal and more investment. It has also been found that a portfolio of firms using risk
management would outperform a portfolio of firms that did not, when other aspects
of the portfolio were controlled for. Similarly, a study found that firms using foreign
exchange derivatives had higher market value than those who did not.

The evidence so far paints a fairly rosy picture of the benefits of current risk man-
agement practices in the corporate sector. However, evidence on the risk manage-
ment systems in some of the largest US commercial banks is less cheerful. Several
recent studies have found that while the risk forecasts on average tended to be overly
conservative, perhaps a virtue at certain times, the realized losses far exceeded the
risk forecasts. Importantly, the excessive losses tended to occur on consecutive days.
Thus, looking back at the data on the a priori risk forecasts and the ex ante loss real-
izations, we would have been able to forecast an excessive loss tomorrow based on
the observation of an excessive loss today. This serial dependence unveils a poten-
tial flaw in current financial sector risk management practices, and it motivates the
development and implementation of new tools such as those presented in this book.

4 A Brief Taxonomy of Risks

We have already mentioned a number of risks facing a corporation, but so far we have
not been precise regarding their definitions. Now is the time to make up for that.

Market risk is defined as the risk to a financial portfolio from movements in market
prices such as equity prices, foreign exchange rates, interest rates, and commodity
prices.

While financial firms take on a lot of market risk and thus reap the profits (and
losses), they typically try to choose the type of risk to which they want to be exposed.
An option trading desk, for example, has a lot of exposure to volatility changing, but
not to the direction of the stock market. Option traders try to be delta neutral, as it
is called. Their expertise is volatility and not market direction, and they only take on
the risk about which they are the most knowledgeable, namely volatility risk. Thus
financial firms tend to manage market risk actively. Nonfinancial firms, on the other
hand, might decide that their core business risk (say chip manufacturing) is all they
want exposure to and they therefore want to mitigate market risk or ideally eliminate
it altogether.

Liquidity risk is defined as the particular risk from conducting transactions in mar-
kets with low liquidity as evidenced in low trading volume and large bid-ask spreads.
Under such conditions, the attempt to sell assets may push prices lower, and assets
may have to be sold at prices below their fundamental values or within a time frame
longer than expected.

Traditionally, liquidity risk was given scant attention in risk management, but the
events in the fall of 2008 sharply increased the attention devoted to liquidity risk. The
housing crisis translated into a financial sector crises that rapidly became an equity
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market crisis. The flight to low-risk treasury securities dried up liquidity in the markets
for risky securities. The 2008–2009 crisis was exacerbated by a withdrawal of funding
by banks to each other and to the corporate sector. Funding risk is often thought of as
a type of liquidity risk.

Operational risk is defined as the risk of loss due to physical catastrophe, tech-
nical failure, and human error in the operation of a firm, including fraud, failure of
management, and process errors.

Operational risk (or op risk) should be mitigated and ideally eliminated in any
firm because the exposure to it offers very little return (the short-term cost savings
of being careless, for example). Op risk is typically very difficult to hedge in asset
markets, although certain specialized products such as weather derivatives and catas-
trophe bonds might offer somewhat of a hedge in certain situations. Op risk is instead
typically managed using self-insurance or third-party insurance.

Credit risk is defined as the risk that a counterparty may become less likely to fulfill
its obligation in part or in full on the agreed upon date. Thus credit risk consists not
only of the risk that a counterparty completely defaults on its obligation, but also that
it only pays in part or after the agreed upon date.

The nature of commercial banks traditionally has been to take on large amounts of
credit risk through their loan portfolios. Today, banks spend much effort to carefully
manage their credit risk exposure. Nonbank financials as well as nonfinancial corpo-
rations might instead want to completely eliminate credit risk because it is not part
of their core business. However, many kinds of credit risks are not readily hedged in
financial markets, and corporations often are forced to take on credit risk exposure that
they would rather be without.

Business risk is defined as the risk that changes in variables of a business plan
will destroy that plan’s viability, including quantifiable risks such as business cycle
and demand equation risk, and nonquantifiable risks such as changes in competitive
behavior or technology. Business risk is sometimes simply defined as the types of risks
that are an integral part of the core business of the firm and therefore simply should be
taken on.

The risk taxonomy defined here is of course somewhat artificial. The lines between
the different kinds of risk are often blurred. The securitization of credit risk via credit
default swaps (CDS) is a prime example of a credit risk (the risk of default) becoming
a market risk (the price of the CDS).

5 Asset Returns Definitions

While any of the preceding risks can be important to a corporation, this book focuses
on various aspects of market risk. Since market risk is caused by movements in asset
prices or equivalently asset returns, we begin by defining returns and then give an
overview of the characteristics of typical asset returns. Because returns have much
better statistical properties than price levels, risk modeling focuses on describing the
dynamics of returns rather than prices.
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8 Background

We start by defining the daily simple rate of return from the closing prices of the
asset:

rt+1 = (St+1− St)/St = St+1/St− 1

The daily continuously compounded or log return on an asset is instead defined as

Rt+1 = ln(St+1)− ln(St)

where ln(∗) denotes the natural logarithm. The two returns are typically fairly similar,
as can be seen from

Rt+1 = ln(St+1)− ln(St)= ln(St+1/St)= ln(1+ rt+1)≈ rt+1

The approximation holds because ln(x)≈ x− 1 when x is close to 1.
The two definitions of return convey the same information but each definition has

pros and cons. The simple rate of return definition has the advantage that the rate of
return on a portfolio is the portfolio of the rates of return. Let Ni be the number of
units (for example shares) held in asset i and let VPF,t be the value of the portfolio on
day t so that

VPF,t =

n∑
i=1

NiSi,t

Then the portfolio rate of return is

rPF,t+1 ≡
VPF,t+1−VPF,t

VPF,t
=

∑n
i=1 NiSi,t+1−

∑n
i=1 NiSi,t∑n

i=1 NiSi,t
=

n∑
i=1

wiri,t+1

where wi = NiSi,t/VPF,t is the portfolio weight in asset i. This relationship does not
hold for log returns because the log of a sum is not the sum of the logs.

Most assets have a lower bound of zero on the price. Log returns are more con-
venient for preserving this lower bound in the risk model because an arbitrarily large
negative log return tomorrow will still imply a positive price at the end of tomorrow.
When using log returns tomorrow’s price is

St+1 = exp(Rt+1)St

where exp(•) denotes the exponential function. Because the exp(•) function is
bounded below by zero we do not have to worry about imposing lower bounds on
the distribution of returns when using log returns in risk modeling.

If we instead use the rate of return definition then tomorrow’s closing price is

St+1 = (1+ rt+1)St
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so that St+1 could go negative in the risk model unless the assumed distribution of
tomorrow’s return, rt+1, is bounded below by −1.

Another advantage of the log return definition is that we can easily calculate the
compounded return at the K−day horizon simply as the sum of the daily returns:

Rt+1:t+K = ln(St+K)− ln(St)=

K∑
k=1

ln(St+k)− ln(St+k−1)=

K∑
k=1

Rt+k

This relationship is crucial when developing models for the term structure of interest
rates and of option prices with different maturities. When using rates of return the
compounded return across a K−day horizon involves the products of daily returns
(rather than sums), which in turn complicates risk modeling across horizons.

This book will use the log return definition unless otherwise mentioned.

6 Stylized Facts of Asset Returns

We can now consider the following list of so-called stylized facts—or tendencies—
which apply to most financial asset returns. Each of these facts will be discussed in
detail in the book. The statistical concepts used will be explained further in Chapter 3.
We will use daily returns on the S&P 500 from January 1, 2001, through December 31,
2010, to illustrate each of the features.

Daily returns have very little autocorrelation. We can write

Corr (Rt+1,Rt+1−τ )≈ 0, for τ = 1,2,3, . . . ,100

In other words, returns are almost impossible to predict from their own past. Figure 1.1
shows the correlation of daily S&P 500 returns with returns lagged from 1 to 100 days.
We will take this as evidence that the conditional mean of returns is roughly constant.

The unconditional distribution of daily returns does not follow the normal distribu-
tion. Figure 1.2 shows a histogram of the daily S&P 500 return data with the normal
distribution imposed. Notice how the histogram is more peaked around zero than the
normal distribution. Daily returns tend to have more small positive and fewer small
negative returns than the normal distribution. Although the histogram is not an ideal
graphical tool for analyzing extremes, extreme returns are also more common in daily
returns than in the normal distribution. We say that the daily return distribution has fat
tails. Fat tails mean a higher probability of large losses (and gains) than the normal
distribution would suggest. Appropriately capturing these fat tails is crucial in risk
management.

The stock market exhibits occasional, very large drops but not equally large up-
moves. Consequently, the return distribution is asymmetric or negatively skewed. Some
markets such as that for foreign exchange tend to show less evidence of skewness.

The standard deviation of returns completely dominates the mean of returns at short
horizons such as daily. It is not possible to statistically reject a zero mean return.
Our S&P 500 data have a daily mean of 0.0056% and a daily standard deviation of
1.3771%.
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Figure 1.1 Autocorrelation of daily S&P 500 returns January 1, 2001–December 31, 2010.
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Notes: Using daily returns on the S&P 500 index from January 1, 2001 through December 31,
2010, the figure shows the autocorrelations for the daily returns. The lag order on the
horizontal axis refers to the number of days between the return and the lagged return for a
particular autocorrelation.

Figure 1.2 Histogram of daily S&P 500 returns and the normal distribution January 1,
2001–December 31, 2010.
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Notes: The daily S&P 500 returns from January 1, 2001 through December 31, 2010 are used
to construct a histogram shown in blue bars. A normal distribution with the same mean and
standard deviation as the actual returns is shown using the red line.

Variance, measured, for example, by squared returns, displays positive correlation
with its own past. This is most evident at short horizons such as daily or weekly.
Figure 1.3 shows the autocorrelation in squared returns for the S&P 500 data, that is

Corr
(

R2
t+1,R

2
t+1−τ

)
> 0, for small τ
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Figure 1.3 Autocorrelation of squared daily S&P 500 returns January 1, 2010–December 31,
2010.
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Notes: Using daily returns on the S&P 500 index from January 1, 2001 through December 31,
2010 the figure shows the autocorrelations for the squared daily returns. The lag order on the
horizontal axis refers to the number of days between the squared return and the lagged squared
return for a particular autocorrelation.

Models that can capture this variance dependence will be presented in Chapters 4
and 5.

Equity and equity indices display negative correlation between variance and
returns. This is often called the leverage effect, arising from the fact that a drop in
a stock price will increase the leverage of the firm as long as debt stays constant. This
increase in leverage might explain the increase in variance associated with the price
drop. We will model the leverage effect in Chapters 4 and 5.

Correlation between assets appears to be time varying. Importantly, the correlation
between assets appears to increase in highly volatile down markets and extremely so
during market crashes. We will model this important phenomenon in Chapter 7.

Even after standardizing returns by a time-varying volatility measure, they still
have fatter than normal tails. We will refer to this as evidence of conditional nonnor-
mality, which will be modeled in Chapters 6 and 9.

As the return-horizon increases, the unconditional return distribution changes and
looks increasingly like the normal distribution. Issues related to risk management
across horizons will be discussed in Chapter 8.

7 A Generic Model of Asset Returns

Based on the previous list of stylized facts, our model of individual asset returns will
take the generic form

Rt+1 = µt+1+ σ t+1zt+1, with zt+1 ∼ i.i.d. D(0,1)
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The random variable zt+1 is an innovation term, which we assume is identically and
independently distributed (i.i.d.) according to the distribution D(0,1), which has a
mean equal to zero and variance equal to one. The conditional mean of the return,
Et[Rt+1], is thus µt+1, and the conditional variance, Et[Rt+1−µt+1]2, is σ 2

t+1.
In most of the book, we will assume that the conditional mean of the return, µt+1,

is simply zero. For daily data this is a quite reasonable assumption as we mentioned
in the preceding list of stylized facts. For longer horizons, the risk manager may want
to estimate a model for the conditional mean as well as for the conditional variance.
However, robust conditional mean relationships are not easy to find, and assuming a
zero mean return may indeed be the most prudent choice the risk manager can make.

Chapters 4 and 5 will be devoted to modeling σ t+1. For now we can simply rely
on JP Morgan’s RiskMetrics model for dynamic volatility. In that model, the volatility
for tomorrow, time t+ 1, is computed at the end of today, time t, using the following
simple updating rule:

σ 2
t+1 = 0.94σ 2

t + 0.06R2
t

On the first day of the sample, t = 0, the volatility σ 2
0 can be set to the sample variance

of the historical data available.

8 From Asset Prices to Portfolio Returns

Consider a portfolio of n assets. The value of a portfolio at time t is again the weighted
average of the asset prices using the current holdings of each asset as weights:

VPF,t =

n∑
i=1

NiSi,t

The return on the portfolio between day t+ 1 and day t is then defined as

rPF,t+1 = VPF,t+1/VPF,t− 1

when using arithmetic returns, or as

RPF,t+1 = ln
(
VPF,t+1

)
− ln

(
VPF,t

)
when using log returns. Note that we assume that the portfolio value on each day
includes the cash from accrued dividends and other asset distributions.

Having defined the portfolio return we are ready to introduce one of the most com-
monly used portfolio risk measures, namely Value-at-Risk.

9 Introducing the Value-at-Risk (VaR) Risk Measure

Value-at-Risk, or VaR, is a simple risk measure that answers the following question:
What loss is such that it will only be exceeded p · 100% of the time in the next K
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trading days? VaR is often defined in dollars, denoted by $VaR, so that the $VaR loss
is implicitly defined from the probability of getting an even larger loss as in

Pr($Loss> $VaR)= p

Note by definition that (1− p)100% of the time, the $Loss will be smaller than the
VaR.

This book builds models for log returns and so we will instead use a VaR based on
log returns defined as

Pr(−RPF > VaR)= p⇔

Pr(RPF <−VaR)= p

So now the −VaR is defined as the number so that we would get a worse log return
only with probability p. That is, we are (1− p)100% confident that we will get a
return better than −VaR. This is the definition of VaR we will be using throughout the
book. When writing the VaR in return terms it is much easier to gauge its magnitude.
Knowing that the $VaR of a portfolio is $500,000 does not mean much unless we know
the value of the portfolio. Knowing that the return VaR is 15% conveys more relevant
information. The appendix to this chapter shows that the two VaRs are related via

$VaR= VPF (1− exp(−VaR))

If we start by considering a very simple example, namely that our portfolio consists
of just one security, for example an S&P 500 index fund, then we can use the Risk-
Metrics model to provide the VaR for the portfolio. Let VaRp

t+1 denote the p · 100%
VaR for the 1-day ahead return, and assume that returns are normally distributed with
zero mean and standard deviation σPF,t+1. Then

Pr
(
RPF,t+1 <−VaRp

t+1

)
= p⇔

Pr
(
RPF,t+1/σPF,t+1 <−VaRp

t+1/σPF,t+1
)
= p⇔

Pr
(
zt+1 <−VaRp

t+1/σPF,t+1
)
= p⇔

8
(
−VaRp

t+1/σPF,t+1
)
= p

where 8(∗) denotes the cumulative density function of the standard normal
distribution.
8(z) calculates the probability of being below the number z, and 8−1

p =8
−1 (p)

instead calculates the number such that p · 100% of the probability mass is below8−1
p .

Taking 8−1 (∗) on both sides of the preceding equation yields the VaR as

−VaRp
t+1/σPF,t+1 =8

−1 (p)⇔

VaRp
t+1 =−σPF,t+18

−1
p
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If we let p= 0.01 then we get 8−1
p =8

−1
.01 ≈−2.33. If we assume the standard devi-

ation forecast, σPF,t+1, for tomorrow’s return is 2.5% then we get

VaRp
t+1 =−σPF,t+18

−1
p

=−0.025(−2.33)

= 0.05825

Because 8−1
p is always negative for p< 0.5, the negative sign in front of the VaR

formula again ensures that the VaR itself is a positive number. The interpretation is
thus that the VaR gives a number such that there is a 1% chance of losing more than
5.825% of the portfolio value today. If the value of the portfolio today is $2 million,
the $VaR would simply be

$VaR= VPF (1− exp(−VaR))

= 2,000,000(1− exp(−0.05825))

= $113,172

Figure 1.4 illustrates the VaR from a normal distribution. Notice that we assume that
K = 1 and p= 0.01 here. The top panel shows the VaR in the probability distribution
function, and the bottom panel shows the VaR in the cumulative distribution function.
Because we have assumed that returns are normally distributed with a mean of zero,
the VaR can be calculated very easily. All we need is a volatility forecast.

VaR has undoubtedly become the industry benchmark for risk calculation. This is
because it captures an important aspect of risk, namely how bad things can get with a
certain probability, p. Furthermore, it is easily communicated and easily understood.

VaR does, however, have drawbacks. Most important, extreme losses are ignored.
The VaR number only tells us that 1% of the time we will get a return below the
reported VaR number, but it says nothing about what will happen in those 1% worst
cases. Furthermore, the VaR assumes that the portfolio is constant across the next
K days, which is unrealistic in many cases when K is larger than a day or a week.
Finally, it may not be clear how K and p should be chosen. Later we will discuss other
risk measures that can improve on some of the shortcomings of VaR.

As another simple example, consider a portfolio whose value consists of 40 shares
in Microsoft (MS) and 50 shares in GE. A simple way to calculate the VaR for the
portfolio of these two stocks is to collect historical share price data for MS and GE
and construct the historical portfolio pseudo returns using

RPF,t+1 = ln
(
VPF,t+1

)
− ln

(
VPF,t

)
= ln

(
40SMS,t+1+ 50SGE,t+1

)
− ln

(
40SMS,t+ 50SGE,t

)
where the stock prices include accrued dividends and other distributions. Construct-
ing a time series of past portfolio pseudo returns enables us to generate a portfolio
volatility series using for example the RiskMetrics approach where

σ 2
PF,t+1 = 0.94σ 2

PF,t+ 0.06R2
PF,t
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Figure 1.4 Value at Risk (VaR) from the normal distribution return probability distribution
(top panel) and cumulative return distribution (bottom panel).
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Notes: The top panel shows the probability density function of a normal distribution with a
mean of zero and a standard deviation of 2.5%. The 1-day, 1% VaR is indicated on the
horizontal axis. The bottom panel shows the cumulative density function for the same normal
distribution.

We can now directly model the volatility of the portfolio return, RPF,t+1, call it
σPF,t+1, and then calculate the VaR for the portfolio as

VaRp
t+1 =−σPF,t+18

−1
p

where we assume that the portfolio returns are normally distributed. Figure 1.5 shows
this VaR plotted over time. Notice that the VaR can be relatively low for extended
periods of time but then rises sharply when volatility is high in the market, for example
during the corporate defaults including the WorldCom bankruptcy in the summer of
2002 and during the financial crisis in the fall of 2008.
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Figure 1.5 1-day, 1% VaR using RiskMetrics in S&P 500 portfolio January 1, 2001–
December 31, 2010.
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Notes: The daily 1-day, 1% VaR is plotted during the 2001–2010 period. The VaR is computed
using a return mean of zero, using the RiskMetrics model for variance, and using a normal
distribution for the return shocks.

Notice that this aggregate VaR method is directly dependent on the portfolio posi-
tions (40 shares and 50 shares), and it would require us to redo the volatility modeling
every time the portfolio is changed or every time we contemplate change and want to
study the impact on VaR of changing the portfolio allocations. Although modeling the
aggregate portfolio return directly may be appropriate for passive portfolio risk mea-
surement, it is not as useful for active risk management. To do sensitivity analysis and
assess the benefits of diversification, we need models of the dependence between the
return on individual assets or risk factors. We will consider univariate, portfolio-level
risk models in Part II of the book and multivariate or asset level risk models in Part III
of the book.

We also hasten to add that the assumption of normality when computing VaR is
made for convenience and is not realistic. Important methods for dealing with the non-
normality evident in daily returns will be discussed in Chapter 6 of Part II (univariate
nonnormality) and in Chapter 9 of Part III (multivariate nonnormality).

10 Overview of the Book

The book is split into four parts and contains a total of 13 chapters including this one.
Part I, which includes Chapters 1 through 3, contains various background mate-

rial on risk management. Chapter 1 has discussed the motivation for risk manage-
ment and listed important stylized facts that the risk model should capture. Chapter 2
introduces the Historical Simulation approach to Value-at-Risk and discusses the
reasons for going beyond the Historical Simulation approach when measuring risk.
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Chapter 2 also compares the Value-at-Risk and Expected Shortfall risk measures.
Chapter 3 provides a primer on the basic concepts in probability and statistics used
in financial risk management. It can be skipped by readers with a strong statistical
background.

Part II of the book includes Chapters 4 through 6 and develops a framework for risk
measurement at the portfolio level. All the models introduced in Part II are univariate.
They can be used to model assets individually or to model the aggregate portfolio
return. Chapter 4 discusses methods for estimating and forecasting time-varying daily
return variance using daily data. Chapter 5 uses intraday return data to model and
forecast daily variance. Chapter 6 introduces methods to model the tail behavior in
asset returns that is not captured by volatility models and that is not captured by the
normal distribution.

Part III includes Chapters 7 through 9 and it covers multivariate risk models that
are capable of aggregating asset level risk models to provide sensible portfolio level
risk measures. Chapter 7 introduces dynamic correlation models, which together with
the dynamic volatility models in Chapters 4 and 5 can be used to construct dynamic
covariance matrices for many assets. Chapter 9 introduces copula models that can be
used to aggregate the univariate distribution models in Chapter 6 and thus provide
proper multivariate distributions. Chapter 8 shows how the various models estimated
on daily data can be used via simulation to provide estimates of risk across different
investment horizons.

Part IV of the book includes Chapters 10 through 13 and contains various fur-
ther topics in risk management. Chapter 10 develops models for pricing options when
volatility is dynamic. Chapter 11 discusses the risk management of portfolios that
include options. Chapter 12 discusses credit risk management. Chapter 13 develops
methods for backtesting and stress testing risk models.

Appendix: Return VaR and $VaR

This appendix shows the relationship between the return VaR using log returns and
the $VaR. First, the unknown future value of the portfolio is VPF exp(RPF) where VPF

is the current market value of the portfolio and RPF is log return on the portfolio.
The dollar loss $Loss is simply the negative change in the portfolio value and so the
relationship between the portfolio log return RPF and the $Loss is

$Loss= VPF (1− exp(RPF))

Substituting this relationship into the definition of the $VaR yields

Pr(VPF (1− exp(RPF)) > $VaR)= p

Solving for RPF yields

Pr(1− exp(RPF) > $VaR/VPF)= p⇔

Pr(RPF < ln(1− $VaR/VPF))= p
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This gives us the relationship between the two VaRs

VaR=− ln(1− $VaR/VPF)

or equivalently

$VaR= VPF (1− exp(−VaR))

Further Resources

A very nice review of the theoretical and empirical evidence on corporate risk man-
agement can be found in Stulz (1996) and Damodaran (2007).

For empirical evidence on the efficacy of risk management across a range of indus-
tries, see Allayannis and Weston (2003), Cornaggia (2010), MacKay and Moeller
(2007), Minton and Schrand (1999), Purnanandam (2008), Rountree et al. (2008),
Smithson (1999), and Tufano (1998).

Berkowitz and O’Brien (2002), Perignon and Smith (2010a, 2010b), and Perignon
et al. (2008) document the performance of risk management systems in large com-
mercial banks, and Dunbar (1999) contains a discussion of the increased focus on risk
management after the turbulence in the fall of 1998.

The definitions of the main types of risk used here can be found at www.erisk.com
and in JPMorgan/Risk Magazine (2001).

The stylized facts of asset returns are provided in Cont (2001). Surveys of Value-
at-Risk models include Andersen et al. (2006), Basle Committee for Banking Super-
vision (2011), Christoffersen (2009), Duffie and Pan (1997), Kuester et al. (2006), and
Marshall and Siegel (1997).

Useful web sites include www.gloriamundi.org, www.risk.net, www.defaultrisk
.com, and www.bis.org. See also www.christoffersen.com.
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Empirical Exercises

Open the Chapter1Data.xlsx file on the web site. (Excel hint: Enable the Data Analysis Tool
under Tools, Add-Ins.)

1. From the S&P 500 prices, remove the prices that are simply repeats of the previous day’s
price because they indicate a missing observation due to a holiday. Calculate daily log returns
as Rt+1 = ln(St+1)− ln(St) where St+1 is the closing price on day t+ 1, St is the closing
price on day t, and ln(∗) is the natural logarithm. Plot the closing prices and returns over
time.

2. Calculate the mean, standard deviation, skewness, and kurtosis of returns. Plot a histogram
of the returns with the normal distribution imposed as well. (Excel hints: You can either use
the Histogram tool under Data Analysis, or you can use the functions AVERAGE, STDEV,
SKEW, KURT, and the array function FREQUENCY, as well as the NORMDIST function.
Note that KURT computes excess kurtosis.)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 06-ch01-001-020-9780123744487 2011/10/28 16:48 Page 20 #18

20 Background

3. Calculate the first through 100th lag autocorrelation. Plot the autocorrelations against the lag
order. (Excel hint: Use the function CORREL.) Compare your result with Figure 1.1.

4. Calculate the first through 100th lag autocorrelation of squared returns. Again, plot the auto-
correlations against the lag order. Compare your result with Figure 1.3.

5. Set σ 2
0 (i.e., the variance of the first observation) equal to the variance of the entire

sequence of returns (you can square the standard deviation found earlier). Then calculate
σ 2

t+1 = 0.94σ 2
t + 0.06R2

t for t = 2,3, . . . ,T (the last observation). Plot the sequence of stan-
dard deviations (i.e., plot σ t).

6. Compute standardized returns as zt = Rt/σ t and calculate the mean, standard deviation,
skewness, and kurtosis of the standardized returns. Compare them with those found in
exercise 2.

7. Calculate daily, 5-day, 10-day, and 15-day nonoverlapping log returns. Calculate the mean,
standard deviation, skewness, and kurtosis for all four return horizons. Do the returns look
more normal as the horizon increases?

8. Calculate the 1-day, 1% VaR on each day in the sample using the sequence of variances σ 2
t+1

and the standard normal distribution assumption for the shock zt+1.

The answers to these exercises can be found in the Chapter1Results.xlsx file on the compa-
nion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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2 Historical Simulation,
Value-at-Risk, and Expected
Shortfall

1 Chapter Overview

The main objectives of this chapter are twofold. First we want to introduce the most
commonly used method for computing VaR, Historical Simulation, and we discuss
the pros and cons of this method. We then discuss the pros and cons of the VaR risk
measure itself and consider the Expected Shortfall (ES) alternative.

The chapter is organized as follows:

l We introduce the Historical Simulation (HS) method and discuss its pros and par-
ticularly its cons.

l We consider an extension of HS, often referred to as Weighted Historical Simula-
tion (WHS). We compare HS and WHS during the 1987 crash.

l We then study the performance of HS and RiskMetrics during the 2008–2009 finan-
cial crisis.

l We simulate artificial return data and assess the HS VaR on this data.

l Finally we compare the VaR risk measure with a potentially more informative alter-
native, ES.

The overall conclusion from this chapter is that HS is problematic for computing
VaR. This will motivate the dynamic models considered later. These models can be
used to compute Expected Shortfall or any other desired risk measure.

2 Historical Simulation

This section defines the HS approach to Value-at-Risk and then discusses the pros and
cons of the approach.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00002-6
c© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-374448-7.00002-6
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2.1 Defining Historical Simulation

Let today be day t. Consider a portfolio of n assets. If we today own Ni,t units or shares
of asset i then the value of the portfolio today is

VPF,t =

n∑
i=1

Ni,tSi,t

Using today’s portfolio holdings but historical asset prices we can compute the
history of “pseudo” portfolio values that would have materialized if today’s portfo-
lio allocation had been used through time. For example, yesterday’s pseudo portfolio
value is

VPF,t−1 =

n∑
i=1

Ni,tSi,t−1

This is a pseudo value because the units of each asset held typically changes over time.
The pseudo log return can now be defined as

RPF,t = ln
(
VPF,t/VPF,t−1

)
Armed with this definition, we are now ready to define the Historical Simulation

approach to risk management. The HS technique is deceptively simple. Consider the
availability of a past sequence of m daily hypothetical portfolio returns, calculated
using past prices of the underlying assets of the portfolio, but using today’s portfolio
weights; call it

{
RPF,t+1−τ

}m
τ=1.

The HS technique simply assumes that the distribution of tomorrow’s portfolio
returns, RPF,t+1, is well approximated by the empirical distribution of the past m
observations,

{
RPF,t+1−τ

}m
τ=1. Put differently, the distribution of RPF,t+1 is captured

by the histogram of
{
RPF,t+1−τ

}m
τ=1. The VaR with coverage rate, p, is then simply

calculated as 100pth percentile of the sequence of past portfolio returns. We write

VaRp
t+1 =−Percentile

({
RPF,t+1−τ

}m
τ=1 ,100p

)
Thus, we simply sort the returns in

{
RPF,t+1−τ

}m
τ=1 in ascending order and choose

the VaRp
t+1 to be the number such that only 100p% of the observations are smaller than

the VaRp
t+1.As the VaR typically falls in between two observations, linear interpolation

can be used to calculate the exact number. Standard quantitative software packages
will have the Percentile or similar functions built in so that the linear interpolation is
performed automatically.

2.2 Pros and Cons of Historical Simulation

Historical Simulation is widely used in practice. The main reasons are (1) the ease
with which is it implemented and (2) its model-free nature.
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The first advantage is difficult to argue with. The HS technique clearly is very easy
to implement. No parameters have to be estimated by maximum likelihood or any
other method. Therefore, no numerical optimization has to be performed.

The second advantage is more contentious, however. The HS technique is model-
free in the sense that it does not rely on any particular parametric model such as a
RiskMetrics model for variance and a normal distribution for the standardized returns.
HS lets the past m data points speak fully about the distribution of tomorrow’s return
without imposing any further assumptions. Model-free approaches have the obvious
advantage compared with model-based approaches that relying on a model can be
misleading if the model is poor.

The model-free nature of the HS model also has serious drawbacks, however.
Consider the choice of the data sample length, m. How large should m be? If m is

too large, then the most recent observations, which presumably are the most relevant
for tomorrow’s distribution, will carry very little weight, and the VaR will tend to look
very smooth over time. If m is chosen to be too small, then the sample may not include
enough large losses to enable the risk manager to calculate, say, a 1% VaR with any
precision. Conversely, the most recent past may be very unusual, so that tomorrow’s
VaR will be too extreme. The upshot is that the choice of m is very ad hoc, and,
unfortunately, the particular choice of m matters a lot for the magnitude and dynamics
of VaR from the HS technique. Typically m is chosen in practice to be between 250
and 1000 days corresponding to approximately 1 to 4 years. Figure 2.1 shows VaRs
from HS m= 250 and m= 1000, respectively, using daily returns on the S&P 500 for
July 1, 2008 through December 31, 2009. Notice the curious box-shaped patterns that
arise from the abrupt inclusion and exclusion of large losses in the moving sample.

Figure 2.1 VaRs from Historical Simulation using 250 and 1,000 return days: July 1,
2008–December 31, 2009.
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Notice also how the dynamic patterns of the HS VaRs are crucially dependent on m.
The 250-day HS VaR is almost twice as high as the 1000-day VaR during the crisis
period. Furthermore, the 250-day VaR rises quicker at the beginning of the crisis and
it drops quicker as well at the end of the crisis. The key question is whether the HS
VaR rises quickly enough and to the appropriate level.

The lack of properly specified dynamics in the HS methodology causes it to ignore
well-established stylized facts on return dependence, most importantly variance clus-
tering. This typically causes the HS VaR to react too slowly to changes in the market
risk environment. We will consider a stark example of this next.

Because a reasonably large m is needed in order to calculate 1% VaRs with any degree
of precision, the HS technique has a serious drawback when it comes to calculating the
VaR for the next, say, 10 days rather than the next day. Ideally, the 10-day VaR should
be calculated from 10-day nonoverlapping past returns, which would entail coming up
with 10 times as many past daily returns. This is often not feasible. Thus, the model-
free advantage of the HS technique is simultaneously a serious drawback. As the HS
method does not rely on a well-specified dynamic model, we have no theoretically
correct way of extrapolating from the 1-day distribution to get the 10-day distribution
other than finding more past data. While it may be tempting to simply multiply the
1-day VaR from HS by

√
10 to obtain a 10-day VaR, doing so is only valid under the

assumption of normality, which the HS approach is explicitly tailored to avoid.
In contrast, the dynamic return models suggested later in the book can be general-

ized to provide return distributions at any horizon. We will consider methods to do so
in Chapter 8.

3 Weighted Historical Simulation (WHS)

We have discussed the inherent tension in the HS approach regarding the choice of
sample size, m. If m is too small, then we do not have enough observations in the left
tail to calculate a precise VaR measure, and if m is too large, then the VaR will not
be sufficiently responsive to the most recent returns, which presumably have the most
information about tomorrow’s distribution.

We now consider a modification of the HS technique, which is designed to relieve
the tension in the choice of m by assigning relatively more weight to the most recent
observations and relatively less weight to the returns further in the past. This technique
is referred to as Weighted Historical Simulation (WHS).

WHS is implemented as follows:

l Our sample of m past hypothetical returns,
{
RPF,t+1−τ

}m
τ=1, is assigned probability

weights declining exponentially through the past as follows:

ητ =
{
ητ−1(1− η)/

(
1− ηm)}m

τ=1

so that, for example, today’s observation is assigned the weight η1 = (1− η)/
(1− ηm) . Note that ητ goes to zero as τ gets large, and that the weights ητ for τ =
1,2..,m sum to 1.

Typically, η is assumed to be a number between 0.95 and 0.99.
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l The observations along with their assigned weights are sorted in ascending order.

l The 100p% VaR is calculated by accumulating the weights of the ascending returns
until 100p% is reached. Again, linear interpolation can be used to calculate the
exact VaR number between the two sorted returns with cumulative probability
weights surrounding p.

Notice that once η is chosen, the WHS technique still does not require estimation
and thus retains the ease of implementation, which is the hallmark of simple HS. It has
the added advantage that the weighting function builds dynamics into the technique:
Today’s market conditions matter more because today’s return gets weighted much
more than past returns. The weighting function also makes the choice of m somewhat
less crucial.

An obvious downside of the WHS approach is that no guidance is given on how
to choose η. A more subtle, but also much more important downside is the effect
on the weighting scheme of positive versus negative past returns—a downside that
WHS shares with HS. We illustrate this with a somewhat extreme example drawing
on the month surrounding the October 19, 1987, crash in the stock market. Figure 2.2
contains two panels both showing in blue lines the daily losses on a portfolio consist-
ing of a $1 long position in the S&P 500 index. Notice how the returns are relatively
calm before October 19, when a more than 20% loss from the crash set off a dramatic
increase in market variance.

The blue line in the top panel shows the VaR from the simple HS technique, using
an m of 250. The key thing to notice of course is how the simple HS technique
responds slowly and relatively little to the dramatic loss on October 19. The HS’s
lack of response to the crash is due to its static nature: Once the crash occurs, it simply
becomes another observation in the sample that carries the same weight as the other
250 past observations. The VaR from the WHS method in the bottom panel (shown in
red) shows a much more rapid and large response to the VaR forecast from the crash.
As soon as the large portfolio loss from the crash is recorded, it gets assigned a large
weight in the weighting scheme, which in turn increases the VaR dramatically. The
WHS VaRs in Figure 2.2 assume a η of 0.99.

Thus, apparently the WHS performs its task sublimely. The dynamics of the weight-
ing scheme kicks in to lower the VaR exactly when our intuition says it should. Unfor-
tunately, all is not well. Consider Figure 2.3, which in both panels shows the daily
losses from a short $1 position in the S&P 500 index. Thus, we have simply flipped
the losses from before around the x-axis. The top panel shows the VaR from HS, which
is even more sluggish than before: Since we are short the S&P 500, the market crash
corresponds to a large gain rather than a large loss. Consequently, it has no impact
on the VaR, which is calculated from the largest losses only. Consider now the WHS
VaR instead. The bottom panel of Figure 2.3 shows that as we are short the market,
the October 19 crash has no impact on our VaR, only the subsequent market rebound,
which corresponds to a loss for us, increases the VaR.

Thus, the upshot is that while WHS responds quickly to large losses, it does not
respond to large gains. Arguably it should. The market crash sets off an increase in
market variance, which the WHS only picks up if the crash is bad for our portfo-
lio position. To put it bluntly, the WHS treats a large loss as a signal that risk has
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Figure 2.2 (A) Historical Simulation VaR and daily losses from Long S&P 500 position,
October 1987. (B) Weighted Historical Simulation VaR and daily losses from Long S&P 500
position, October 1987.
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Notes: The blue line shows the daily loss in percent of $1 invested in a long position in the
S&P 500 index each day during October 1987. The black line in the top panel shows the 1-day,
1% VaR computed using Historical Simulation with a 250-day sample. The bottom panel shows
the same losses in blue and in addition the VaR from Weighted Historical Simulation in red.

increased, but a large gain is chalked up to the portfolio managers being clever. This
is not a prudent risk management approach.

Notice that the RiskMetrics model would have picked up the increase in market
variance from the crash regardless of whether the crash meant a gain or a loss to us. In
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Figure 2.3 (A) Historical Simulation VaR and daily losses from Short S&P 500 position,
October 1987. (B) Weighted Historical Simulation VaR and daily losses from Short S&P 500
position, October 1987.
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1% VaR computed using Historical Simulation with a 250-day sample. The bottom panel
shows the same losses in black and the VaR from Weighted Historical Simulation in red.

the RiskMetrics model, returns are squared and losses and gains are treated as having
the same impact on tomorrow’s variance and therefore on the portfolio risk.

Finally, a serious downside of WHS, and one it shares with the simple HS
approach, is that the multiday Value-at-Risk requires a large amount of past daily
return data, which is often not easy to obtain. We will study multiperiod risk modeling
in Chapter 8.
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4 Evidence from the 2008–2009 Crisis

The 1987 crash provides a particularly dramatic example of the problems embedded
in the HS approach to VaR computation. The recent financial crisis involved different
market dynamics than the 1987 crash but the implications for HS VaR are equally
serious in the recent example.

Figure 2.4 shows the daily closing prices for a total return index (that is including
dividends) of the S&P 500 starting in July 2008 and ending in December 2009. The
index lost almost half its value between July 2008 and the market bottom in March
2009. The recovery in the index starting in March 2009 continued through the end of
2009.

HS again provides a simple way to compute VaR, and the red line in Figure 2.5
shows the 10-day, 1% HS VaR. As is standard, the 10-day VaR is computed from the
1-day VaR by simply multiplying it by

√
10:

VaR.01,HS
t+1:t+10 =−

√
10 ·Percentile

({
RPF,t+1−τ

}m
τ=1 ,1

)
,with m= 250

Consider now an almost equally simple alternative to HS provided by the RiskMetrics
(RM) variance model discussed in Chapter 1. The blue line in Figure 2.5 shows 10-day,
1% VaR computed from the RiskMetrics model as follows:

VaR.01,RM
t+1:t+10 =−

√
10 · σ t+1 ·8

−1
.01

=−
√

10 · σ t+1 · 2.33

where the variance dynamics are driven by

σ 2
PF,t+1 = 0.94σ 2

PF,t+ 0.06R2
PF,t

Figure 2.4 S&P 500 total return index: 2008–2009 crisis period.
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Figure 2.5 10-day, 1% VaR from Historical Simulation and RiskMetrics during the
2008–2009 crisis period.
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Notes: The daily 10-day, 1% VaR from Historical Simulation and from RiskMetrics are plotted
from July 1, 2008 through December 31, 2009.

as discussed in Chapter 1. We again simply scale the 1-day VaR by
√

10 to get the
10-day VaR. We have assumed a standard normal distribution for the return innovation
so that the percentile is easily computed as 8−1

.01 ≈−2.33.
Notice the dramatic difference between the HS and the RM VaRs in Figure 2.5.

The HS VaR rises much more slowly as the crisis gets underway in the fall of 2008
and perhaps even more strikingly, the HS VaR stays at its highest point for almost a
year during which the volatility in the market has declined considerably. The units in
Figure 2.5 refer to the least percent of capital that would be lost over the next 10 days
in the 1% worst outcomes.

The upshot is that a risk management team that relies on HS VaR will detect
the brewing crisis quite slowly and furthermore will enforce excessive caution after
volatility drops in the market.

In order to put some dollar figures on this effect Figure 2.6 conducts the follow-
ing experiment. Assume that each day a trader has a 10-day, 1% dollar VaR limit of
$100,000. Each day he or she is therefore allowed to invest

$Positiont+1 ≤
$100,000

VaR.01
t+1:t+10

in the S&P 500 index.
Let us assume that the trader each day simply invests the maximum amount possi-

ble in the S&P 500, that is

$Positiont+1 =
$100,000

VaR.01
t+1:t+10
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Figure 2.6 Cumulative P/L from traders with HS and RM VaRs.
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S&P 500 index using RiskMetrics (blue line) and Historical Simulation (red line), respectively.
The graph shows the cumulative proft and losses from the two risk models.

The red line in Figure 2.6 shows the cumulative dollar profit and loss (P/L) from a
trader whose limit is based on the HS VaR and the blue line shows the P/L from a
trader who uses the RM VaR model. The daily P/L is computed as

(P/L)t+1 = $Positiont+1 (St+1/St− 1)

These daily P/Ls are then cumulated across days.
The difference in performance is quite striking. The RM trader will lose less in the

fall of 2008 and earn much more in 2009. The HS trader takes more dramatic losses
in the fall of 2008 and is not allowed to invest sufficiently in the market in 2009 to
take advantage of the run-up in the index. The HS VaR reacts too slowly to increases
in volatility as well as to decreases in volatility. Both errors are potentially very
costly.

The RM risk model is very simple—potentially too simple in several respects,
which will be discussed in Chapters 4, 6, and 8. Important extensions to the simple
variance dynamic assumed in RiskMetrics will be discussed in detail in Chapter 4.
Recall also that we have assumed a standard normal distribution for the return inno-
vation. This assumption is just made for convenience at this point. In Chapter 6 we
will discuss ways to improve the risk model by allowing for nonnormal return inno-
vations. Finally, we simply scaled the 1-day VaR by

√
10 to get the 10-day VaR. This

simple rule is an approximation that is often not accurate. It will be discussed in detail
in Chapter 8.
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5 The True Probability of Breaching the HS VaR

The 1987 and the 2008–2009 examples indicated the problems inherent in the HS
approach but they could be dismissed as being just examples and of course not ran-
domly chosen periods. In order to get beyond these concerns we now conduct the
following purely artificial but revealing experiment.

Assume that the S&P 500 market returns are generated by a time series process
with dynamic volatility and normal innovations. In reality of course they are not but
if we make this radically simplifying assumption then we are able to compute how
wrong the HS VaR can get. To be specific, assume that innovation to S&P 500 returns
each day is drawn from the normal distribution with mean zero and variance equal to
σ 2

PF,t+1,which is generated by a GARCH type variance process that we will introduce
in Chapter 4. We can write

RPF,t+1 = σPF,t+1zPF,t+1, with zt+1 ∼ i.i.d. N(0,1)

If we simulate 1,250 return observations from this process, then starting on day
251 we can, on each day, compute the 1-day, 1% VaR using Historical Simulation.
Because we know how the returns were created, we can, on each day, compute the
true probability that we will observe a loss larger than the HS VaR we have computed.
We call this the probability of a VaR breach. It is computed as

Pr
(

RPF,t+1 <−VaR.01,HS
t+1

)
= Pr

(
RPF,t+1/σPF,t+1 <−VaR.01,HS

t+1 /σPF,t+1

)
= Pr

(
zPF,t+1 <−VaR.01,HS

t+1 /σPF,t+1

)
=8

(
−VaR.01,HS

t+1 /σPF,t+1

)
where 8 is again the cumulative density function for a standard normal random vari-
able. Figure 2.7 shows this probability over the 1,000 simulated return days.

If the HS VaR model had been accurate then this plot should show a roughly flat
line at 1%. Instead we see numbers as high as 16%, which happens when volatility
is high, and numbers very close to 0%, which happens when volatility is low. The
HS VaR will tend to overestimate risk when the true market volatility is low, which
will generate a low probability of a VaR breach in Figure 2.7. Conversely, and more
crucially, HS will underestimate risk when true volatility is high in which case the VaR
breach volatility will be high. The HS approach, which is supposed to deliver a 1%
VaR, sometimes delivers a 16% VaR, which means that there is roughly a 1 in 6 chance
of getting a loss worse than the HS VaR, when there is supposed to be only a 1 in 100
chance. The upshot is that HS VaR may be roughly correct on average (the average of
the probabilities in Figure 2.7 is 2.3%) but the HS VaR is much too low when volatility
is high and the HS VaR is too high when volatility is low.

This example has used Monte Carlo simulation to generate artificial returns. We
will study the details of Monte Carlo simulation in Chapter 8.
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Figure 2.7 Actual probability of losing more than the 1% HS VaR when returns have dynamic
variance.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 101 201 301 401 501 601 701 801 901

P
ro

ba
bi

lit
y 

of
 V

a
R

 b
re

ac
h

Notes: The figure shows the probability of getting a return worse than the VaR when the return
is simulated from a model with dynamic variance and the VaR is computed using Historical
Simulation.

6 VaR with Extreme Coverage Rates

The most complete picture of risk is no doubt provided by reporting the entire shape of
the tail of the distribution of losses beyond the VaR. The tail of the portfolio return dis-
tribution, when modeled correctly, tells the risk manager everything about the future
losses. Reporting the entire tail of the return distribution corresponds to reporting VaRs
for many different coverage rates, say p ranging from 0.01% to 2.5% in increments.
Note that when using HS with a 250-day sample it is not even possible to compute the
VaR when p< 1/250= 0.4%.

Figure 2.8 illustrates the relative difference between a VaR from a nonnormal distri-
bution (with an excess kurtosis of 3) and a VaR from a normal distribution as a function
of the VaR probability, p. Notice that as p gets close to zero (the smallest p in the figure
is 0.0001, which is 0.01%) the nonnormal VaR gets much larger than the normal VaR.
Strikingly, when p= 0.025 (i.e., 2.5%) there is almost no difference between the two
VaRs even though the underlying distributions are actually quite different as the VaRs
with extreme ps show. Relying on VaR with large p is dangerous because extreme risks
are hidden. Chapter 6 will detail the important task of modeling nonnormality in the
return distribution.

The popularity of VaR as a risk measurement tool is due to its simple interpre-
tation: “What’s the loss so that only 100p% of potential losses tomorrow will be
worse?” However, reporting the VaR for several values of p, where p is small, should
be given serious consideration in risk reporting as it maps out the tail of the loss
distribution.
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Figure 2.8 Relative difference between nonnormal (excess kurtosis= 3) and normal VaR.
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Notes: The figure plots [VaR(NonN)-VaR(N)]/VaR[N] where “N” denotes normal distribution.
The VaR difference is shown as a function of the VaR coverage rate, p.

7 Expected Shortfall

We previously discussed a key shortcoming of VaR, namely that it is concerned only
with the percentage of losses that exceed the VaR and not the magnitude of these
losses. The magnitude, however, should be of serious concern to the risk manager.
Extremely large losses are of course much more likely to cause financial distress, such
as bankruptcy, than are moderately large losses; therefore we want to consider a risk
measure that accounts for the magnitude of large losses as well as their probability of
occurring.

The challenge is to come up with a portfolio risk measure that retains the simplicity
of the VaR, but conveys information regarding the shape of the tail. Expected Shortfall
(ES), or TailVaR as it is sometimes called, is one way to do this.

Mathematically ES is defined as

ESp
t+1 =−Et

[
RPF,t+1|RPF,t+1 <−VaRp

t+1

]
where the negative signs in front of the expectation and the VaR are needed because
the ES and the VaR are defined as positive numbers. The Expected Shortfall tells us
the expected value of tomorrow’s loss, conditional on it being worse than the VaR.

The distribution tail gives us information on the range of possible extreme losses
and the probability associated with each outcome. The Expected Shortfall measure
aggregates this information into a single number by computing the average of the tail
outcomes weighted by their probabilities. So where VaR tells us the loss so that only
1% of potential losses will be worse, the ES tells us the expected loss given that we
actually get a loss from the 1% tail. So while we are not conveying all the information
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in the shape of the tail when using ES, the key is that the shape of the tail beyond the
VaR measure is now important for determining the risk number.

To gain more insight into the ES as a risk measure, let’s first consider the normal
distribution. In order to compute ES we need the distribution of a normal variable
conditional on it being below the VaR. The truncated standard normal distribution is
defined from the standard normal distribution as

φTr (z|z≤ Tr)=
φ (z)

8(Tr)
with E [z|z≤ Tr]=−

φ (Tr)

8(Tr)

where φ(•) denotes the density function and 8(•) the cumulative density function of
the standard normal distribution.

Recall that RPF,t+1 = σPF,t+1zPF,t+1. In the normal distribution case ES can there-
fore be derived as

ESp
t+1 =−Et

[
RPF,t+1|RPF,t+1 ≤−VaRp

t+1

]
=−σPF,t+1Et

[
zPF,t+1|zPF,t+1 ≤−VaRp

t+1/σPF,t+1
]

= σPF,t+1
φ
(
−VaRp

t+1/σPF,t+1
)

8
(
−VaRp

t+1/σPF,t+1
)

Of course, in the normal case we also know that

VaRp
t+1 =−σPF,t+18

−1
p

Thus, we have

ESp
t+1 = σPF,t+1

φ
(
8−1

p

)
p

which has a structure very similar to the VaR measure.
The relative difference between ES and VaR is

ESp
t+1−VaRp

t+1

VaRp
t+1

=−

φ
(
8−1

p

)
p8−1

p
− 1

When, for example, p= 0.01, we have 8−1
p ≈−2.33, and the relative difference is

then

ES.01
t+1−VaR.01

t+1

VaR.01
t+1

≈−
(2π)−1/2 exp(−(−2.33)2/2)

.01(−2.33)
− 1≈ 15%

In the normal case, we can show that as the VaR coverage rate p gets close to zero, the
ratio of the ES to the VaR goes to 1.
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Figure 2.9 ES versus VaR as a function of kurtosis.
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Notes: The figure shows (ES-VaR)/VaR in percent as a function of the excess kurtosis of the
underlying portfolio return distribution. The blue line uses a 1% VaR and the red line uses a
5% VaR.

From this it would seem that it really doesn’t matter much whether the risk man-
ager uses VaR or ES as a risk measure. The difference is only 15% when the VaR
coverage rate is 1%. Recall, however, that we argued in Chapter 1 that normal dis-
tributions fit asset return data poorly, particularly in the tail. So what happens to the
(ES−VaR)/VaR ratio when we look at nonnormal distributions?

Figure 2.9 considers a fat-tailed distribution where the degree of fatness in the tail
is captured by excess kurtosis as defined in Chapter 1: the higher the excess kurtosis
the fatter the distribution tail. The blue line in Figure 2.9 covers the case where p= 1%
and the red line shows p= 5%.

The blue line shows that when excess kurtosis is zero we get that the relative dif-
ference between the ES and VaR is 15%, which matches the preceding computation
for the normal distribution. The blue line in Figure 2.9 also shows that for moder-
ately large values of excess kurtosis, the relative difference between ES and VaR is
above 30%.

Comparing the red line with the blue line in Figure 2.9 it is clear that the relative
difference between VaR and ES is larger when p is larger and thus further from zero.
When p is close to zero VaR and ES will both capture the fat tails in the distribution.
When p is far from zero, only the ES will capture the fat tails in the return distribu-
tion. When using VaR and a large p the dangerous large losses will be hidden from
view. Generally an ES-based risk measure will be better able to capture the fact that a
portfolio with large kurtosis (or negative skewness) is more risky than a portfolio with
low kurtosis.

Risk managers who rely on Historical Simulation often report VaR with rela-
tively large p because they are worried about basing the VaR estimate on too few
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observations. Figure 2.9 indirectly shows that this argument has a serious downside:
The larger the p the more likely it is that extreme risks (evident in ES) in the portfolio
return distribution will go unnoticed in the VaR. The ES risk measure will capture such
extreme risks. The VaR will not.

8 Summary

VaR is the most popular risk measure in use and HS is the most often used method-
ology to compute VaR. This chapter has argued that VaR as commonly reported
has some shortcomings and that using HS to compute VaR has serious problems
as well.

We need instead to use risk measures that capture the degree of fatness in the tail of
the return distribution, and we need risk models that properly account for the dynamics
in variance and models that can be used across different return horizons.

Going forward the goal will be to develop risk models with the following charac-
teristics:

l The model is a fully specified statistical process that can be estimated on daily
returns.

l The model can be estimated and implemented for portfolios with a large number of
assets.

l VaR and ES can be easily computed for any prespecified level of confidence, p, and
for any horizon of interest, K.

l VaR and ES are dynamic reflecting current market conditions.

In order to deliver accurate risk predictions, the model should reflect the following
stylized facts of daily asset returns discussed in Chapter 1:

l The expected daily returns have little or no predictability.

l The variance of daily returns greatly exceeds the mean.

l The variance of daily returns is predictable.

l Daily returns are not normally distributed.

l Even after standardizing daily returns by a dynamic variance model, the standard-
ized daily returns are not normally distributed.

l Positive and negative returns of the same magnitude may have different impacts on
the variance.

l Correlations between assets appear to be time-varying.

l As the investment horizon increases, the return data distribution approaches the
normal distribution.
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Further Resources

Useful overviews of the various approaches to VaR calculation can be found in Duffie
and Pan (1997), Engle and Manganelli (2004a), Jorion (2006), and Christoffersen
(2009).

Dowd and Blake (2006) discuss the use of VaR-like measures in the insurance
industry. Danielsson (2002) warns against using risk models estimated on asset return
data from calm markets.

Bodoukh et al. (1998) introduced the Weighted Historical Simulation approach.
They found that it compares favorably with both the HS approach and the RiskMetrics
model. Figures 2.2 and 2.3 are based on Pritsker (2006).

Engle and Manganelli (2004b) suggest an interesting alternative method (not dis-
cussed in this chapter) for VaR calculation based on conditional quantile regression.

Artzner et al. (1999) define the concept of a coherent risk measure and showed
that Expected Shortfall (ES) is coherent whereas VaR is not. Inui and Kijima (2005)
provide additional theoretical arguments for the use of ES. Taylor (2008) provides
econometric tools for ES computation.

Studying dynamic portfolio management based on ES and VaR, Basak and Shapiro
(2001) found that when a large loss does occur, ES risk management leads to lower
losses than VaR risk management. Cuoco et al. (2008) argued instead that VaR and ES
risk management lead to equivalent results as long as the VaR and ES risk measures are
recalculated often. Both Basak and Shapiro (2001) and Cuoco et al. (2008) assumed
that returns are normally distributed. Yamai and Yoshiba (2005) compare VaR and
ES from a practical perspective. Berkowitz and O’Brien (2002) and Alexander and
Baptista (2006) look at VaR from a regulatory perspective.
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Empirical Exercises

Open the Chapter2data.xlsx file on the web site. Use sheet 1 for questions 1 and 2, and sheet 2
for questions 3 and 4.

1. Assume you are long $1 of the S&P 500 index on each day. Calculate the 1-day, 1% VaRs
on each day in October 1987 using Historical Simulation. Use a 250-day moving window.
Plot the VaR and the losses. Repeat the exercise assuming you are short $1 each day. Plot the
VaR and the losses again. Compare with Figures 2.2 and 2.3.

2. Assume you are long $1 of the S&P 500 index on each day. Calculate the 1-day, 1% VaRs on
each day in October 1987 using Weighted Historical Simulation. You can ignore the linear
interpolation part of WHS. Use a weighting parameter of η = 0.99 in WHS. Use a 250-day
moving window. (Excel hint: Sort the returns along with their weights by selecting both
columns in Excel and sorting by returns.) Repeat the exercise assuming you are short $1
each day. Plot the VaR and the losses again. Compare with Figures 2.2 and 2.3.

3. For each day from July 1, 2008 through December 31, 2009, calculate the 10-day, 1% VaRs
using the following methods: (a) RiskMetrics, that is, normal distribution with an exponen-
tial smoother on variance using the weight, λ= 0.94; and (b) Historical Simulation. Use a
250-day moving sample. Compute the 10-day VaRs from the 1-day VaRs by just multiplying
by square root of 10. Plot the VaRs.

4. Reconstruct the P/Ls in Figure 2.6.

The answers to these exercises can be found in the Chapter2Results.xlsx file on the compan-
ion website.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 08-ch03-039-064-9780123744487 2011/10/28 16:55 Page 39 #1

3 A Primer on Financial Time
Series Analysis

1 Chapter Overview

This chapter serves two purposes: First, it gives a very brief refresher on the basic
concepts in probability and statistics, and introduces the bivariate linear regression
model. Second, it gives an introduction to time series analysis with a focus on the
models most relevant for financial risk management. The chapter can be skipped
by readers who have recently taken a course in time series analysis or in financial
econometrics.

The material in the chapter is organized in the following four sections:

1. Probability Distributions and Moments
2. The Linear Model
3. Univariate Time Series Models
4. Multivariate Time Series Models

The chapter thus tries to cover a broad range of material that really would take
several books to do justice. The section “Further Resources” at the end of the chapter
therefore suggests books that can be consulted for readers who need to build a stronger
foundation in statistics and econometrics and also for readers who are curious to tackle
more advanced topics in time series analysis.

An important goal of the financial time series analysis part of the chapter is to
ensure that the reader avoids some common pitfalls encountered by risk managers
working with time series data such as prices and returns. These pitfalls can be sum-
marized as

l Spurious detection of mean-reversion; that is, erroneously finding that a variable is
mean-reverting when it is truly a random walk

l Spurious regression; that is, erroneously finding that a variable x is significant in a
regression of y on x

l Spurious detection of causality; that is, erroneously finding that the current value
of x causes (helps determine) future values of y when in reality it cannot

Before proceeding to these important topics in financial time series analysis we first
provide a quick refresher on basic probability and statistics.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00003-8
c© 2012 Elsevier, Inc. All rights reserved.
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2 Probability Distributions and Moments

The probability distribution of a discrete random variable, x, describes the proba-
bility of each possible outcome of x. Even if an asset price in reality can only take
on discrete values (for example $14.55) and not a continuum of values (for example
$14.55555.....) we usually use continuous densities rather than discrete distributions
to describe probability of various outcomes. Continuous probability densities are more
analytically tractable and they approximate well the discrete probability distributions
relevant for risk management.

2.1 Univariate Probability Distributions

Let the function F(x) denote the cumulative probability distribution function of the
random variable x so that the probability of x being less than the value a is given by

Pr(x< a)= F(a)

Let f (x) be the probability density of x and assume that x is defined from −∞ to +∞.
The probability of obtaining a value of x less that a can be had from the density via
the integral

Pr(x< a)=

a∫
−∞

f (x)dx= F(a)

so that f (x)= ∂F(x)
x . We also have that

Pr(x<+∞)=

+∞∫
−∞

f (x)dx= 1, and

Pr(x= a)= 0

Because the density is continuous the probability of obtaining any particular value a
is zero. The probability of obtaining a value in an interval between b and a is

Pr(b< x< a)=

a∫
b

f (x)dx= F(a)−F(b), where b< a

The expected value or mean of x captures the average outcome of a draw from the
distribution and it is defined as the probability weighted average of x

E [x]=

∞∫
−∞

xf (x)dx
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The basic rules of integration and the property that
∫
+∞

−∞
f (x)dx= 1 provides useful

results for manipulating expectations, for example

E [a+ bx]=

∞∫
−∞

(a+ bx) f (x)dx= a+ b

∞∫
−∞

xf (x)dx= a+ bE [x]

where a and b are constants.
Variance is a measure of the expected variation of variable around its mean. It is

defined by

Var[x]= E
[
(x−E[x])2

]
=

∞∫
−∞

(x−E[x])2 f (x)dx

Note that

Var[x]= E
[
(x−E[x])2

]
= E

[
x2
+E[x]2

− 2xE[x]
]
= E

[
x2]
−E[x]2

which follows from E [E [x]]= E [x]. From this we have that

Var
[
a+ bx

]
= E

[
(a+ bx)2

]
−E[(a+ bx)]2

= b2E[x2]− b2E [x]2

= b2Var [x]

The standard deviation is defined as the square root of the variance. In risk manage-
ment, volatility is often used as a generic term for either variance or standard deviation.

From this note, if we define a variable y= a+ bx and if the mean of x is zero and
the variance of x is one then

E[y]= a

Var[y]= b2

This is useful for creating variables with the desired mean and variance.
Mean and variance are the first two central moments. The third and fourth central

moments, also known as skewness and kurtosis, are defined by:

Skew [x]=

∫
∞

−∞
(x−E[x])3 f (x)dx

Var [x]3/2

Kurt [x]=

∫
∞

−∞
(x−E[x])4 f (x)dx

Var [x]2
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Note that by subtracting E[x] before taking powers and by dividing skewness by
Var [x]3/2 and kurtosis by Var [x]2 we ensure that

Skew [a+ bx]= Skew [x]

Kurt [a+ bx]= Kurt [x]

and we therefore say that skewness and kurtosis are location and scale invariant.
As an example consider the normal distribution with parameters µ and σ 2. It is

defined by

f
(
x;µ,σ 2)

=
1

√

2πσ 2
exp

(
(x−µ)2

2σ 2

)
The normal distribution has the first four moments

E[x]=

∞∫
−∞

x 1
√

2πσ 2
exp

(
(x−µ)2

2σ 2

)
dx= µ

Var [x]=

∞∫
−∞

(x−µ)2 1
√

2πσ 2
exp

(
(x−µ)2

2σ 2

)
dx= σ 2

Skew[x]=
1

σ 3

∞∫
−∞

(x−µ)3 1
√

2πσ 2
exp

(
(x−µ)2

2σ 2

)
dx= 0

Kurt[x]=
1

σ 4

∞∫
−∞

(x−µ)4 1
√

2πσ 2
exp

(
(x−µ)2

2σ 2

)
dx= 3

2.2 Bivariate Distributions

When considering two random variables x and y we can define the bivariate density
f (x,y) so that

Pr(a< x< b,c< y< d)=

d∫
c

b∫
a

f (x,y)dxdy

Covariance is the most common measure of linear dependence between two vari-
ables. It is defined by

Cov [x,y]=

∞∫
−∞

∞∫
−∞

(x−E [x])(y−E [y]) f (x,y)dxdy
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From the properties of integration we have the following convenient result:

Cov [a+ bx,c+ dy]= bdCov [x,y]

so that the covariance depends on the magnitude of x and y but not on their means.
Note also from the definition of covariance that

Cov [x,x]=

∞∫
−∞

(x−E [x])2 f (x)dx= Var [x]

From the covariance and variance definitions we can define correlation by

Corr [x,y]=
Cov [x,y]

√
Var [x]Var [y]

Notice that the correlation between x and y does not depend on the magnitude of x
and y. We have

Corr [a+ bx,c+ dy]=
bdCov [x,y]√

b2Var [x]d2Var [y]
=

Cov [x,y]
√

Var [x]Var [y]
= Corr [x,y]

A perfect positive linear relationship between x and y would exist if y= a+ bx,
in which case

Corr [x,y]=
Cov [x,a+ bx]

√
Var [x]Var [a+ bx]

=
bVar [x]

bVar [x]
= 1

A perfect negative linear relationship between x and y exists if y= a− bx, in which
case

Corr [x,y]=
Cov [x,a− bx]

√
Var [x]Var [a− bx]

=
−bVar [x]

bVar [x]
=−1

This suggests that correlation is bounded between −1 and +1, which is indeed the
case. This fact is convenient when interpreting a given correlation value.

2.3 Conditional Distributions

Risk managers often want to describe a variable y using information on another vari-
able x. From the joint distribution of x and y we can denote the conditional distribution
of y given x, f (y|x). It must be the case that

f (x,y)= f (y|x)f (x)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 08-ch03-039-064-9780123744487 2011/10/28 16:55 Page 44 #6

44 Background

which indirectly defines the conditional distribution as

f (y|x)=
f (x,y)

f (x)

This definition can be used to define the conditional mean and variance

E[y|x]=

∞∫
−∞

yf (y|x)dy=

∞∫
−∞

y
f (x,y)

f (x)
dy

Var[y|x]=

∞∫
−∞

(y−E [y|x])2
f (x,y)

f (x)
dy

Note that these conditional moments are functions of x but not of y.
If x and y are independent then f (y|x)= f (y) and so f (x,y)= f (x)f (y) and we have

that the conditional moments

E[y|x]=

∞∫
−∞

y
f (x)f (y)

f (x)
dy=

∞∫
−∞

yf (y)dy= E[y]

Var [y|x]=

∞∫
−∞

(y−E [y])2
f (x)f (y)

f (x)
dy= Var [y]

equal the corresponding unconditional moments.

2.4 Sample Moments

We now introduce the standard methods for estimating the moments introduced earlier.
Consider a sample of T observations of the variable x, namely {x1,x2, . . . ,xT}. We

can estimate the mean using the sample average

Ê [x]= x̄= 1
T

T∑
t=1

xt

and we can estimate the variance using the sample average of squared deviations from
the average

V̂ar [x]= 1
T

T∑
t=1

(xt− x̄)2

Sometimes the sample variance uses 1
T−1 instead of 1

T but unless T is very small then
the difference can be ignored.
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Similarly skewness and kurtosis can be estimated by

Ŝkew [x]= 1
T

T∑
t=1

(xt− x̄)3 /V̂ar [x]3/2

K̂urt [x]= 1
T

T∑
t=1

(xt− x̄)4 /V̂ar [x]2

The sample covariances between two random variables can be estimated via

Ĉov [x,y]= 1
T

T∑
t=1

(xt− x̄)(yt− ȳ)

and the sample correlation between two random variables, x and y, is calculated as

ρ̂x,y =

∑T
t=1 (xt− x̄)(yt− y)√∑T

t=1 (xt− x)2
∑T

t=1 (yt− y)2

3 The Linear Model

Risk managers often rely on linear models of the type

y= a+ bx+ ε

where E [ε]= 0 and x and ε are assumed to be independent or sometimes just uncor-
related. If we know the value of x then we can use the linear model to predict y via the
conditional expectation of y given x

E [y|x]= a+ bE [x|x]+E [ε|x]= a+ bx

In the linear model the unconditional expectations of x and y are linked via

E [y]= a+ bE [x]+E [ε]= a+ bE [x]

so that

a= E [y]− bE [x]

We also have that

Cov [y,x]= Cov [a+ bx+ ε,x]= bCov [x,x]= bVar [x]
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so that

b=
Cov [y,x]

Var [x]

In the linear model the variances of x and y are linked via

Var [y]= b2Var [x]+Var [ε]

Consider observation t in the linear model

yt = a+ bxt+ εt

If we have a sample of T observations then we can estimate

b̂=
Ĉov [x,y]

V̂ar [x]
=

∑T
t=1 (xt− x̄)(yt− ȳ)∑T

t=1 (xt− x̄)2

and

â= ȳ− b̂x̄

In the more general linear model with J different x-variables we have

yt = a+
J∑

j=1

bjxj,t+ εt

Minimizing the sum of squared errors,
∑T

t=1 ε
2
t provides the ordinary least square

(OLS) estimate of b:

b̂= argmin
T∑

t=1

ε2
t = argmin

T∑
t=1

yt− a−
J∑

j=1

bjxj,t

2

The solution to this optimization problem is a linear function of y and x, which makes
OLS estimation very easy to perform; thus it is built in to most common quantita-
tive software packages such as Excel, where the OLS estimation function is called
LINEST.

3.1 The Importance of Data Plots

While the linear model is useful in many cases, an apparent linear relationship between
two variables can be deceiving. Consider the four (artificial) data sets in Table 3.1,
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Table 3.1 Anscombe’s quartet

I II III IV

x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.1 14 8.84 8 7.04

6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

Moments

Mean 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5
Variance 11.0 4.1 11.0 4.1 11.0 4.1 11.0 4.1
Correlation 0.82 0.82 0.82 0.82

Regression

a 3.00 3.00 3.00 3.00
b 0.50 0.50 0.50 0.50

Notes: The table contains the four bivariate data sets in Anscombe’s quartet. Below each of the eight
variables we report the mean and the variance. We also report the correlation between x and y in each
of the four data sets. The parameter a denotes the constant and b denotes the slope from the regression
of y on x.

which are known as Anscombe’s quartet, named after their creator. All four data sets
have 11 observations.

Consider now the moments of the data included at the bottom of the observations in
Table 3.1. While the observations in the four data sets are clearly different from each
other, the mean and variance of the x and y variables is exactly the same across the
four data sets. Furthermore, the correlation between x and y are also the same across
the four pairs of variables. Finally, the last two rows of Table 3.1 show that when
regressing y on x using the linear model

yt = a+ bxt+ εt

we get the parameter estimates a= 3 and b= 0.5 in all the four cases. This data has
clearly been reverse engineered by Anscombe to produce such striking results.

Figure 3.1 scatter plots y against x in the four data sets with the regression line
included in each case. Figure 3.1 is clearly much more revealing than the moments
and the regression results.
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Figure 3.1 Scatter plot of Anscombe’s four data sets with regression lines.
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Notes: For each of the four data sets in Anscombe’s quartet we scatter plot the variables and
also report the regression line from fitting y on x.

We conclude that moments and regressions can be useful for summarizing variables
and relationships between them but whenever possible it is crucial to complement the
analysis with figures. When plotting your data you may discover:

l A genuine linear relationship as in the top-left panel of Figure 3.1

l A genuine nonlinear relationship as in the top-right panel

l A biased estimate of the slope driven by an outlier observation as in the bottom-left
panel

l A trivial relationship, which appears as a linear relationship again due to an outlier
as in the bottom-right panel of Figure 3.1

Remember: Always plot your variables before beginning a statistical analysis of
them.

4 Univariate Time Series Models

Univariate time series analysis studies the behavior of a single random variable
observed over time. Risk managers are interested in how prices and risk factors move
over time; therefore time series models are useful for risk managers. Forecasting the
future values of a variable using past and current observations on the same variable is
a key topic in univariate time series analysis.
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4.1 Autocorrelation

Correlation measures the linear dependence between two variables and autocorrelation
measures the linear dependence between the current value of a time series variable and
the past value of the same variable. Autocorrelation is a crucial tool for detecting linear
dynamics in time series analysis.

The autocorrelation for lag τ is defined as

ρτ ≡ Corr
[
Rt,Rt−τ

]
=

Cov [Rt,Rt−τ ]√
Var [Rt]Var [Rt−τ ]

=
Cov [Rt,Rt−τ ]

Var [Rt]

so that it captures the linear relationship between today’s value and the value τ days
ago.

Consider a data set on an asset return, {R1,R2, . . . ,RT}. The sample autocorrelation
at lag τ measures the linear dependence between today’s return, Rt, and the return τ
days ago, Rt−τ . Using the autocorrelation definition, we can write the sample autocor-
relation as

ρ̂τ =

1
T−τ

∑T
t=τ+1

(
Rt−R

)(
Rt−τ −R

)
1
T

∑T
t=1

(
Rt−R

)2 , τ = 1,2, . . . ,m< T

In order to detect dynamics in a time series, it is very useful to first plot the autocor-
relation function (ACF), which plots ρ̂τ on the vertical axis against τ on the horizontal
axis.

The statistical significance of a set of autocorrelations can be formally tested using
the Ljung-Box statistic. It tests the null hypothesis that the autocorrelation for lags 1
through m are all jointly zero via

LB(m)= T(T + 2)
m∑
τ=1

ρ̂2
τ

T − τ
∼ χ2

m

where χ2
m denotes the chi-squared distribution with m degrees of freedom.

The critical value of χ2
m corresponding to the probability p can be found for exam-

ple by using the CHIINV function in Excel. If p= 0.95 and m= 20, then the for-
mula CHIINV(0.95,20) in Excel returns the value 10.85. If the test statistic LB(20)
computed using the first 20 autocorrelations is larger than 10.85 then we reject the
hypothesis that the first 20 autocorrelations are zero at the 5% significance level.

Clearly, the maximum number of lags, m, must be chosen in order to implement
the test. Often the application at hand will give some guidance. For example if we are
looking to detect intramonth dynamics in a daily return, we use m= 21 corresponding
to 21 trading days in a month. When no such guidance is available, setting m= ln(T)
has been found to work well in simulation studies.
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4.2 Autoregressive (AR) Models

Once a pattern has been found in the autocorrelations then we want to build forecasting
models that can match the pattern in the autocorrelation function.

The simplest and most used model for this purpose is the autoregressive model of
order 1, AR(1), which is defined as

Rt = φ0+φ1Rt−1+ εt

where E [εt]= 0, Var [εt]= σ 2
ε and where we assume that Rt−τ and εt are independent

for all τ > 0. Under these assumptions the conditional mean forecast for one period
ahead is

E (Rt+1|Rt)= E
(
φ0+φ1Rt+ εt+1|Rt

)
= φ0+φ1Rt

By writing the AR(1) model for Rt+τ and repeatedly substituting past values we get

Rt+τ = φ0+φ1Rt+τ−1+ εt+τ

= φ0+φ
2
1Rt+τ−2+φ1εt+τ−1+ εt+τ

. . .

= φ0+φ
τ
1Rt+φ

τ−1
1 εt+1+ ·· ·+φ1εt+τ−1+ εt+τ

The multistep forecast in the AR(1) model is therefore

E(Rt+τ |Rt)= φ0+φ
τ
1Rt

If |φ1|< 1 then the (unconditional) mean of the model can be denoted by

E(Rt)= E(Rt−1)= µ

which in the AR(1) model implies

E(Rt)= φ0+φ1E(Rt−1)+E(εt)

µ= φ0+φ1µ, and so

E(Rt)= µ=
φ0

1−φ1

The unconditional variance is similarly

Var(Rt)= φ
2
1Var(Rt−1)+Var(εt) , so that

Var(Rt)=
σ 2
ε

1−φ2
1

because Var(Rt)= Var(Rt−1) when |φ1|< 1.
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Just as time series data can be characterized by the ACF then so can linear time
series models. To derive the ACF for the AR(1) model assume without loss of gener-
ality that µ= 0. Then

Rt = φ1Rt−1+ εt, and

RtRt−τ = φ1Rt−1Rt−τ + εtRt−τ , and so

E (RtRt−τ )= φ1E (Rt−1Rt−τ ), which implies

ρτ = φ1ρτ−1, so that

ρτ = φ
τ
1ρ0 = φ

τ
1

This provides the ACF of the AR(1) model. Notice the similarity between the ACF
and the multistep forecast earlier.

The lag order τ appears in the exponent of φ1 and we therefore say that the ACF
of an AR(1) model decays exponentially to zero as τ increases. The case when φ1 is
close to 1 but not quite 1 is important in financial economics. We refer to this as a
highly persistent series.

Figure 3.2 shows examples of the ACF in AR(1) models with four different (posi-
tive) values of φ1. When φ1<1 then the ACF decays to zero exponentially. Clearly
the decay is much slower when φ1=0.99 than when it is 0.5 or 0.1. When φ1=1 then
the ACF is flat at 1. This is the case of a random walk, which we will study further
later.

Figure 3.3 shows the ACF of an AR(1) when φ1 =−0.9. Notice the drastically
different ACF pattern compared with Figure 3.2. When φ1<0 then the ACF oscillates
around zero but it still decays to zero as the lag order increases. The ACFs in Figure 3.2
are much more common in financial risk management than are the ACFs in Figure 3.3.

Figure 3.2 Autocorrelation functions for AR(1) models with positive φ1.
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Notes: We plot the autocorrelation function for four AR(1) processes with different values of
the autoregressive parameter φ1. When φ1<1 then the ACF decays to 0 at an exponential rate.
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Figure 3.3 Autocorrelation functions for an AR(1) model with φ =−0.9.
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Notes: We plot the autocorrelation function for an AR(1) model with φ =−0.9 against the lag
order.

The simplest extension to the AR(1) model is the AR(2) defined as

Rt = φ0+φ1Rt−1+φ2Rt−2+ εt

The autocorrelation function of the AR(2) is

ρτ = φ1ρτ−1+φ2ρτ−2, for τ > 1

for example

E(RtRt−3)= φ1E (Rt−1Rt−3)+φ2E (Rt−2Rt−3)

so that

ρ3 = φ1ρ2+φ2ρ1

In order to derive the first-order autocorrelation note first that the ACF is symmetric
around τ = 0 meaning that

Corr(Rt,Rt−τ )= Corr
(
Rt,Rt+τ

)
for all τ

We therefore get that

E(RtRt−1)= φ1E(Rt−1Rt−1)+φ2E(Rt−2Rt−1)

implies

ρ1 = φ1+φ2ρ1
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so that

ρ1 =
φ1

1−φ2

The general AR(p) model is defined by

Rt = φ0+φ1Rt−1+ ·· ·+φpRt−p+ εt

The one-step ahead forecast in the AR(p) model is simply

Et(Rt+1)≡ E
(
Rt+1|Rt,Rt−1, . . .

)
= φ0+φ1Rt+ ·· ·+φpRt+1−p

The τ day ahead forecast can be built using

Et (Rt+τ )= φ0+

p∑
i=1

φiEt(Rt+τ−i)

which is sometimes called the chain-rule of forecasting. Note that when τ < i then

Et(Rt+τ−i)= Rt+τ−i

because Rt+τ−i is known at the time the forecast is made when τ < i.
The partial autocorrelation function (PACF) gives the marginal contribution of an

additional lagged term in AR models of increasing order. First estimate a series of AR
models of increasing order:

Rt = φ0,1+φ1,1Rt−1+ ε1t

Rt = φ0,2+φ1,2Rt−1+φ2,2Rt−2+ ε2t

Rt = φ0,3+φ1,3Rt−1+φ2,3Rt−2+φ3,3Rt−3+ ε3t

...
...

The PACF is now defined as the collection of the largest order coefficients{
φ1,1,φ2,2,φ3,3, . . .

}
which can be plotted against the lag order just as we did for the ACF.

The optimal lag order p in the AR(p) can be chosen as the largest p such that φp,p
is significant in the PACF. For example, an AR(3) will have a significant φ3,3 but it
will have a φ4,4 close to zero.

Note that in AR models the ACF decays exponentially whereas the PACF decays
abruptly. This is why the PACF is useful for AR model order selection.

The AR(p) models can be easily estimated using simple OLS regression on obser-
vations p+ 1 through T . A useful diagnostic test of the model is to plot the ACF of
residuals from the model and perform a Ljung-Box test on the residuals using m− p
degrees of freedom.
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4.3 Moving Average (MA) Models

In AR models the ACF dies off exponentially, however, certain dynamic features such
as bid-ask bounces or measurement errors die off abruptly and require a different type
of model. Consider the MA(1) model in which

Rt = θ0+ εt+ θ1εt−1

where εt and εt−1 are independent of each other and where E [εt]= 0. Note that

E [Rt]= θ0

and

Var(Rt)= (1+ θ
2
1)σ

2
ε

In order to derive the ACF of the MA(1) assume without loss of generality that
θ0 = 0. We then have

Rt = εt+ θ1εt−1 which implies

Rt−τRt = Rt−τ εt+ θ1Rt−τ εt−1, so that

E(Rt−1Rt)= θ1σ
2
ε , and

E(Rt−τRt)= 0, for τ > 1

Using the variance expression from before, we get the ACF

ρ1 =
θ1

1+ θ2
1

, and

ρτ = 0, for τ > 1

Note that the autocorrelations for the MA(1) are zero for τ > 1.
Unlike AR models, the MA(1) model must be estimated by numerical optimization

of the likelihood function. We proceed as follows. First, set the unobserved ε0 = 0,
which is its expected value. Second, set parameter starting values (initial guesses) for
θ0, θ1, and σ 2

ε . We can use the average of Rt for θ0, use 0 for θ1, and use the sample
variance of Rt for σ 2

ε . Now we can compute the time series of residuals via

εt = Rt− θ0− θ1εt−1, with ε0 = 0

We are now ready to estimate the parameters by maximizing the likelihood function
that we must first define. Let us first assume that εt is normally distributed, then

f (εt)=
1(

2πσ 2
ε

)1/2 exp

(
−
ε2

t

2σ 2
ε

)
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To construct the likelihood function note that as the εts are independent over time we
have

f (ε1,ε2, . . . ,εT)= f (ε1) f (ε2) . . . f (εT)

and we therefore can write the joint distribution of the sample as

f (ε1,ε2, . . . ,εT)=

T∏
t=1

1(
2πσ 2

ε

)1/2 exp

(
−
ε2

t

2σ 2
ε

)

The maximum likelihood estimation method chooses parameters to maximize the
probability of the estimated model (in this case MA(1)) having generated the observed
data set (in this case the set of Rts).

In the MA(1) model we must perform an iterative search (using for example Solver
in Excel) over the parameters θ0,θ1,σ

2
ε :

L
(

R1, . . . ,RT |θ0,θ1,σ
2
ε

)
=

T∏
t=1

1(
2πσ 2

ε

)1/2 exp

(
−
ε2

t

2σ 2
ε

)
where εt = Rt− θ0− θ1εt−1, with ε0 = 0

Once the parameters have been estimated we can use the model for forecasting. In
the MA(1) model the conditional mean forecast is

E(Rt+1|Rt,Rt−1, . . .)= θ0+ θ1εt

E(Rt+τ |Rt,Rt−1, . . .)= θ0, for τ > 1

The general MA(q) model is defined by

Rt = θ0+ θ1εt−1+ θ2εt−2+ ·· ·+ θqεt−q+ εt

It has an ACF that is nonzero for the first q lags and then zero for lags larger than q.
Note that MA models are easily identified using the ACF. If the ACF of a data

series dies off to zero abruptly after the first four (nonzero) lags then an MA(4) is
likely to provide a good fit of the data.

4.4 Combining AR and MA into ARMA Models

Parameter parsimony is key in forecasting, and combining AR and MA models into
ARMA models often enables us to model dynamics with fewer parameters.

Consider the ARMA(1,1) model, which includes one lag of Rt and one lag of εt:

Rt = φ0+φ1Rt−1+ θ1εt−1+ εt
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As in the AR(1), the mean of the ARMA(1,1) time series is given from

E [Rt]= φ0+φ1E [Rt−1]= φ0+φ1E [Rt]

which implies that

E(Rt)=
φ0

1−φ1

when
∣∣φ1

∣∣< 1. In this case Rt will tend to fluctuate around the mean, φ0/
(
1−φ1

)
,

over time. We say that Rt is mean-reverting in this case.
Using the fact that E [Rtεt]= σ 2

ε we can get the variance from

Var [Rt]= φ
2
1Var [Rt]+ θ

2
1σ

2
ε + σ

2
ε + 2φ1θ1σ

2
ε

which implies that

Var(Rt)=
(1+ 2φ1θ1+ θ

2
1)σ

2
ε

1−φ2
1

The first-order autocorrelation is given from

E [RtRt−1]= φ1E [Rt−1Rt−1]+ θ1E [εt−1Rt−1]+E [εtRt−1]

in which we assume again that φ0 = 0. This implies that

ρ1Var(Rt)= φ1Var(Rt)+ θ1σ
2
ε

so that

ρ1 = φ1+
θ1σ

2
ε

Var(Rt)

For higher order autocorrelations the MA term has no effect and we get the same
structure as in the AR(1) model

ρτ = φ1ρτ−1, for τ > 1

The general ARMA(p,q) model is

Rt = φ0+

p∑
i=1

φiRt−i+

q∑
i=1

θ iεt−i+ εt

Because of the MA term, ARMA models just as MA models must be estimated
using maximum likelihood estimation (MLE). Diagnostics on the residuals can be
done via Ljung-Box tests with degrees of freedom equal to m− q− p.
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4.5 Random Walks, Units Roots, and ARIMA Models

The random walk model is a key benchmark in financial forecasting. It is often used
to model speculative prices in logs. Let St be the closing price of an asset and let
st = ln(St) so that log returns are immediately defined by Rt ≡ ln(St)− ln(St−1)=

st− st−1.
The random walk (or martingale) model for log prices is now defined by

st = st−1+ εt

By iteratively substituting in lagged log prices we can write

st = st−2+ εt−1+ εt

. . .

st = st−τ + εt−τ+1+ εt−τ+2+ ·· ·+ εt

Because past εt−τ residual (or shocks) matter equally and fully for st regardless of τ
we say that past shocks have permanent effects in the random walk model.

In the random walk model, the conditional mean and variance forecasts for the log
price are

Et(st+τ )= st

Vart(st+τ )= τσ
2
ε

Note that the forecast for s at any horizon is just today’s value, st. We therefore some-
times say that the random walk model implies that the series is not predictable. Note
also that the conditional variance of the future value is a linear function of the forecast
horizon, τ .

Equity returns typically have a small positive mean corresponding to a small drift
in the log price. This motivates the random walk with drift model

st = µ+ st−1+ εt

Substituting in lagged prices back to time 0, we have

st = tµ+ s0+ εt+ εt−1+ ·· ·+ ε1

Notice that in this model the constant drift µ in returns corresponds to a coefficient on
time, t, in the log price model. We call this a deterministic time trend and we refer to
the sum of the εs as a stochastic trend.

A time series, st, follows an ARIMA(p,1,q) model if the first differences, st− st−1,
follow a mean-reverting ARMA(p,q) model. In this case we say that st has a unit root.
The random walk model has a unit root as well because in that model

st− st−1 = εt

which is a trivial ARMA(0,0) model.
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4.6 Pitfall 1: Spurious Mean-Reversion

Consider the AR(1) model again:

st = φ1st−1+ εt⇔

st− st−1 = (φ1− 1)st−1+ εt

Note that when φ1 = 1 then the AR(1) model has a unit root and becomes the random
walk model. The OLS estimator contains an important small sample bias in dynamic
models. For example, in an AR(1) model when the true φ1 coefficient is close or equal
to 1, the finite sample OLS estimate will be biased downward. This is known as the
Hurwitz bias or the Dickey-Fuller bias. This bias is important to keep in mind.

If φ1 is estimated in a small sample of asset prices to be 0.85 then it implies that
the underlying asset price is predictable and market timing thus feasible. However,
the true value may in fact be 1, which means that the price is a random walk and so
unpredictable.

The aim of technical trading analysis is to find dynamic patterns in asset prices.
Econometricians are very skeptical about this type of analysis exactly because it
attempts to find dynamic patterns in prices and not returns. Asset prices are likely
to have a φ1 very close to 1, which in turn is likely to be estimated to be somewhat
lower than 1, which in turn suggests predictability. Asset returns have a φ1 close to
zero and the estimate of an AR(1) on returns does not suffer from bias. Looking for
dynamic patterns in asset returns is much less likely to produce false evidence of pre-
dictability than is looking for dynamic patterns in asset returns. Risk managers ought
to err on the side of prudence and thus consider dynamic models of asset returns and
not asset prices.

4.7 Testing for Unit Roots

Asset prices often have a φ1 very close to 1. But we are very interested in knowing
whether φ1 = 0.99 or 1 because the two values have very different implications for
longer term forecasting as indicated by Figure 3.2. φ1 = 0.99 implies that the asset
price is predictable so that market timing is possible whereas φ1 = 1 implies it is not.
Consider again the AR(1) model with and without a constant term:

st = φ0+φ1st−1+ εt

st = φ1st−1+ εt

Unit root tests (also known as Dickey-Fuller tests) have been developed to assess the
null hypothesis

H0 : φ1 = 1

against the alternative hypothesis that

HA : φ1 < 1
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This looks like a standard t-test in a regression but it is crucial that when the null
hypothesis H0 is true, so that φ1 = 1, the unit root test does not have the usual normal
distribution even when T is large. If you estimate φ1 using OLS and test that φ1 = 1
using the usual t-test with critical values from the normal distribution then you are
likely to reject the null hypothesis much more often than you should. This means that
you are likely to spuriously find evidence of mean-reversion, that is, predictability.

5 Multivariate Time Series Models

Multivariate time series analysis is relevant for risk management because we often
consider risk models with multiple related risk factors or models with many assets.
This section will briefly introduce the following important topics: time series regres-
sions, spurious relationships, cointegration, cross correlations, vector autoregressions,
and spurious causality.

5.1 Time Series Regression

The relationship between two (or more) time series can be assessed applying the usual
regression analysis. But in time series analysis the regression errors must be scruti-
nized carefully.

Consider a simple bivariate regression of two highly persistent series, for example,
the spot and futures price of an asset

s1t = a+ bs2t+ et

The first step in diagnosing such a time series regression model is to plot the ACF
of the regression errors, et.

If ACF dies off only very slowly (the Hurwitz bias will make the ACF look like
it dies off faster to zero than it really does) then it is good practice to first-difference
each series and run the regression

(s1t− s1t−1)= a+ b(s2t− s2t−1)+ et

Now the ACF can be used on the residuals of the new regression and the ACF
can be checked for dynamics. The AR, MA, or ARMA models can be used to model
any dynamics in et. After modeling and estimating the parameters in the residual time
series, et, the entire regression model including a and b can be reestimated using MLE.

5.2 Pitfall 2: Spurious Regression

Checking the ACF of the error term in time series regressions is particularly important
due to the so-called spurious regression phenomenon: Two completely unrelated times
series—each with a unit root—are likely to appear related in a regression that has a
significant b coefficient.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 08-ch03-039-064-9780123744487 2011/10/28 16:55 Page 60 #22

60 Background

Specifically, let s1t and s2t be two independent random walks

s1t = s1t−1+ ε1t

s2t = s2t−1+ ε2t

where ε1t and ε2t are independent of each other and independent over time. Clearly
the true value of b is zero in the time series regression

s1t = a+ bs2t+ et

However, in practice, standard t-tests using the estimated b coefficient will tend to
conclude that b is nonzero when in truth it is zero. This problem is known as spurious
regression.

Fortunately, as noted earlier, the ACF comes to the rescue for detecting spurious
regression. If the relationship between s1t and s2t is spurious then the error term, et,

will have a highly persistent ACF and the regression in first differences

(s1t− s1t−1)= a+ b(s2t− s2t−1)+ et

will not show a significant estimate of b. Note that Pitfall 1, earlier, was related to mod-
eling univariate asset prices time series in levels rather than in first differences. Pitfall
2 is in the same vein: Time series regression on highly persistent asset prices is likely
to lead to false evidence of a relationship, that is, a spurious relationship. Regression
on returns is much more likely to lead to sensible conclusions about dependence across
assets.

5.3 Cointegration

Relationships between variables with unit roots are of course not always spurious.
A variable with a unit root, for example a random walk, is also called integrated, and
if two variables that are both integrated have a linear combination with no unit root
then we say they are cointegrated.

Examples of cointegrated variables could be long-run consumption and production
in an economy, or the spot and the futures price of an asset that are related via a
no-arbitrage condition. Similarly, consider the pairs trading strategy that consists of
finding two stocks whose prices tend to move together. If prices diverge then we buy
the temporarily cheap stock and short sell the temporarily expensive stock and wait
for the typical relationship between the prices to return. Such a strategy hinges on the
stock prices being cointegrated.

Consider a simple bivariate model where

s1t = φ0+ s1,t−1+ ε1t

s2t = bs1t+ ε2t

Note that s1t has a unit root and that the level of s1t and s2t are related via b. Assume
that ε1t and ε2t are independent of each other and independent over time.
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The cointegration model can be used to preserve the relationship between the vari-
ables in the long-term forecasts

E
(
s1,t+τ |s1t,s2t

)
= φ0τ + s1t

E
(
s2,t+τ |s1t,s2t

)
= bφ0τ + bs1t

The concept of cointegration was developed by Rob Engle and Clive Granger. They
together received the Nobel Prize in Economics in 2003 for this and many other con-
tributions to financial time series analysis.

5.4 Cross-Correlations

Consider again two financial time series, R1,t and R2,t. They can be dependent in
three possible ways: R1,t can lead R2,t (e.g., Corr

(
R1,t,R2,t+1

)
6= 0), R1,t can lag

R2,t (e.g., Corr
(
R1,t+1,R2,t

)
6= 0), and they can be contemporaneously related (e.g.,

Corr
(
R1,t,R2,t

)
6= 0). We need a tool to detect all these possible dynamic relationships.

The sample cross-correlation matrices are the multivariate analogues of the ACF
function and provide the tool we need. For a bivariate time series, the cross-covariance
matrix for lag τ is

0τ =

[
Cov

(
R1,t,R1,t−τ

)
Cov

(
R1,t,R2,t−τ

)
Cov

(
R2,t,R1,t−τ

)
Cov

(
R2,t,R2,t−τ

)] , τ ≥ 0

Note that the two diagonal terms are the autocovariance function of R1,t, and R2,t,
respectively.

In the general case of a k-dimensional time series, we have

0τ = E
{
(Rt−E [Rt])(Rt−τ −E [Rt])

′
}
, τ ≥ 0

where Rt is now a k by 1 vector of variables.
Detecting lead and lag effects is important, for example when relating an illiquid

stock to a liquid market factor. The illiquidity of the stock implies price observations
that are often stale, which in turn will have a spuriously low correlation with the liquid
market factor. The stale equity price will be correlated with the lagged market factor
and this lagged relationship can be used to compute a liquidity-corrected measure of
the dependence between the stock and the market.

5.5 Vector Autoregressions (VAR)

The vector autoregression model (VAR), which is not to be confused with Value-
at-Risk (VaR), is arguably the simplest and most often used multivariate time series
model for forecasting. Consider a first-order VAR, call it VAR(1)

Rt = φ0+8Rt−1+ εt, Var(εt)=6

where Rt is again a k by 1 vector of variables.
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The bivariate case is simply

R1,t = φ0,1+811R1,t−1+812R2,t−1+ ε1,t

R2,t = φ0,1+821R1,t−1+822R2,t−1+ ε2,t

6 =

[
σ 2

1 σ 12

σ 21 σ
2
2

]
Note that in the VAR, R1,t and R2,t are contemporaneously related via their covari-

ance σ 12 = σ 21. But just as in the AR model, the VAR only depends on lagged vari-
ables so that it is immediately useful in forecasting.

If the variables included on the right-hand-side of each equation in the VAR are
the same (as they are above) then the VAR is called unrestricted and OLS can be used
equation-by-equation to estimate the parameters.

5.6 Pitfall 3: Spurious Causality

We may sometimes be interested to see if the lagged value of R2,t, namely R2,t−1, is
causal for the current value of R1,t, in which case it can be used in forecasting. To this
end a simple regression of the form

R1,t = a+ bR2,t−1+ et

could be used. Note that it is the lagged value R2,t−1 that appears on the right-hand
side. Unfortunately, such a regression may easily lead to false conclusions if R1,t is
persistent and so depends on its own past value, which is not included on the right-
hand side of the regression.

In order to truly assess if R2,t−1 causes R1,t (or vice versa), we should ask the
question: Is past R2,t useful for forecasting current R1,t once the past R1,t has been
accounted for? This question can be answered by running a VAR model:

R1,t = φ0,1+811R1,t−1+812R2,t−1+ ε1,t

R2,t = φ0,2+821R1,t−1+822R2,t−1+ ε2,t

Now we can define Granger causality (as opposed to spurious causality) as follows:

l R2,t is said to Granger cause R1,t if 812 6= 0

l R1,t is said to Granger cause R2,t if 821 6= 0

In some cases several lags of R1,t may be needed on the right-hand side of the
equation for R1,t and similarly we may need more lags of R2,t in the equation for R2,t.

6 Summary

The financial asset prices and portfolio values typically studied by risk managers can
be viewed as examples of very persistent time series. An important goal of this chapter
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is therefore to ensure that the risk manager avoids some common pitfalls that arise
because of the persistence in prices. The three most important issues are

l Spurious detection of mean-reversion; that is, erroneously finding that a variable is
mean-reverting when it is truly a random walk

l Spurious regression; that is, erroneously finding that a variable x is significant when
regressing y on x

l Spurious detection of causality; that is, erroneously finding that the current value
of x causes (helps determine) future values of y when in reality it cannot

Several more advanced topics have been left out of the chapter including long
memory models and models of seasonality. Long memory models give more flexi-
bility in modeling the autocorrelation function (ACF) than do the traditional ARIMA
and ARMA models studied in this chapter. In particular long-memory models allow
for the ACF to go to zero more slowly than the AR(1) model, which decays to zero at
an exponential decay as we saw earlier. Seasonal models are useful, for example, for
the analysis of agricultural commodity prices where seasonal patterns in supply cause
seasonal patterns in prices, in expected returns, and in volatility. These topics can be
studied using the resources suggested next.

Further Resources

For a basic introduction to financial data analysis, see Koop (2006) and for an intro-
duction to probability theory see Paollela (2006). Wooldridge (2002) and Stock and
Watson (2010) provide a broad introduction to econometrics. Anscombe (1973) con-
tains the data in Table 3.1 and Figure 3.1.

The univariate and multivariate time series material in this chapter is based on
Chapters 2 and 8 in Tsay (2002), which should be consulted for various extensions
including seasonality and long memory. See also Taylor (2005) for an excellent treat-
ment of financial time series analysis focusing on volatility modeling.

Diebold (2004) gives a thorough introduction to forecasting in economics. Granger
and Newbold (1986) is the classic text for the more advanced reader. Christoffersen
and Diebold (1998) analyze long-horizon forecasting in cointegrated systems.

The classic references on the key time series topics in this chapter are Hurwitz
(1950) on the bias in the AR(1) coefficient, Granger and Newbold (1974) on spurious
regression in economics, Engle and Granger (1987) on cointegration, Granger (1969)
on Granger causality, and Dickey and Fuller (1979) on unit root testing. Hamilton
(1994) provides an authoritative treatment of economic time series analysis.

Tables with critical values for unit root tests can be found in MacKinnon (1996,
2010). See also Chapter 14 in Davidson and MacKinnon (2004).
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Empirical Exercises

Open the Chapter3Data.xlsx file from the web site.

1. Using the data in the worksheet named Question 3.1 reproduce the moments and regression
coefficients at the bottom of Table 3.1.

2. Reproduce Figure 3.1.
3. Reproduce Figure 3.2.
4. Using the data sets in the worksheet named Question 3.4, estimate an AR(1) model on each

of the 100 columns of data. (Excel hint: Use the LINEST function.) Plot the histogram of the
100 φ1 estimates you have obtained. The true value of φ1 is one in all the columns. What
does the histogram tell you?

5. Using the data set in the worksheet named Question 3.4, estimate an MA(1) model using
maximum likelihood. Use the starting values suggested in the text. Use Solver in Excel to
maximize the likelihood function.

Answers to these exercises can be found on the companion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://ideas.repec.org/p/qed/wpaper/1227.html
http://www.elsevierdirect.com/companions/9780123744487


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 09-ch04-065-092-9780123744487 2011/10/28 18:14 Page 67 #1

4 Volatility Modeling Using Daily Data

1 Chapter Overview

Part II of the book consists of three chapters. The ultimate goal of this and the follow-
ing two chapters is to establish a framework for modeling the dynamic distribution of
portfolio returns. The methods we develop in Part II can also be used to model each
asset in the portfolio separately. In Part III of the book we will consider multivariate
models that can link the univariate asset return models together. If the risk manager
only cares about risk measurement at the portfolio level then the univariate models in
Part II will suffice.

We will proceed with the univariate models in two steps. The first step is to estab-
lish a forecasting model for dynamic portfolio variance and to introduce methods for
evaluating the performance of these forecasts. The second step is to consider ways to
model nonnormal aspects of the portfolio return—that is, aspects that are not captured
by the dynamic variance.

The second step, allowing for nonnormal distributions, is covered in Chapter 6. The
first step, volatility modeling, is analyzed in this chapter and in Chapter 5. Chapter 5
relies on intraday data to develop daily volatility forecasts. The present chapter focuses
on modeling daily volatility when only daily return data are available. We proceed as
follows:

1. We briefly describe the simplest variance models available including moving aver-
ages and the so-called RiskMetrics variance model.

2. We introduce the GARCH variance model and compare it with the RiskMetrics
model.

3. We estimate the GARCH parameters using the quasi-maximum likelihood method.
4. We suggest extensions to the basic model, which improve the model’s ability to

capture variance persistence and leverage effects. We also consider ways to expand
the model, taking into account explanatory variables such as volume effects, day-
of-week effects, and implied volatility from options.

5. We discuss various methods for evaluating the volatility forecasting models.

The overall objective of this chapter is to develop a general class of models that can
be used by risk managers to forecast daily portfolio volatility using daily return data.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00004-X
c© 2012 Elsevier, Inc. All rights reserved.
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2 Simple Variance Forecasting

We begin by establishing some notation and by laying out the underlying assumptions
for this chapter. In Chapter 1, we defined the daily asset log return, Rt+1, using the
daily closing price, St+1, as

Rt+1 ≡ ln(St+1/St)

We will use the notation Rt+1 to describe either an individual asset return or the aggre-
gate return on a portfolio. The models in this chapter can be used for both.

We will also apply the finding from Chapter 1 that at short horizons such as daily,
we can safely assume that the mean value of Rt+1 is zero since it is dominated by the
standard deviation. Issues arising at longer horizons will be discussed in Chapter 8.
Furthermore, we will assume that the innovation to asset return is normally distributed.
We hasten to add that the normality assumption is not realistic, and it will be relaxed in
Chapter 6. Normality is simply assumed for now, as it allows us to focus on modeling
the conditional variance of the distribution.

Given the assumptions made, we can write the daily return as

Rt+1 = σ t+1zt+1,with zt+1 ∼ i.i.d. N(0,1)

where the abbreviation i.i.d. N(0,1) stands for “independently and identically nor-
mally distributed with mean equal to zero and variance equal to 1.”

Together these assumptions imply that once we have established a model of the
time-varying variance, σ 2

t+1, we will know the entire distribution of the asset, and
we can therefore easily calculate any desired risk measure. We are well aware from
the stylized facts discussed in Chapter 1 that the assumption of conditional normality
that is imposed here is not satisfied in actual data on speculative returns. However,
as we will see later, for the purpose of variance modeling, we are allowed to assume
normality even if it is strictly speaking not a correct assumption. This assumption
conveniently allows us to postpone discussions of nonnormal distributions to a later
chapter.

The focus of this chapter then is to establish a model for forecasting tomorrow’s
variance, σ 2

t+1. We know from Chapter 1 that variance, as measured by squared
returns, exhibits strong autocorrelation, so that if the recent period was one of high
variance, then tomorrow is likely to be a high-variance day as well. The easiest way
to capture this phenomenon is by letting tomorrow’s variance be the simple average
of the most recent m observations, as in

σ 2
t+1 =

1

m

m∑
τ=1

R2
t+1−τ =

m∑
τ=1

1

m
R2

t+1−τ

Notice that this is a proper forecast in the sense that the forecast for tomorrow’s
variance is immediately available at the end of today when the daily return is real-
ized. However, the fact that the model puts equal weights (equal to 1/m) on the past
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Figure 4.1 Squared S&P 500 returns with moving average variance estimated on past
25 observations, 2008–2009.
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m observations yields unwarranted results. An extreme return (either positive or neg-
ative) today will bump up variance by 1/m times the return squared for exactly m
periods after which variance immediately will drop back down. Figure 4.1 illustrates
this point for m= 25 days. The autocorrelation plot of squared returns in Chapter
1 suggests that a more gradual decline is warranted in the effect of past returns on
today’s variance. Even if we are content with the box patterns, it is not at all clear how
m should be chosen. This is unfortunate as the choice of m is crucial in deciding the
patters of σ t+1: A high m will lead to an excessively smoothly evolving σ t+1, and a
low m will lead to an excessively jagged pattern of σ t+1 over time.

JP Morgan’s RiskMetrics system for market risk management considers the fol-
lowing model, where the weights on past squared returns decline exponentially as we
move backward in time. The RiskMetrics variance model, or the exponential smoother
as it is sometimes called, is written as

σ 2
t+1 = (1− λ)

∞∑
τ=1

λτ−1R2
t+1−τ , for 0< λ < 1

Separating from the sum the squared return term for τ = 1, where λτ−1
= λ0

= 1,
we get

σ 2
t+1 = (1− λ)

∞∑
τ=2

λτ−1R2
t+1−τ + (1− λ)R

2
t
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Applying the exponential smoothing definition again, we can write today’s variance,
σ 2

t , as

σ 2
t = (1− λ)

∞∑
τ=1

λτ−1R2
t−τ =

1

λ
(1− λ)

∞∑
τ=2

λτ−1R2
t+1−τ

so that tomorrow’s variance can be written

σ 2
t+1 = λσ

2
t + (1− λ)R

2
t

The RiskMetrics model’s forecast for tomorrow’s volatility can thus be seen as a
weighted average of today’s volatility and today’s squared return.

The RiskMetrics model has some clear advantages. First, it tracks variance changes
in a way that is broadly consistent with observed returns. Recent returns matter more
for tomorrow’s variance than distant returns as λ is less than one and therefore the
impact of the lagged squared return gets smaller when the lag, τ , gets bigger. Sec-
ond, the model only contains one unknown parameter, namely, λ. When estimating λ
on a large number of assets, RiskMetrics found that the estimates were quite similar
across assets, and they therefore simply set λ= 0.94 for every asset for daily vari-
ance forecasting. In this case, no estimation is necessary, which is a huge advantage
in large portfolios. Third, relatively little data need to be stored in order to calculate
tomorrow’s variance. The weight on today’s squared returns is (1− λ)= 0.06, and
the weight is exponentially decaying to (1− λ)λ99

= 0.000131 on the 100th lag of
squared return. After including 100 lags of squared returns, the cumulated weight is
(1− λ)

∑100
τ=1λ

τ−1
= 0.998, so that 99.8% of the weight has been included. There-

fore it is only necessary to store about 100 daily lags of returns in order to calculate
tomorrow’s variance, σ 2

t+1.
Given all these advantages of the RiskMetrics model, why not simply end the dis-

cussion on variance forecasting here and move on to distribution modeling? Unfortu-
nately, as we will see shortly, the RiskMetrics model does have certain shortcomings,
which will motivate us to consider slightly more elaborate models. For example, it
does not allow for a leverage effect, which we considered a stylized fact in Chapter 1,
and it also provides counterfactual longer-horizon forecasts.

3 The GARCH Variance Model

We now introduce a set of models that capture important features of returns data and
that are flexible enough to accommodate specific aspects of individual assets. The
downside of these models is that they require nonlinear parameter estimation, which
will be discussed subsequently.

The simplest generalized autoregressive conditional heteroskedasticity (GARCH)
model of dynamic variance can be written as

σ 2
t+1 = ω+αR2

t +βσ
2
t , with α+β < 1
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Notice that the RiskMetrics model can be viewed as a special case of the simple
GARCH model if we force α = 1− λ,β = λ, so that α+β = 1, and further ω = 0.
Thus, the two models appear to be quite similar. However, there is an important dif-
ference: We can define the unconditional, or long-run average, variance, σ 2, to be

σ 2
≡ E[σ 2

t+1]= ω+αE[R2
t ]+βE[σ 2

t ]

= ω+ασ 2
+βσ 2, so that

σ 2
= ω/(1−α−β)

It is now clear that if α+β = 1 as is the case in the RiskMetrics model, then the long-
run variance is not well defined in that model. Thus, an important quirk of the Risk-
Metrics model emerges: It ignores the fact that the long-run average variance tends
to be relatively stable over time. The GARCH model, in turn, implicitly relies on σ 2.

This can be seen by solving for ω in the long-run variance equation and substituting it
into the dynamic variance equation. We get

σ 2
t+1 = (1−α−β)σ

2
+αR2

t +βσ
2
t = σ

2
+α(R2

t − σ
2)+β(σ 2

t − σ
2)

Thus, tomorrow’s variance is a weighted average of the long-run variance, today’s
squared return, and today’s variance. Put differently, tomorrow’s variance is the long-
run average variance with something added (subtracted) if today’s squared return is
above (below) its long-run average, and something added (subtracted) if today’s vari-
ance is above (below) its long-run average.

Our intuition might tell us that ignoring the long-run variance, as the RiskMet-
rics model does, is more important for longer-horizon forecasting than for forecasting
simply one day ahead. This intuition is correct, as we will now see.

A key advantage of GARCH models for risk management is that the one-day fore-
cast of variance, σ 2

t+1|t, is given directly by the model by σ 2
t+1. Consider now fore-

casting the variance of the daily return k days ahead, using only information available
at the end of today. In GARCH, the expected value of future variance at horizon k is

Et

[
σ 2

t+k

]
− σ 2

= αEt

[
R2

t+k−1− σ
2
]
+βEt

[
σ 2

t+k−1− σ
2
]

= αEt

[
σ 2

t+k−1z2
t+k−1− σ

2
]
+βEt

[
σ 2

t+k−1− σ
2
]

= (α+β)
(

Et

[
σ 2

t+k−1

]
− σ 2

)
, so that

Et

[
σ 2

t+k

]
− σ 2

= (α+β)k−1
(

Et

[
σ 2

t+1

]
− σ 2

)
= (α+β)k−1

(
σ 2

t+1− σ
2
)

The conditional expectation, Et [•] , refers to taking the expectation using all the infor-
mation available at the end of day t, which includes the squared return on day t itself.

We will refer to α+β as the persistence of the model. A high persistence—that
is, an (α+β) close to 1—implies that shocks that push variance away from its long-
run average will persist for a long time, but eventually the long-horizon forecast will
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be the long-run average variance, σ 2. Similar calculations for the RiskMetrics model
reveal that

Et

[
σ 2

t+k

]
= σ 2

t+1,∀k

as α+β = 1 and σ 2 is undefined. Thus, persistence in this model is 1, which implies
that a shock to variance persists forever: An increase in variance will push up the vari-
ance forecast by an identical amount for all future forecast horizons. This is another
way of saying that the RiskMetrics model ignores the long-run variance when fore-
casting. If α+β is close to 1 as is typically the case, then the two models might yield
similar predictions for short horizons, k, but their longer horizon implications are very
different. If today is a high-variance day, then the RiskMetrics model predicts that all
future days will be high-variance. The GARCH model more realistically assumes that
eventually in the future variance will revert to the average value.

So far we have considered forecasting the variance of daily returns k days ahead.
Of more immediate interest is probably the forecast of variance of K-day cumulative
returns,

Rt+1:t+K ≡

K∑
k=1

Rt+k

As we assume that returns have zero autocorrelation, the variance of the cumulative
K-day returns is simply

σ 2
t+1:t+K ≡ Et

(
K∑

k=1

Rt+k

)2

=

K∑
k=1

Et

[
σ 2

t+k

]
So in the RiskMetrics model, we get

σ 2
t+1:t+K =

K∑
k=1

σ 2
t+1 = Kσ 2

t+1

But in the GARCH model, we get

σ 2
t+1:t+K =

K∑
k=1

σ 2
t+1 = Kσ 2

+

K∑
k=1

(α+β)k−1
(
σ 2

t+1− σ
2
)
6= Kσ 2

t+1

If the RiskMetrics and GARCH model have identical σ 2
t+1, and if σ 2

t+1 < σ
2, then

the GARCH variance forecast will be higher than the RiskMetrics forecast. Thus,
assuming the RiskMetrics model if the data truly look more like GARCH will give risk
managers a false sense of the calmness of the market in the future, when the market is
calm today and σ 2

t+1 < σ
2. Figure 4.2 illustrates this crucial point. We plot σ 2

t+1:t+K/K
for K = 1,2, . . . , 250 for both the RiskMetrics and the GARCH model starting from a
low σ 2

t+1 and setting α = 0.05 and β = 0.90. The long-run daily variance in the figure
is σ 2

= 0.000140.
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Figure 4.2 Variance forecast for 1–250 days cumulative returns.
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Notes: Assuming a common and low initial variance the plot shows the variance forecast for
1 through 250 trading days when using the RiskMetrics and GARCH model, respectively. The
GARCH forecast converges to a long-run forecast that is above the current variance.

The GARCH and RiskMetrics models share the inconvenience that the multiperiod
distribution is unknown even if the one-day ahead distribution is assumed to be nor-
mal, as we do in this chapter. Thus, while it is easy to forecast longer-horizon variance
in these models, it is not as easy to forecast the entire conditional distribution. We will
return to this important issue in Chapter 8 since it is unfortunately often ignored in
risk management.

4 Maximum Likelihood Estimation

In the previous section, we suggested a GARCH model that we argued should fit the
data well, but it contains a number of unknown parameters that must be estimated. In
doing so, we face the challenge that the conditional variance, σ 2

t+1, is an unobserved
variable, which must itself be implicitly estimated along with the parameters of the
model, for example, α,β, and ω.

4.1 Standard Maximum Likelihood Estimation

We will briefly discuss the method of maximum likelihood estimation, which can be
used to find parameter values. Explicitly worked out examples are included in the
answers to the empirical exercises contained on the web site.
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Recall our assumption that

Rt = σ tzt, with zt ∼ i.i.d. N (0,1)

The assumption of i.i.d. normality implies that the probability, or the likelihood, lt, of
Rt is

lt =
1√

2πσ 2
t

exp

(
−

R2
t

2σ 2
t

)

and thus the joint likelihood of our entire sample is

L=
T∏

t=1

lt =
T∏

t=1

1√
2πσ 2

t

exp

(
−

R2
t

2σ 2
t

)

A natural way to choose parameters to fit the data is then to maximize the joint
likelihood of our observed sample. Recall that maximizing the logarithm of a func-
tion is equivalent to maximizing the function itself since the logarithm is a monotone,
increasing function. Maximizing the logarithm is convenient because it replaces prod-
ucts with sums. Thus, we choose parameters (α,β, . . . ) , which solve

Max lnL=Max
T∑

t=1

ln(lt)=Max
T∑

t=1

[
−

1

2
ln(2π)−

1

2
ln
(
σ 2

t

)
−

1

2

R2
t

σ 2
t

]
and we refer to the optimal parameters as maximum likelihood estimates (MLEs).
Note that the first term in the likelihood function is just a constant and so independent
of the parameters of the models. We can therefore equally well optimize

Max
T∑

t=1

[
−

1

2
ln
(
σ 2

t

)
−

1

2

R2
t

σ 2
t

]
=Max

[
−

1

2

(
T∑

t=1

ln
(
σ 2

t

)
+

R2
t

σ 2
t

)]

The MLE approach has the desirable property that as the sample size T goes to
infinity the parameter estimates converge to their true values and the variance of these
estimates are the smallest possible. In reality we of course do not have an infinite
past of data available. Even if we have a long time series, say, of daily returns on the
S&P 500 index available, it is not clear that we should use all that data when esti-
mating the parameters. Sometimes obvious structural breaks such as a new exchange
rate arrangement or new rules regulating trading in a particular market can guide in
the choice of sample length. But often the dates of these structural breaks are not
obvious and the risk manager is left with having to weigh the benefits of a longer
sample, which implies more precise estimates (assuming there are no breaks), and a
shorter sample, which reduces the risk of estimating across a structural break. When
estimating GARCH models, a fairly good general rule of thumb is to use at least the
past 1,000 daily observations and to update the estimate sample fairly frequently, say
monthly.
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4.2 Quasi-Maximum Likelihood Estimation

The skeptical reader will immediately protest that the MLEs rely on the conditional
normal distribution assumption, which we argued in Chapter 1 is false. While this
protest appears to be valid, a key result in econometrics says that even if the condi-
tional distribution is not normal, MLE will yield estimates of the mean and variance
parameters that converge to the true parameters, when the sample gets infinitely large
as long as the mean and variance functions are properly specified. This convenient
result establishes what is called quasi-maximum likelihood estimation (QMLE), refer-
ring to the use of normal MLE estimation even when the normal distribution assump-
tion is false. Notice that QMLE buys us the freedom to worry about the conditional
distribution later (in Chapter 6), but it does come at a price: The QMLE estimates will
in general be less precise than those from MLE. Thus, we trade theoretical asymptotic
parameter efficiency for practicality.

The operational aspects of parameter estimation will be discussed in the exercises
following this chapter. Here we just point out one simple but useful trick, which is
referred to as variance targeting. Recall that the simple GARCH model can be writ-
ten as

σ 2
t+1 = ω+αR2

t +βσ
2
t = (1−α−β)σ

2
+αR2

t +βσ
2
t

Thus, instead of estimating ω by MLE, we can simply set the long-run variance, σ 2,
equal to the sample variance, which is easily estimated beforehand as

σ 2
=

1

T

T∑
t=1

R2
t

Variance targeting has the benefit of imposing the long-run variance estimate on the
GARCH model directly. More important, it reduces the number of parameters to be
estimated in the model by one. This typically makes estimation much easier.

4.3 An Example

Figure 4.3 shows the S&P 500 squared returns from Figure 4.1, but now with an
estimated GARCH variance superimposed. Using numerical optimization of the like-
lihood function (see the exercises at the end of the chapter), the optimal parameters
imply the following variance dynamics:

σ 2
t+1 = ω+αR2

t +βσ
2
t

= 0.0000011+ 0.100 ·R2
t + 0.899 · σ 2

t

The parameters have been estimated on the daily observations from January 1, 2001,
through December 31, 2010. But we only plot the 2008–2009 period.

The persistence of variance in this model is α+β = 0.999, which is only slightly
lower than in RiskMetrics where it is 1. However, even if small, this difference
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Figure 4.3 Squared S&P 500 returns with GARCH variance parameters estimated using
QMLE.
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Notes: The plot shows the daily squared return along with the daily GARCH variance forecast.
The GARCH(1,1) model is used. The plots shows the 2008–2009 period.

will have consequences for the variance forecasts for horizons beyond one day.
Furthermore, this very simple GARCH model may be misspecified driving the per-
sistence close to one. We will consider more flexible models next.

5 Extensions to the GARCH Model

As we noted earlier, one of the distinct benefits of GARCH models is their flexibility.
In this section, we explore this flexibility and present some of the models most useful
for risk management.

5.1 The Leverage Effect

We argued in Chapter 1 that a negative return increases variance by more than a pos-
itive return of the same magnitude. This was referred to as the leverage effect, as a
negative return on a stock implies a drop in the equity value, which implies that the
company becomes more highly levered and thus more risky (assuming the level of
debt stays constant). We can modify the GARCH models so that the weight given to
the return depends on whether the return is positive or negative in the following simple
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manner:

σ 2
t+1 = ω+α (Rt− θσ t)

2
+βσ 2

t = ω+ασ
2
t (zt− θ)

2
+βσ 2

t

which is sometimes referred to as the NGARCH (nonlinear GARCH) model.
Notice that it is strictly speaking a positive piece of news, zt > 0, rather than raw

return Rt, which has less of an impact on variance than a negative piece of news, if
θ > 0. The persistence of variance in this model is α(1+ θ2)+β, and the long-run
variance is σ 2

= ω/(1−α(1+ θ2)−β).

Another way of capturing the leverage effect is to define an indicator variable, It,
to take on the value 1 if day t’s return is negative and zero otherwise.

It =

{
1, if Rt < 0
0, if Rt ≥ 0

The variance dynamics can now be specified as

σ 2
t+1 = ω+αR2

t +αθ ItR
2
t +βσ

2
t

Thus, a θ larger than zero will capture the leverage effect. This is sometimes referred
to as the GJR-GARCH model.

A different model that also captures the leverage is the exponential GARCH model
or EGARCH,

lnσ 2
t+1 = ω+α (φRt+ γ [|Rt| −E |Rt|])+β lnσ 2

t

which displays the usual leverage effect if αφ < 0. The EGARCH model has the
advantage that the logarithmic specification ensures that variance is always positive,
but it has the disadvantage that the future expected variance beyond one period cannot
be calculated analytically.

5.2 More General News Impact Functions

Allowing for a leverage effect is just one way to extend the basic GARCH model.
Many extensions are motivated by generalizing the way in which today’s shock to
return, zt, impacts tomorrow’s variance, σ 2

t+1. This relationship is referred to as the
variance news impact function, NIF. In general we can write

σ 2
t+1 = ω+ασ

2
t NIF (zt)+βσ

2
t

In the simple GARCH model we have

NIF (zt)= z2
t

so that the news impact function is a symmetric parabola that takes the minimum value
0 when zt is zero. In the NGARCH model with leverage we have

NIF (zt)= (zt− θ)
2



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 09-ch04-065-092-9780123744487 2011/10/28 18:14 Page 78 #12

78 Univariate Risk Models

so that the news impact function is still a parabola but now with the minimum value
zero when zt = θ .

A very general news impact function can be defined by

NIF (zt)= (|zt− θ1| − θ2 (zt− θ1))
2θ3

Notice that the simple GARCH model is nested when θ1 = θ2 = 0, and θ3 = 1. The
NGARCH model with leverage is nested when θ2 = 0, and θ3 = 1. The red lines in
Figure 4.4 show the news impact function for various parameter values. The blue line
in each panel denotes the simple symmetric GARCH model.

5.3 More General Dynamics

The simple GARCH model discussed earlier is often referred to as the GARCH(1,1)
model because it relies on only one lag of returns squared and one lag of variance itself.
For short-term variance forecasting, this model is often found to be sufficient, but in
general we can allow for higher order dynamics by considering the GARCH(p,q)
model, which simply allows for longer lags as follows:

σ 2
t+1 = ω+

p∑
i=1

αiR
2
t+1−i+

q∑
j=1

β jσ
2
t+1−j

These higher-order GARCH models have the disadvantage that the parameters are
not easily interpretable. The component GARCH structure offers a great improvement
in this regard. Let us go back to the GARCH(1,1) model to motivate earlier we can
use σ 2

= ω/(1−α−β) to rewrite the GARCH(1,1) model as

σ 2
t+1 = σ

2
+α

(
R2

t − σ
2
)
+β

(
σ 2

t − σ
2
)

In the component GARCH model the long-run variance, σ 2, is allowed to be time
varying and captured by the long-run variance factor vt+1:

σ 2
t+1 = vt+1+ασ

(
R2

t − vt

)
+βσ

(
σ 2

t − vt

)
vt+1 = σ

2
+αv

(
R2

t − σ
2
t

)
+βv

(
vt− σ

2
)

Note that the dynamic long-term variance, vt+1, itself has a GARCH(1,1) structure.
Thus we can think of the component GARCH model as being a GARCH(1,1) model
around another GARCH(1,1) model.

The component model can potentially capture autocorrelation patterns in vari-
ance, which die out slower than what is possible in the simple shorter-memory
GARCH(1,1) model. Appendix A shows that the component model can be rewritten
as a GARCH(2,2) model:

σ 2
t+1 = ω+α1R2

t +α2R2
t−1+β1σ

2
t +β2σ

2
t−1
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Figure 4.4 New impact functions.
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where the parameters in the GARCH(2,2) are functions of the parameters in the com-
ponent GARCH model.

But the component GARCH structure has the advantage that it is easier to interpret
its parameters and therefore also easier to come up with good starting values for the
parameters than in the GARCH(2,2) model. In the component model ασ +βσ capture
the persistence of the short-run variance component and αv+βv capture the persis-
tence in the long-run variance component. The GARCH(2,2) dynamic parameters α1,

α2, β1, β2 have no such straightforward interpretation.
The component model dynamics can be extended with a leverage or an even more

general news impact function as discussed earlier in the case of GARCH(1,1).
The HYGARCH model is a different model, which explicitly allows for long-

memory, or hyperbolic decay, rather than exponential decay in variance. When model-
ing daily data, long memory in variance might often be relevant and it may be helpful
in forecasting at longer horizons, say beyond a week. Consult Appendix B at the end
of the chapter for information on the HYGARCH model, which is somewhat more
complicated to implement.

5.4 Explanatory Variables

Because we are considering dynamic models of daily variance, we have to be careful
with days where no trading takes place. It is widely recognized that days that follow a
weekend or a holiday have higher variance than average days. As weekends and holi-
days are perfectly predictable, it makes sense to include them in the variance model.
Other predetermined variables could be yesterday’s trading volume or prescheduled
news announcement dates such as company earnings and FOMC meetings dates. As
these future events are known in advance, we can model

σ 2
t+1 = ω+βσ

2
t +ασ

2
t z2

t + γ ITt+1

where ITt+1 takes on the value 1 if date t+ 1 is a Monday, for example.
We have not yet discussed option prices, but it is worth mentioning here that

so-called implied volatilities from option prices often have quite high predictive value
in forecasting next-day variance. Including the variance index (VIX) from the Chicago
Board Options Exchange as an explanatory variable can improve the fit of a GARCH
variance model of the underlying stock index significantly. Of course, not all under-
lying market variables have liquid options markets, so the implied volatility variable
is not always available for variance forecasting. We will discuss the use of implied
volatilities from options further in Chapter 10.

In general, we can write the GARCH variance forecasting model as follows:

σ 2
t+1 = ω+ h(Xt)+ασ

2
t z2

t +βσ
2
t

where Xt denotes variables known at the end of day t. As the variance is always a
positive number, it is important to ensure that the GARCH model always generates
a positive variance forecast. In the simple GARCH model, positive parameters ω,α
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and β guarantee positivity. In the more general model considered here, positivity of
h(Xt)—for example using the exponential function—along with positive ω,α, and β
will ensure positivity of σ 2

t+1. We can write

σ 2
t+1 = ω+ exp

(
b′Xt

)
+ασ 2

t z2
t +βσ

2
t .

5.5 Generalizing the Low Frequency Variance Dynamics

These discussions of long memory and of explanatory variables motivates us to con-
sider another extension to the simple GARCH models referred to as Spline-GARCH
models. The daily variances path captured by the simple GARCH models is clearly
itself very volatile. Volatility often spikes up for a few days and then quickly reverts
back down to normal levels. Such quickly reverting spikes make volatility appear
noisy and thus difficult to capture by explanatory variables. Explanatory variables
may nevertheless be important for capturing longer-term trends in variance, which
may thus need to be modeled separately so as to not be contaminated by the daily
spikes.

In addition, some speculative prices may exhibit structural breaks in the level of
volatility. A country may alter its foreign exchange regime, and a company may take
over another company, for example, which could easily change its volatility structure.

In order to capture low-frequency changes in volatility we generalize the simple
GARCH(1,1) model to the following multiplicative structure:

σ 2
t+1 = τ t+1gt+1, where

gt+1 = (1−α−β)+αgtz
2
t +βgt, and

τ t+1 = ω0 exp
(
ω1t+ω2 max(t− t0,0)

2
+ γXt

)
The Spline-GARCH model captures low frequency dynamics in variance via the

τ t+1 process, and higher-frequency dynamics in variance via the gt+1 process. Notice
that the low-frequency variance is kept positive via the exponential function. The low-
frequency variance has a log linear time-trend captured by ω1 and a quadratic time-
trend starting at time t0 and captured by ω2. The low-frequency variance is also driven
by the explanatory variables in the vector Xt.

Notice that the long-run variance in the Spline-GARCH model is captured by the
low-frequency process

E
[
σ 2

t+1

]
= E [τ t+1gt+1]= τ t+1E [gt+1]= τ t+1

We can generalize the quadratic trend by allowing for many, say l, quadratic pieces,
each starting at different time points and each with different slope parameters:

τ t+1 = ω0 exp
(
ω1t+

∑l
i=1ω1+i max(t− ti−1,0)

2
+ γXt

)
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Modeling equity index volatility at the country level, research has found that higher
volatility is associated with lower market development (measured by market capital-
ization), larger GDP, higher inflation, higher GDP volatility, higher inflation volatility,
and higher interest rate volatility.

5.6 Estimation of Extended Models

A particularly powerful feature of the GARCH family of models is that they can all
be estimated using the same quasi MLE technique used for the simple GARCH(1,1)
model. Regardless of the news impact functions, the dynamic structure, and the choice
of explanatory variables, the model parameters can be estimated by maximizing the
nontrivial part of the log likelihood

Max

[
−

1

2

(
T∑

t=1

ln
(
σ 2

t

)
+

R2
t

σ 2
t

)]

Notice as before that the variance path, σ 2
t , is a function of the parameters to be

estimated.

6 Variance Model Evaluation

Before we start using the variance model for risk management purposes, it is appro-
priate to run the estimated model through some diagnostic checks.

6.1 Model Comparisons Using LR Tests

We have seen that the basic GARCH model can be extended by adding parameters
and explanatory variables. The likelihood ratio test provides a simple way to judge if
the added parameter(s) are significant in the statistical sense. Consider two different
models with likelihood values L0 and L1, respectively. Assume that model 0 is a spe-
cial case of model 1. In this case we can compare the two models via the likelihood
ratio statistic

LR= 2(ln(L1)− ln(L0))

The LR statistic will always be a positive number because model 1 contains model 0
as a special case and so model 1 will always fit the data better, even if only slightly
so. The LR statistic will tell us if the improvement offered by model 1 over model 0 is
statistically significant. It can be shown that the LR statistic will have a chi-squared dis-
tribution under the null hypothesis that the added parameters in model 1 are insignif-
icant. If only one parameter is added then the degree of freedom in the chi-squared
distribution will be 1. In this case the 1% critical value is approximately 6.63. A good
rule of thumb is therefore that if the log-likelihood of model 1 is 3 to 4 points higher
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than that of model 0 then the added parameter in model 1 is significant. The degrees of
freedom in the chi-squared test is equal to the number of parameters added in model 1.

6.2 Diagnostic Check on the Autocorrelations

In Chapter 1, we studied the behavior of the autocorrelation of returns and squared
returns. We found that the raw return autocorrelations did not display any systematic
patterns, whereas the squared return autocorrelations were positive for short lags and
decreased as the lag order increased.

The objective of variance modeling is essentially to construct a variance measure,
σ 2

t , which has the property that the standardized squared returns, R2
t /σ

2
t , have no

systematic autocorrelation patterns. Whether this has been achieved can be assessed
via the red line in Figure 4.5, where we show the autocorrelation of R2

t /σ
2
t from

the GARCH model with leverage for the S&P 500 returns along with their standard
error bands. The standard errors are calculated simply as 1/

√
T , where T is the num-

ber of observations in the sample. Usually the autocorrelation is shown along with
plus/minus two standard error bands around zero, which simply mean horizontal lines
at −2/

√
T and 2/

√
T. These so-called Bartlett standard error bands give the range in

Figure 4.5 Autocorrelation: Squared returns and squared returns over variance (NGARCH).
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which the autocorrelations would fall roughly 95% of the time if the true but unknown
autocorrelations of R2

t /σ
2
t were all zero.

The blue line in Figure 4.5 redraws the autocorrelation of the squared returns from
Chapter 1, now with the standard error bands superimposed. Comparing the two panels
in Figure 4.5, we see that the GARCH model has been quite effective at removing the
systematic patterns in the autocorrelation of the squared returns.

6.3 Volatility Forecast Evaluation Using Regression

Another traditional method of evaluating a variance model is based on simple regres-
sions where squared returns in the forecast period, t+ 1, are regressed on the forecast
from the variance model, as in

R2
t+1 = b0+ b1σ

2
t+1+ et+1

A good variance forecast should be unbiased, that is, have an intercept b0 = 0, and be
efficient, that is, have a slope, b1 = 1. In this regression, the squared return is used as
a proxy for the true but unobserved variance in period t+ 1. One key question is, how
good of a proxy is the squared return?

First of all, notice that it is true that Et[R2
t+1]= σ 2

t+1, so that the squared return is
an unbiased proxy for true variance. But the variance of the proxy is

Vart

[
R2

t+1

]
= Et

[(
R2

t+1− σ
2
t+1

)2
]
= Et

[(
σ 2

t+1(z
2
t+1− 1)

)2
]

= σ 4
t+1Et

[
(z2

t+1− 1)2
]
= σ 4

t+1(κ − 1)

where κ is the kurtosis of the innovation, which is 3 under conditional normality but
higher in reality. Thus, the squared return is an unbiased but potentially very noisy
proxy for the conditional variance.

Due to the high degree of noise in the squared returns, the fit of the preceding
regression as measured by the regression R2 will be very low, typically around 5%
to 10%, even if the variance model used to forecast is indeed the correct one. Thus,
obtaining a low R2 in such regressions should not lead us to reject the variance model.
The conclusion is just as likely to be that the proxy for true but unobserved variance
is simply very inaccurate.

In the next chapter we will look at ways to develop more accurate (realized volatil-
ity) proxies for daily variance using intraday return data.

6.4 The Volatility Forecast Loss Function

The ordinary least squares (OLS) estimation of a linear regression chooses the
parameter values that minimize the mean squared error (MSE) in the regression.
The regression-based approach to volatility forecast evaluation therefore implies
a quadratic volatility forecast loss function. A correct volatility forecasting model
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should have b0 = 0 and b1 = 1 as discussed earlier. A sensible loss function for
comparing volatility models is therefore

MSE=
(

R2
t+1− σ

2
t+1

)2

Risk managers may however care differently about a negative versus a positive
volatility forecast error of the same magnitude: Underestimating volatility may well
be more costly for a conservative risk manager than overestimating volatility by the
same amount.

In order to evaluate volatility forecasts allowing for asymmetric loss, the following
function can be used instead of MSE:

QLIKE=
R2

t+1

σ 2
t+1

− ln

(
R2

t+1

σ 2
t+1

)
− 1

Notice that the QLIKE loss function depends on the relative volatility forecast error,
R2

t+1/σ
2
t+1, rather than on the absolute error, |R2

t+1− σ
2
t+1|; which is the key ingredi-

ent in MSE. The QLIKE loss function will always penalize more heavily volatility
forecasts that underestimate volatility.

In Figure 4.6 we plot the MSE and QLIKE loss functions when the true volatility is
2 and the volatility forecast ranges from 0 to 4. Note the strong asymmetry of QLIKE
for negative versus positive volatility forecast errors.

Figure 4.6 Volatility loss functions.
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It can be shown that the MSE and the QLIKE loss functions are both robust with
respect to the choice of volatility proxy. A volatility forecast loss function is said to be
robust if the ranking of any two volatility forecasts is the same when using an observed
volatility proxy as when (hypothetically) using the unobserved true volatility. Robust-
ness is clearly a desirable quality for a volatility forecast loss function. Essentially
only the MSE and QLIKE functions possess this quality.

Note again that we have only considered the noisy squared return, R2
t+1, as a volatil-

ity proxy. In the next chapter we will consider more precise proxies using intraday
information.

7 Summary

This chapter presented a range of variance models that are useful for risk manage-
ment. Simple equally weighted and exponentially weighted models that require min-
imal effort in estimation were first introduced. Their shortcomings led us to consider
more sophisticated but still simple models from the GARCH family. We highlighted
the flexibility of GARCH as a virtue and considered various extensions to account for
leverage effects, day-of-week effects, announcement effects, and so on. The powerful
and flexible quasi-maximum likelihood estimation technique was presented and will
be used again in coming chapters. Various model validation techniques were intro-
duced subsequently. Most of the techniques suggested in this chapter are put to use in
the empirical exercises that follow.

This chapter focused on models where daily returns are used to forecast daily
volatility. In some situations the risk manager may have intraday returns available
when forecasting daily volatility. In this case more accurate models are available.
These models will be analyzed in the next chapter.

Appendix A: Component GARCH and GARCH(2,2)

This appendix shows that the component GARCH model can be viewed as a
GARCH(2,2) model. First define the lag operator, L, to be a function that transforms
the current value of a time series to the lagged value, that is,

Lxt = xt−1

Recall that the component GARCH model is given by

σ 2
t+1 = vt+1+ασ

(
R2

t − vt

)
+βσ

(
σ 2

t − vt

)
vt+1 = σ

2
+αv

(
R2

t − σ
2
t

)
+βv

(
vt− σ

2
)
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Using the lag operator, the first equation can be written as

σ 2
t+1 = vt+1+ασ

(
R2

t −Lvt+1

)
+βσ

(
σ 2

t −Lvt+1

)
= ασR2

t +βσσ
2
t + (1− (ασ +βσ )L)vt+1

We can also rewrite the long-run variance equation using the lag operator

vt+1 = σ
2
+αv

(
R2

t − σ
2
t

)
+βv

(
vt− σ

2
)

= σ 2
+αvR2

t −αvσ
2
t +βvLvt+1−βvσ

2

From this, the long run variance factor vt+1 can be written as

vt+1 =
1

1−βvL

((
1−βv

)
σ 2
+αvR2

t −αvσ
2
t

)
Plugging this back into the equation for σ 2

t+1 we get

σ 2
t+1 = ασR2

t +βσσ
2
t +

(1− (ασ +βσ )L)

1−βvL

(
(1−βv)σ

2
+αvR2

t −αvσ
2
t

)
Multiplying both sides by 1−βvL and simplifying we get

σ 2
t+1 = βvLσ 2

t+1+ (1−βvL)(ασR2
t +βσσ

2
t )

+ (1− (ασ +βσ )L)
(
(1−βv)σ

2
+αvR2

t −αvσ
2
t

)
= βvσ

2
t +ασR2

t +βσσ
2
t −βvασR2

t−1−βvβσσ
2
t−1

+ (1− (ασ +βσ ))(1−βv)σ
2
+αvR2

t

− (ασ +βσ )αvR2
t−1−αvσ

2
t + (ασ +βσ )αvσ

2
t−1

= (1− (ασ +βσ ))(1−βv)σ
2
+ (−αv+βv+βσ )σ

2
t

+ ((ασ +βσ )αv−βvβσ )σ
2
t−1

+ (ασ +αv)R
2
t + (−(ασ +βσ )αv−βvασ )R

2
t−1

which is a GARCH(2,2) model of the form

σ 2
t+1 = ω+α1R2

t +α2R2
t−1+β1σ

2
t +β2σ

2
t−1

where

ω = (1− (ασ +βσ ))(1−βv)σ
2

α1 = ασ +αv

α2 =−(ασ +βσ )αv−βvασ

β1 =−αv+βv+βσ

β2 = (ασ +βσ )αv−βvβσ
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While the component GARCH and the GARCH(2,2) models are theoretically equiv-
alent, the component structure is typically easier to implement because it is eas-
ier to find good starting values for the parameters. Typically, ασ < αv ≈ 0.1 and
βσ < βv ≈ 0.85. Furthermore, the interpretation of vt+1 as a long-run variance when(
αv+βv

)
>
(
ασ +βσ

)
is convenient.

Appendix B: The HYGARCH Long-Memory Model

This appendix introduces the long-memory GARCH model of Davidson (2004),
which he refers to as HYGARCH (where HY denotes hyperbolic). Consider first the
standard GARCH(1,1) model where

σ 2
t = ω+αR2

t−1+βσ
2
t−1

Using the lag operator, L, from Appendix A the GARCH(1,1) model can be written as
an ARMA-in-squares model

(1− (α+β)L)R2
t = ω+ (1−βL)

(
R2

t − σ
2
t

)
Solving for σ 2

t we can now rewrite the GARCH(1,1) model as a moving-average-in-
squares model of the form

σ 2
t =

ω

(1−β)
+

(
1−

1− (α+β)L

1−βL

)
R2

t

The long-memory model in Davidson (2004) is defined as a generalization of this
expression to

σ 2
t =

ωd

1−βd
+

(
1−

1− ρdL

1−βdL

(
1+ δd

(
(1−L)d − 1

)))
R2

t

where the long-memory parameter, d, defines fractional integration via

(1−L)d = 1−
∞∑

j=1

ajL
j, with aj =

d0(j− d)

0 (1− d)0 (j+ 1)

where 0(•) denotes the gamma function. The long-memory parameter d enables the
model to have squared return autocorrelations that go to zero at a slower (namely
hyperbolic) rate than the exponential rate in the GARCH(1,1) case.

We can show that when ρd = α+β, δd = 0, ωd = ω, and βd = β we get the regular
GARCH(1,1) model as a special case of the HYGARCH. When ρd = 1, δd = 0, ωd =

0, and βd = λ we get the RiskMetrics model as a special case of HYGARCH.
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The HYGARCH model can be estimated using MLE as well. Please refer to
Davidson (2004) for more details on this model.

Further Resources

The literature on variance modeling has exploded during the past 30 years, and we only
present a few examples of papers here. Andersen et al. (2007) contains a discussion
of the use of volatility models in risk management. Evidence on the performance of
GARCH models through the 2008–2009 financial crisis can be found in Brownlees
et al. (2009).

Andersen et al. (2006) and Poon and Granger (2005) provide overviews of the var-
ious classes of volatility models. The exponential smoother variance model is studied
in JP Morgan (1996). The exponential smoother has been used to forecast a wide range
of variables and further discussion of it can be found in Granger and Newbold (1986).
The basic GARCH model is introduced in Engle (1982) and Bollerslev (1986), and it
is discussed further in Bollerslev et al. (1992), and Engle and Patton (2001). Engle
(2002) introduces the GARCH model with exogenous variable. Bollerslev (2008)
summarizes the many variations on the basic GARCH model.

Long memory including fractional integrated generalized autoregressive con-
ditional heteroskedasticity (FIGARCH) models were introduced in Baillie et al.
(1996), and Bollerslev and Mikkelsen (1999). The hyperbolic HYGARCH model in
Appendix B is developed in Davidson (2004).

Component volatility models were introduced in Engle and Lee (1999). They have
been applied to option valuation in Christoffersen et al. (2010a, 2008). The Spline-
GARCH model with a deterministic volatility component was introduced in Engle
and Rangel (2008).

The leverage effect and other GARCH extensions are described in Ding et al.
(1993), Glosten et al. (1993), Hentschel (1995), and Nelson (1990). Most GARCH
models use squared return as the innovation to volatility. Forsberg and Ghysels (2007)
analyze the benefits of using absolute returns instead.

Quasi maximum likelihood estimation of GARCH models is developed in Boller-
slev and Wooldridge (1992). Francq and Zakoian (2009) survey more recent results.
For practical issues involved in GARCH estimation see Zivot (2009). Hansen and
Lunde (2005), Patton and Sheppard (2009), and Patton (2011) develop tools for
volatility forecast evaluation and volatility forecast comparisons.

Taylor (1994) contains a very nice overview of a different class of variance models
known as stochastic volatility models. This class of models was not included in this
book due to the relative difficulty of estimating them.
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Empirical Exercises

Open the Chapter4Data.xlsx file from the companion site.
A number of the exercises in this and the coming chapters rely on the maximum likeli-

hood estimation (MLE) technique. The general approach to answering these questions is to
use the parameter starting values to calculate the log likelihood value of each observation and
then compute the sum of these individual log likelihoods. When using Excel, the Solver tool
is then activated to maximize the sum of the log likelihoods by changing the cells correspond-
ing to the parameter values. Solver is enabled through the Windows Office menu by selecting
Excel Options and Add-Ins. When using Solver, choose the options Use Automatic Scaling and
Assume Non-Negative. Set Precision, Tolerance, and Convergence to 0.0000001.

1. Estimate the simple GARCH(1,1) model on the S&P 500 daily log returns using the maxi-
mum likelihood estimation (MLE) technique. First estimate

σ 2
t+1 = ω+αR2

t +βσ
2
t , with Rt = σ tzt, and zt ∼ N(0,1)

Let the variance of the first observation be equal to the unconditional variance, Var(Rt).

Set the starting values of the parameters to α = 0.1, β = 0.85, and ω = Var(Rt)(1−α−
β)≈ 0.012

· 0.05= 0.000005. Reestimate the equation using variance targeting; that is, set
ω = Var(Rt)(1−α−β), and use Solver to find α and β only. Check how the estimated
parameters and persistence differ from the variance model in Chapter 1.

2. Include a leverage effect in the variance equation. Estimate

σ 2
t+1 = ω+α (Rt − θσ t)

2
+βσ 2

t , with Rt = σ tzt, and zt ∼ N(0,1)

Set starting values to α = 0.07, β = 0.85, ω = 0.000005, and θ = 0.5. What is the sign of
the leverage parameter? Explain how the leverage effect is captured in this model. Plot the
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autocorrelations for lag 1 through 100 for R2
t as well as R2

t /σ
2
t , and compare the two. Com-

pare your results with Figure 4.5. Use an LR test to assess the significance of the leverage
effect parameter θ .

3. Include the option implied volatility VIX series from the Chicago Board Options Exchange
(CBOE) as an explanatory variable in the GARCH equation. Use MLE to estimate

σ 2
t+1 = ω+α (Rt − θσ t)

2
+βσ 2

t + γVIX2
t /252, with Rt = σ tzt, and zt ∼ N(0,1)

Set starting values to α = 0.04, β = 0.5, ω = 0.000005, θ = 2, and γ = 0.07.
4. Estimate the component GARCH model defined by

σ 2
t+1 = vt+1+ασ

(
R2

t − vt

)
+βσ

(
σ 2

t − vt

)
vt+1 = σ

2
+αv

(
R2

t − σ
2
t

)
+βv

(
vt − σ

2
)

The answers to these exercises can be found in the Chapter4Results.xlsx file on the compan-
ion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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5 Volatility Modeling Using
Intraday Data

1 Chapter Overview

The goal of this chapter is to harness the information in intraday prices for computing
daily volatility. Consider first estimating the mean of returns using a long sample of
daily observations:

µ̂=
1

T

T∑
t=0

(ln(St)− ln(St−1))=
1

T
(ln(ST)− ln(S0))

Note that when estimating the mean of returns only the first and the last observations
matter: All the intermediate terms cancel out and their values are therefore completely
inconsequential to the estimate of the mean. This result in turn implies that when
estimating the mean, having a long time span of data is what matters: having daily
versus weekly versus monthly data does not matter. The start and end points S0 and ST

will be the same irrespective of the sampling frequency of returns. This is frustrating
when we want to get a precise estimate of the return mean. The only solution is to wait
for time to pass.

Consider now instead estimating variance on a sample of daily returns. We have

σ̂
2
=

1

T

T∑
t=0

(
ln(St)− ln(St−1)− µ̂

)2
Notice a crucial difference between the sample mean and sample variance estimators:
The intermediate prices do not cancel out in the variance estimator. All the return
observations now matter because they are squared before they are summed in the
average.

Imagine now having price observations at the end of every hour instead of every
day and imagine that the market for the asset at hand (for example an FX rate) is open
24 hours a day. Now we would have 24 ·T observations to estimate σ 2 and we would
get a much more precise estimate than when using just the T daily returns.

The dramatic implication for risk management of this high-frequency sampling
idea is that just as we can use 21 daily prices to estimate a monthly volatility we can

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00005-1
c© 2012 Elsevier, Inc. All rights reserved.
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also use 24 hourly observations to estimate a daily volatility. If we have observations
every minute then an even more precise estimate of daily volatility can be had and we
can virtually treat daily volatility as an observed variable.

This chapter explores in detail the use of intraday prices for computing daily volatil-
ity and for forecasting future volatility. We first introduce the key concept of realized
variance (RV) and look at four stylized facts of RV. We then look at ways to forecast
RV and ways to estimate RV, and we briefly look at some of the challenges of work-
ing with large and messy intraday data sets. Toward the end of the chapter we look at
range-based proxies of daily volatility and also at volatility forecast evaluation using
RV and range-based volatility. Range-based volatilities are much easier to construct
than RVs but in highly liquid markets RV will be more precise.

2 Realized Variance: Four Stylized Facts

Assume for simplicity that we are monitoring an asset that trades 24 hours per day and
that is extremely liquid so that bid-ask spreads are virtually zero and new information
is reflected in the price immediately. More realistic situations will be treated later. In
an extremely liquid market with rapidly changing prices observed every second we
can comfortably construct a time grid, for example, of 1-minute prices from which we
can compute 1-minute log returns.

Let m be the number of observations per day on an asset. If we have 24 hour trading
and 1-minute observations, then m= 24 · 60= 1,440. Let the jth observation on day
t+ 1 be denoted St+j/m. Then the closing price on day t+ 1 is St+m/m = St+1, and the
jth 1-minute return is

Rt+j/m = ln(St+j/m)− ln(St+(j−1)/m)

Having m observations available within a day, we can calculate an estimate of the
daily variance from the intraday squared returns simply as

RVm
t+1 =

m∑
j=1

R2
t+j/m

This is the definition of RV. Notice that unlike the previous chapters where we com-
puted the sample variance from daily returns, we do not divide the sum of squared
returns by m here. If we did we would get a 1-minute variance. Omitting the m gives
us a total variance for the 24-hour period. Notice also that we do not subtract the
mean of the 1-minute returns. The mean of 1-minute returns is so small that it will not
materially impact the variance estimate.

The top panel of Figure 5.1 shows the time series of daily realized S&P 500 vari-
ance computed from intraday squared returns. The bottom panel shows the daily close-
to-close squared returns S&P 500 as well. Notice how much more jagged and noisy
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Figure 5.1 Realized variance (top) and squared returns (bottom) of the S&P 500.
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Notes: We use daily realized variance (top panel) and the daily close-to-close squared returns
(bottom panel) as proxies for daily variance in the S&P 500 index.

the squared returns in the bottom panel are compared with the realized variances in
the top panel. Figure 5.1 illustrates the first stylized fact of RV: RVs are much more
precise indicators of daily variance than are daily squared returns.

The top panel of Figure 5.2 shows the autocorrelation function (ACF) of the S&P
500 RV series from Figure 5.1. The bottom panel shows the corresponding ACF com-
puted from daily squared returns as in Chapter 4. Notice how much more striking the
evidence of variance persistence is in the top panel. Figure 5.2 illustrates the second
stylized fact of RV: RV is extremely persistent, which suggests that volatility may be
forecastable at horizons beyond a few months as long as the information in intraday
returns is used.

The top panel of Figure 5.3 shows a histogram of the RVs from Figure 5.1. The
bottom panel of Figure 5.3 shows the histogram of the natural logarithm of RV.
Figure 5.3 shows that the logarithm of RV is very close to normally distributed
whereas the level of RV is strongly positively skewed with a long right tail.
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Figure 5.2 Autocorrelation of realized variance (top) and autocorrelation of squared returns
(bottom) with Bartlett confidence intervals (dashed).
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Notes: We compute autocorrelations from the daily realized variance computed using the
average RV method (top panel) and the daily close-to-close squared returns (bottom panel)
from the S&P 500 index.

Given that RV is a sum of squared returns it is not surprising that RV is not close
to normally distributed but it is interesting and useful that a simple logarithmic trans-
formation results in a distribution that is somewhat close to normal. The approximate
log normal property of RV is the third stylized fact. We can write

ln
(
RVm

t+1

)
∼ N

(
µRV ,σ

2
RV

)
The fourth stylized fact of RV is that daily returns divided by the square root of RV

is very close to following an i.i.d. (independently and identically distributed) standard
normal distribution. We can write

Rt+1/
√

RVm
t+1

i.i.d.
∼ N (0,1)
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Figure 5.3 Histogram of realized variance (top) and log realized variance (bottom).
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Notes: We plot histograms of the daily realized variance computed using the average RV
method (top panel) and the daily close-to-close squared returns (bottom panel) from the S&P
500 index.

Notice that because RVm
t+1 can only be computed at the end of day t+ 1 this result is

not immediately useful for forecasting purposes.
The fourth stylized fact suggests that if a good forecast of RVm

t+1, call it RVm
t+1|t, can

be made using information available at time t then a normal distribution assumption

of Rt+1/
√

RVm
t+1|t will be a decent first modeling strategy. Approximately

Rt+1/
√

RVm
t+1|t

i.i.d.
∼ N (0,1)

where we have now standardized the return with the RV forecast, which by construc-
tion is known in advance. In this chapter we will rely on this assumption of normality
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for the returns standardized by the RV forecast. In the next chapter we will allow for
more general distributions.

Constructing a good forecast for RVm
t+1 is the topic to which we now turn. When

doing so we will need to keep in mind the four stylized facts of RV:

l RV is a more precise indicator of daily variance than is the daily squared return.

l RV has large positive autocorrelations for many lags.

l The log of RV is approximately normally distributed.

l The daily return divided by the square root of RV is close to i.i.d. standard normal.

3 Forecasting Realized Variance

Realized variances are very persistent and so the main task at hand is to consider
forecasting models that allow for current RV to matter for future RV.

3.1 Simple ARMA Models of Realized Variance

In Chapter 3 we introduced the AR(1) model as a simple way to allow for persistence
in a time series. If we treat the estimated RVm

t as an observed time series, then we can
assume the AR(1) forecasting model

RVm
t+1 = φ0+φ1RVm

t + εt+1

where εt+1 is assumed to be uncorrelated over time and have zero mean. The parame-
ters φ0 and φ1 can easily be estimated using OLS. The one-day-ahead forecast of RV
is then constructed as

RVm
t+1|t = φ0+φ1RVm

t

We are just showing the AR(1) model as an example. AR(2) or higher ordered AR
models could, of course, be used as well.

Given that we observed in Figure 5.3 that the log of RV is close to normally dis-
tributed we may be better off modeling the RV in logs rather than levels. We can
therefore assume

ln
(
RVm

t+1

)
= φ0+φ1 ln

(
RVm

t

)
+ εt+1, with εt+1

i.i.d.
∼ N(0,σ 2

ε)

The normal property of ln
(
RVm

t+1

)
will make the OLS estimates of φ0 and φ1 better

behaved than those in the AR(1) model for RVm
t+1 where the AR(1) errors, εt+1, are

likely to have fat tails, which in turn yield noisy parameter estimates.
Because we have estimated it from intraday squared returns, the RVm

t+1 series is
not truly an observed time series but it can be viewed as the true RV observed with
a measurement error. If the true RV is AR(1) but we observed true RV plus an i.i.d.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 10-ch05-093-120-9780123744487 2011/10/28 17:07 Page 99 #7

Volatility Modeling Using Intraday Data 99

measurement error then an ARMA(1,1) model is likely to provide a good fit to the
observed RV. We can write

ln
(
RVm

t+1

)
= φ0+φ1 ln

(
RVm

t

)
+ θ1εt+ εt+1, with εt+1

i.i.d.
∼ N(0,σ 2

ε)

which due to the MA term must be estimated using maximum likelihood techniques.
Notice that these simple models are specified in logarithms, while for risk manage-

ment purposes we are ultimately interested in forecasting the level of variance. As the
exponential function is not linear, we have in the log RV model that

RVm
t+1|t = Et [RVt+1]= Et

[
exp

(
ln
(
RVm

t+1

))]
6= exp

(
Et
[
ln
(
RVm

t+1

)])
and we therefore have to be careful when calculating the variance forecast.

From the assumption of normality of the error term we can use the result

εt+1 ∼ N(0,σ 2
ε)=⇒ E[exp(εt+1)]= exp(σ 2

ε/2)

In the AR(1) model the forecast for tomorrow is

RVm
t+1|t = Et[exp(φ0+φ1 lnRVm

t + εt+1)]

= exp(φ0+φ1 lnRVm
t )Et[exp(εt+1)]

=
(
RVm

t

)φ1 exp(φ0+ σ
2
ε/2)

and for the ARMA(1,1) model we get

RVm
t+1|t = Et[exp(φ0+φ1 lnRVm

t + θ1εt+ εt+1)]

= exp(φ0+φ1 lnRVm
t + θ1εt)Et[exp(εt+1)]

=
(
RVm

t

)φ1 exp(φ0+ θ1εt+ σ
2
ε/2)

More sophisticated models such as long-memory (or fractionally integrated)
ARMA models can be used to model realized variance. These models may yield better
longer horizon variance forecasts than the short-memory ARMA models considered
here. As a simple but powerful way to allow for more persistence in the variance
forecasting model we next consider the so-called heterogeneous AR models.

3.2 Heterogeneous Autoregressions (HAR)

The question arises whether we can parsimoniously (that is with only few parameters)
and easily (that is using OLS) model the apparent long-memory features of realized
volatility. The mixed-frequency or heterogeneous autoregression model (HAR) we
now consider provides an affirmative answer to this question. Define the h-day RV
from the 1-day RV as follows:

RVt−h+1,t = [RVt−h+1+RVt−h+2+ ·· ·+RVt]/h
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where dividing by h makes RVt−h+1,t interpretable as the average total variance start-
ing with day t− h+ 1 and through day t.

Given that economic activity is organized in days, weeks, and months, it is natural
to consider forecasting tomorrow’s RV using daily, weekly, and monthly RV defined
by the simple moving averages

RVD,t ≡ RVt

RVW,t ≡ RVt−4,t = [RVt−4 + RVt−3 + RVt−2+RVt−1 + RVt]/5

RVM,t ≡ RVt−20,t = [RVt−20 + RVt−19+ ·· ·+RVt]/21

where we have assumed five trading days in a week and 21 trading days in a month.
The simplest way to forecast RV with these variables is via the regression

RVt+1 = φ0+φDRVD,t+φWRVW,t+φMRVM,t+ εt+1

which defines the HAR model. Notice that HAR can be estimated by OLS because all
variables are observed and because the model is linear in the parameters.

The HAR will be able to capture long-memory-like dynamics because 21 lags of
daily RV matter in this model. The model is parsimonious because the 21 lags of daily
RV do not have 21 different autoregressive coefficients: The coefficients are restricted
to be

(
φD+φW/5+φM/21

)
on today’s RV,

(
φW/5+φM/21

)
on the past four days

of RV, and φM/21 on the RVs for days t− 20 through t− 5.
Given the log normal property of RV we can also consider HAR models of the log

transformation of RV:

ln(RVt+1)= φ0+φD ln(RVD,t)+φW ln(RVW,t)

+φM ln(RVM,t)+ εt+1, with εt+1
i.i.d.
∼ N(0,σ 2

ε)

The advantage of this log specification is again that the parameters will be estimated
more precisely when using OLS. Remember though that forecasting involves undoing
the log transformation so that

RVm
t+1|t = exp

(
φ0+φD ln(RVD,t)+φW ln(RVW,t)+φM ln(RVM,t)

)
exp(σ 2

ε/2)

= (RVt)
φD
(
RVW,t

)φW
(
RVM,t

)φM exp(φ0+ σ
2
ε/2)

Note that the HAR idea generalizes to longer-horizon forecasting. If for example we
want to forecast RV over the next K days then we can estimate the model

ln(RVt+1,t+K)= φ0,K +φD,K ln(RVD,t)+φW,K ln(RVW,t)

+φM,K ln(RVM,t)+ εt+1,t+K

where

RVt+1,t+K = [RVt+1+RVt+2+ ·· ·+RVt+K]/K

and where we still rely on daily, weekly, and monthly RVs on the right-hand side of
the HAR model. Figure 5.4 shows the forecast of 1-day, 5-day, and 10-day volatility
using three different log HAR models corresponding to each horizon of interest.
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Figure 5.4 Forecast of daily (top), weekly (middle), and monthly (bottom) S&P 500 volatility
using HAR model specified in logs.
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Notes: We use the HAR model estimated in logs to forecast the level of variance over the next
day, week, and month in the S&P 500 index.

In Chapter 4 we saw the importance of including a leverage effect in the GARCH
model capturing that volatility rises more on a large positive return than on a large
negative return. The HAR model can capture this by simply including the return on
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the right-hand side. In the daily log HAR we can write

ln(RVt+1)= φ0+φD ln(RVD,t)+φW ln(RVW,t)+φM ln(RVM,t)+φRRt+ εt+1

which can also easily be estimated using OLS. Notice that because the model is written
in logs we do not have to worry about the variance forecast going negative;

RVt+1|t = Et
[
exp

(
ln
(
RVm

t+1

))]
will always be a positive number.

The stylized facts of RV suggested that we can assume that

Rt+1/
√

RVm
t+1|t

i.i.d.
∼ N (0,1)

If we use this assumption then from Chapter 1 we can compute Value-at-Risk by

VaRp
t+1 =−

√
RVm

t+1|t8
−1
p

where RVm
t+1|t is provided by either the ARMA or HAR forecasting models earlier.

Expected Shortfall is also easily computed via

ESp
t+1 =

√
RVm

t+1|t

φ
(
8−1

p

)
p

which follows from Chapter 2.

3.3 Combining GARCH and RV

So far in Chapters 4 and 5 we have considered two seemingly very different
approaches to volatility modeling: In Chapter 4 GARCH models were estimated on
daily returns, and in Chapter 5 time-series models of daily RV have been constructed
from intraday returns. We can instead try to incorporate the rich information in RV into
a GARCH modeling framework. Consider the basic GARCH model from Chapter 4:

Rt+1 = σ t+1zt+1, where

σ 2
t+1 = ω+αR2

t +βσ
2
t

Given the information on daily RV we could augment the GARCH model with RV as
follows:

σ 2
t+1 = ω+αR2

t +βσ
2
t + γRVm

t

This so-called GARCH-X model where RV is the explanatory variable can be esti-
mated using the univariate MLE approach taken in Chapter 4.
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A shortcoming of the GARCH-X approach is that a model for RV is not specified.
This means that we cannot use the model to forecast volatility beyond one day ahead.

The more general so-called Realized GARCH model is defined by

Rt+1 = σ t+1zt+1, where

σ 2
t+1 = ω+αR2

t +βσ
2
t + γRVm

t , and

RVm
t = ωRV +βRVσ

2
t + εt

where εt is the innovation to RV. This model can be estimated by MLE when assuming
that Rt and εt have a joint normal distribution. The Realized GARCH model can be
augmented to include a leverage effect as well. In the Realized GARCH model the
VaR and ES would simply be

VaRp
t+1 =−σ t+18

−1
p

and

ESp
t+1 = σ t+1

φ
(
8−1

p

)
p

as in the regular GARCH model.

4 Realized Variance Construction

So far we have assumed that a grid of highly liquid 1-minute prices are available so
that the corresponding 1-minute log returns are informative about the true volatility of
the asset price. However, once various forms of illiquidity in the asset price are con-
sidered it becomes clear that we need to be much more clever about constructing the
RVs from the intraday returns. This section is devoted to the construction of unbiased
daily RVs from intraday returns under realistic assumptions about market liquidity.

4.1 The All RV Estimator

Remember that in the ideal but unfortunately unrealistic case with ultra-high liquidity
we have m= 24 · 60 observations available within a day, and we can calculate an
estimate of the daily variance from the intraday squared returns simply as

RVm
t+1 =

m∑
j=1

R2
t+j/m =

m∑
j=1

(
ln(St+j/m)− ln(St+(j−1)/m)

)2
This estimator is sometimes known as the All RV estimator because it uses all the
prices on the 1-minute grid.
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Figure 5.5 Fundamental price and quoted price with bid-ask bounces.
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Notes: We simulate a random walk for the fundamental log asset price (black) and add random
noise from bid-ask bounces to get the observed price (red).

Figure 5.5 uses simulated data to illustrate one of the problems caused by illiquidity
when estimating asset price volatility. We assume the fundamental (but unobserved)
asset price, SFund, follows the simple random walk process with constant variance

lnSFund
t+j/m = lnSFund

t+(j−1)/m+ et+j/m, with et+j/m
i.i.d.
∼ N(0,σ 2

e)

where σ e = 0.001 in Figure 5.5. The observed price fluctuates randomly around the
bid and ask quotes that are posted by the market maker. We observe

SObs
t+j/m = Bt+j/mIt+j/m+At+j/m(1− It+j/m)

where Bt+j/m is the bid price, which we take to be the fundamental price rounded
down to the nearest $1/10, and At+j/m is the ask price, which is the fundamental price
rounded up to the nearest $1/10. It+j/mis an i.i.d. random variable, which takes the
values 1 and 0 each with probability 1/2. It+j/m is thus an indicator variable of whether
the observed price is a bid or an ask price.

The challenge is that we observe SObs
t+j/m but want to estimate σ 2, which is the vari-

ance of the unobserved SFund
t+j/m. Figure 5.5 shows that the observed intraday price can

be very noisy compared with the smooth fundamental but unobserved price. The bid-
ask spread adds a layer of noise on top of the fundamental price. If we compute RVm

t+1

from the high-frequency SObs
t+j/m then we will get an estimate of σ 2 that is higher than

the true value because of the inclusion of the bid-ask volatility in the estimate.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 10-ch05-093-120-9780123744487 2011/10/28 17:07 Page 105 #13

Volatility Modeling Using Intraday Data 105

4.2 The Sparse RV Estimator

The perhaps simplest way to address the problem shown in Figure 5.5 is to construct
a grid of intraday prices and returns that are sampled less frequently than the 1-minute
assumed earlier. Instead of a 1-minute grid we could use an s-minute grid (where
s≥ 1) so that our new RV estimator would be

RVs
t+1 =

m/s∑
j=1

R2
t+js/m

which is sometimes denoted as the Sparse RV estimator as opposed to the previous
All RV estimator.

Of course the important question is how to choose the parameter s? Should s be
5 minutes, 10 minutes, 30 minutes, or an even lower frequency? The larger the s the
less likely we are to get a biased estimate of volatility, but the larger the s the fewer
observations we are using and so the more noisy our estimate will be. We are faced
with a typical variance-bias trade-off.

The choice of s clearly depends on the specific asset. For very liquid assets we
should use an s close to 1 and for illiquid assets s should be much larger. If liquidity
effects manifest themselves as a bias in the estimated RVs when using a high sampling
frequency then that bias should disappear when the sampling frequency is lowered;
that is, when s is increased.

The so-called volatility signature plots provide a convenient graphical tool for
choosing s: First compute RVs

t+1 for values of s going from 1 to 120 minutes. Second,
scatter plot the average RV across days on the vertical axis against s on the horizontal
axis. Third, look for the smallest s such that the average RV does not change much for
values of s larger than this number.

In markets with wide bid–ask spreads the average RV in the volatility signature
plot will be downward sloping for small s but for larger s the average RV will stabilize
at the true long run volatility level. We want to choose the smallest s for which the
average RV is stable. This will avoid bias and minimize variance.

In markets where trading is thin, new information is only slowly incorporated into
the price, and intraday returns will have positive autocorrelation resulting in an upward
sloping volatility signature plot. In this case, the rule of thumb for computing RV is
again to choose the smallest s for which the average RV has stabilized.

4.3 The Average RV Estimator

Choosing a lower (sparse) frequency for the grid of intraday prices can solve the bias
problem arising from illiquidity but it will also increase the noise of the RV estimator.
When we are using sparse sampling we are essentially throwing away information,
which seems wasteful. It turns out that there is an amazingly simple way to lower the
noise of the Sparse RV estimator without increasing the bias.
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Let us say that we have used the volatility signature plot to chose s= 15 in the
Sparse RV so that we are using a 15-minute grid for prices and squared returns to
compute RV. Note that if we have the original 1-minute grid (of less liquid prices)
then we can actually compute 15 different (but overlapping) Sparse RV estimators.
The first Sparse RV will use a 15-minute grid starting with the 15-minute return at
midnight, call it RVs,1

t+1; the second will also use a 15-minute grid but this one will

be starting one minute past midnight, call it RVs,2
t+1, and so on until the 15th Sparse

RV, which uses a 15-minute grid starting at 14 minutes past midnight, call it RVs,15
t+1 .

We are thus using the fine 1-minute grid to compute 15 Sparse RVs at the 15-minute
frequency.

We have now used all the information on the 1-minute grid but we have used it
to compute 15 different RV estimates, each based on 15-minute returns, and none of
which are materially affected by illiquidity bias. By simply averaging the 15 sparse
RVs we get the so-called Average RV estimator

RVAvr
t+1 =

1

s

s∑
i=1

RVs,i
t+1

In simulation studies and in practice this Average RV estimator has been found to
perform very well. The RVs plotted in Figure 5.1 were computed using the Average
RV estimator.

4.4 RV Estimators with Autocovariance Adjustments

Instead of using sparse sampling to avoid RV bias we can try to model and then correct
for the autocorrelations in intraday returns that are driving the volatility bias.

Assume that the fundamental log price is observed with an additive i.i.d. error term,
u, caused by illiquidity so that

ln(SObs
t+j/m)= ln(SFund

t+j/m)+ ut+j/m, with ut+j/m
i.i.d.
∼ N

(
0,σ 2

u

)
In this case the observed log return will equal the true fundamental returns plus an

MA(1) error:

RObs
t+j/m = ln(SObs

t+j/m)− ln(SObs
t+(j−1)/m)

= ln(SFund
t+j/m)+ ut+j/m−

(
ln(SFund

t+(j−1)/m)+ ut+(j−1)/m

)
= RFund

t+j/m+ ut+j/m− ut+(j−1)/m

Due to the MA(1) measurement error our simple squared return All RV estimate will
be biased.

The All RV in this case is defined by

RVm
t+1 =

m∑
j=1

(
RObs

t+j/m

)2
=

m∑
j=1

(
RFund

t+j/m+ ut+j/m− ut+(j−1)/m

)2
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Because the measurement error u has positive variance the RVm
t+1 estimator will be

biased upward in this case.
If we are fairly confident that the measurement error is of the MA(1) form then we

know (see Chapter 3) that only the first-order autocorrelations are nonzero and we can
therefore easily correct the RV estimator as follows:

RVAR(1)
t+1 =

m∑
j=1

(
RObs

t+j/m

)2
+

m∑
j=2

RObs
t+j/mRObs

t+(j−1)/m+

m−1∑
j=1

RObs
t+j/mRObs

t+(j+1)/m

where we have added the cross products from the adjacent intraday returns. The nega-
tive autocorrelation arising from the bid–ask bounce in observed intraday returns will
cause the last two terms in RVAR(1)

t+1 to be negative and we will therefore get that

RVAR(1)
t+1 <RVm

t+1 =

m∑
j=1

(
RObs

t+j/m

)2

as desired.
Positive autocorrelation caused by slowly changing prices would be at least partly

captured by the first-order autocorrelation as well. It would be positive in this case and
we would have

RVAR(1)
t+1 >RVm

t+1

Much more general estimators have been developed to correct for more complex
autocorrelation patterns in intraday returns. References to this work will be listed at
the end of the chapter.

5 Data Issues

So far we have assumed the availability of a 1-minute grid of prices in a 24-hour
market. But in reality several challenges arise. First, prices and quotes arrive randomly
in time and not on a neat, evenly spaced grid. Second, markets are typically not open
24 hours per day. Third, intraday data sets are large and messy and often include price
and quote errors that must be flagged and removed before estimating volatility. We
deal with these three issues in turn as we continue.

5.1 Dealing with Irregularly Spaced Intraday Prices

The preceding discussion has assumed that a sample of regularly spaced 1-minute
intraday prices are available. In practice, transaction prices or quotes arrive in random
ticks over time and the evenly spaced price grid must be constructed from the raw
ticks.
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One of the following two methods are commonly used.
The first and simplest solution is to use the last tick prior to a grid point as the price

observation for that grid point. This way the last observed tick price in an interval
is effectively moved forward in time to the next grid point. Specifically, assume we
have N observed tick prices during day t+ 1 but that these are observed at irregular
times t (0), t (1), . . . , t (N) . Consider now the jth point on the evenly spaced grid of
m points for day t+ 1, which we have called t+ j/m. Grid point t+ j/m will fall
between two adjacent randomly spaced ticks, say the ith and the (i+ 1)th; that is, we
have t (i) < t+ j/m< t (i+ 1) and in this case we choose the t+ j/m price to be

St+j/m = St(i)

The second and slightly less simple solution uses a linear interpolation between
St(i) and St(i+1) so what we have

St+j/m = St(i)+
(t+ j/m)− t (i)

t (i+ 1)− t (i)
[St(i+1)− St(i)], for t (i) < t+ j/m< t (i+ 1)

While the linear interpolation method makes some intuitive sense it has poor limit-
ing properties: The smoothing implicit in the linear interpolation makes the estimated
RV go to zero in the limit. Therefore, using the most recent tick on each grid point has
become standard practice.

5.2 Choosing the Frequency of the Fine Grid of Prices

Notice that we still have to choose the frequency of the fine grid. We have used
1-minute as an example but this number is clearly also asset dependent. An asset with
N = 2,000 new quotes on average per day should have a finer grid than an asset with
N = 50 new quotes on average per day.

We ought to have at least one quote per interval on the fine grid. So we should def-
initely have that m< N. However, the distribution of quotes is typically very uneven
throughout the day and so setting m close to N is likely to yield many intervals with-
out new quotes. We can capture the distribution of quotes across time on each day by
computing the standard deviation of t (i+ 1)− t (i) across i on each day.

The total number of new quotes, N, will differ across days and so will the standard
deviation of the quote time intervals. Looking at the descriptive statistics of N and the
standard deviation of quote time intervals across days is likely to yield useful guidance
on the choice of m.

5.3 Dealing with Data Gaps from Overnight Market Closures

In risk management we are typically interested in the volatility of 24-hour returns (the
return from the close of day t to the close on day t+ 1) even if the market is only open,
say, 8 hours per day. In Chapter 4 we estimated GARCH models on daily returns from
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closing prices. The volatility forecasts from GARCH are therefore by construction
24-hour return volatilities.

If we care about 24-hour return volatility and we only have intraday returns from
market open to market close, then the RV measure computed on intraday returns, call
it RVOpen

t+1 , must be adjusted for the return in the overnight gap from close on day t to
open on day t+ 1. There are three ways to make this adjustment.

First, we can simply scale up the market-open RV measure using the unconditional
variance estimated from daily squared returns:

RV24H
t+1 =

( ∑T
t=1 R2

t∑T
t=1 RVOpen

t

)
RVOpen

t+1

Second, we can add to RVOpen
t+1 the squared return constructed from the close on day

t to the open on day t+ 1:

RV24H
t+1 = ln

(
SOpen

t+1 /S
Close
t

)2
+RVOpen

t+1

Notice that this sum puts equal weight on the two terms and thus a relatively high
weight on the close-to-open gap for which little information is available. Note also
that SClose

t is simply the daily price observation that we denoted St in the previous
chapters.

A third, but more cumbersome approach is to find optimal weights for the two
terms. This can be done by minimizing the variance of the RV24H

t+1 estimator subject to
having a bias of zero.

When computing optimal weights typically a much larger weight is found for

RVOpen
t+1 than for ln

(
SOpen

t+1 /S
Close
t

)2
. This suggests that scaling up the RVOpen

t+1 may

be the better of the two first approaches to correcting for the overnight gap.

5.4 Alternative RV Estimators Using Tick-by-Tick Data

There is an alternative set of RV estimators that avoid the construction of a time grid
altogether and instead work directly with the irregularly spaced tick-by-tick data. Let
the ith tick return on day t+ 1 be defined by

Rt(i+1) = ln(St(i+1))− ln(St(i))

Then the tick-based RV estimator is defined by

RVTick
t+1 =

N−1∑
i=1

R2
t(i+1)
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Notice that tick-time sampling avoids sampling the same observation multiple
times, which could happen on a fixed grid if the grid is too fine compared with the
number of available intraday prices.

The preceding simple tick-based RV estimator can be extended by allowing for
autocorrelation in the tick-time returns.

The optimality of grid-based versus tick-based RV estimators depends on the struc-
ture of the market for the asset and on its liquidity. The majority of academic research
relies on grid-based RV estimators.

5.5 Price and Quote Data Errors

The construction of the intraday price grid is perhaps the most challenging task when
estimating and forecasting volatility using realized variance. The raw intraday price
data contains observations randomly spaced in time and the sheer volume of data can
be enormous when investigating many assets over long time periods.

The construction of the grid of prices is complicated by the presence of data errors.
A data error is broadly defined as a quoted price that does not conform to the real
situation of the market. Price data errors could take several forms:

l Decimal errors; for example, when a bid price changes from 1.598 to 1.603 but a
1.503 is reported instead of 1.603.

l Test quotes: These are quotes sent by a contributor at early mornings or at other
inactive times to test the system. They can be difficult to catch since the prices may
look plausible.

l Repeated ticks: These are sent automatically by contributors. If sent frequently,
then they can obstruct the filtering of a few informative quotes sent by other con-
tributors.

l Tick copying: Contributors automatically copy and resend quotes of other contrib-
utors to show a strong presence in the market. Sometimes random error is added so
as to hide the copying aspect.

l Scaling problems: The scale of the price of an asset may differ by contributor and
it may change over time without notice.

Given the size of intraday data sets it is impossible to manually check for errors.
Automated filters must be developed to catch errors of the type just listed. The
challenges of filtering intraday data has created a new business for data vendors.
OlsenData.com and TickData.com are examples of data vendors that sell filtered as
well as raw intraday data.

6 Range-Based Volatility Modeling

The construction of daily realized volatilities relies on the availability of intraday
prices on relatively liquid assets. For markets that are not liquid, or for assets where

http://OlsenData.com
http://TickData.com
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historical information on intraday prices is not available the intraday range presents a
convenient alternative.

The intraday price range is based on the intraday high and intraday low price.
Casual browsing of the web (see for example finance.yahoo.com) reveals that these
intraday high and low prices are easily available for many assets far back in time.
Range-based variance proxies are therefore easily computed.

6.1 Range-Based Proxies for Volatility

Let us define the range of the log prices to be

Dt = ln(SHigh
t )− ln

(
SLow

t

)
= ln

(
SHigh

t /SLow
t

)
where SHigh

t and SLow
t are the highest and lowest prices observed during day t.

We can show that if the log return on the asset is normally distributed with zero
mean and variance, σ 2, then the expected value of the squared range is

E
[
D2

t

]
= 4ln(2)σ 2

A natural range-based estimate of volatility is therefore

σ 2
=

1

4ln(2)

1

T

T∑
t=1

D2
t

The range-based estimate of variance is simply a constant times the average squared
range. The constant is 1

4ln(2) ≈ 0.361.
The range-based estimate of unconditional variance suggests that a range proxy for

the daily variance can be constructed as

RPt =
1

4ln(2)D
2
t ≈ 0.361D2

t

The top panel of Figure 5.6 plots RPt for the S&P 500 data.
Notice how much less noisy the range is than the daily squared returns that are

shown in the bottom panel.
Figure 5.7 shows the autocorrelation of RPt in the top panel. The first-order auto-

correlation in the range-based variance proxy is around 0.60 (top panel) whereas
it is only half of that in the squared-return proxy (bottom panel). Furthermore, the
range-based autocorrelations are much smoother and thus give a much more reli-
able picture of the persistence in variance than do the squared returns in the bottom
panel.

This range-based volatility proxy does not make use of the daily open and close
prices, which are also easily available and which also contain information about the
24-hour volatility. Assuming again that the asset log returns are normally distributed

http://finance.yahoo.com
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Figure 5.6 Range-based variance proxy (top) and squared returns (bottom).
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Notes: We use the daily range proxy for variance computed from the intraday high and low
prices (top panel) and the daily close-to-close squared returns (bottom panel).

with zero mean and variance, σ 2, then a more accurate range-based proxy can be
derived as

RPt =
1
2 D2

t − (2ln(2)− 1) ln
(

SClose
t /SOpen

t

)2

In the more general case where the mean return is not assumed to be zero the
following range-based volatility proxy is available:

RPt = ln
(

SHigh
t /SOpen

t

)[
ln
(

SHigh
t /SOpen

t

)
− ln

(
SClose

t /SOpen
t

)]
+ ln

(
SLow

t /SOpen
t

)[
ln
(

SLow
t /SOpen

t

)
− ln

(
SClose

t /SOpen
t

)]
All of these proxies are derived assuming that the true variance is constant, so that, for
example, 30 days of high, low, open, and close information can be used to estimate the
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Figure 5.7 Autocorrelation of the range-based variance proxy (top) and autocorrelation of
squared returns (bottom) with Bartlett standard errors (dashed).
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Notes: We compute autocorrelations from the daily range proxy for variance computed using
the intraday high and low prices (top panel) and from the daily close-to-close squared returns
(bottom panel) using the S&P 500 index.

(constant) volatility for that period. We instead want to use the range-based proxies as
input into a dynamic forecasting model for volatility in line with the GARCH models
in Chapter 4 and the HAR models in this chapter.

6.2 Forecasting Volatility Using the Range

Perhaps the simplest approach to using RPt in a forecasting model is to use it in place
of RV in the earlier AR and HAR models. Although RPt may be more noisy than
RV, the HAR approach should yield good forecasting results because the HAR model
structure imposes a lot of smoothing.
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Several studies have found that the log range is close to normally distributed as
follows:

ln(RPt)∼ N
(
µRP,σ

2
RP

)
Recall that RV in logs is also close to normally distributed as well as we saw in
Figure 5.3.

The strong persistence of the range as well as the log normal property suggest a log
HAR model of the form

ln(RPt+1)= φ0+φD ln(RPD,t)+φW ln(RPW,t)+φM ln(RPM,t)+ εt+1

where we have that

RPD,t ≡ RPt

RPW,t ≡
[
RPt−4,t+RPt−3,t+RPt−2,t+RPt−1,t+RPt

]
/5

RPM,t ≡
[
RPt−20,t+RPt−19,t+ ·· ·+RPt

]
/21

The range-based proxy can also be used as a regressor in GARCH-X models, for
example

Rt+1 = σ t+1zt+1, where

σ 2
t+1 = ω+αR2

t +βσ
2
t + γRPt

A purely range-based model can be defined as

Rt+1 = σ t+1zt+1, where

σ 2
t+1 = ω+αRPt+βσ

2
t

Finally, a Realized-GARCH style model (let us call it Range-GARCH) can be
defined via

Rt+1 = σ t+1zt+1, where

σ 2
t+1 = ω+αR2

t +βσ
2
t + γRPt, and

RPt = ωRP+βRPσ
2
t + εt

The Range-GARCH model can be estimated using bivariate maximum likelihood
techniques using historical data on return, Rt, and on the range proxy, RPt.

ES and VaR can be constructed in the RP-based models in the same way as in the
RV-based models by assuming that zt+1 is i.i.d. normal where zt+1 = Rt+1/σ t+1 in the
GARCH-style models or zt+1 = Rt+1/

√
Et (RPt+1) in the HAR model.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 10-ch05-093-120-9780123744487 2011/10/28 17:07 Page 115 #23

Volatility Modeling Using Intraday Data 115

6.3 Range-Based versus Realized Variance

There is convincing empirical evidence that for very liquid securities the RV model-
ing approach is useful for risk management purposes. The intuition is that using the
intraday returns gives a very reliable estimate of today’s variance, which in turn helps
forecast tomorrow’s variance. In standard GARCH models on the other hand, today’s
variance is implicitly calculated using exponentially declining weights on many past
daily squared returns, where the exact weighting scheme depends on the estimated
parameters. Thus the GARCH estimate of today’s variance is heavily model depen-
dent, whereas the realized variance for today is calculated exclusively from today’s
squared intraday returns. When forecasting the future, knowing where you are today
is key. Unfortunately in variance forecasting, knowing where you are today is not a
trivial matter since variance is not directly observable.

While the realized variance approach has clear advantages it also has certain
shortcomings. First of all it clearly requires high-quality intraday returns to be fea-
sible. Second, it is very easy to calculate daily realized volatilities from 5-minute
returns, but it is not at all a trivial matter to construct at 10-year data set of 5-minute
returns.

Figure 5.5 illustrates that the observed intraday price can be quite noisy compared
with the fundamental but unobserved price. Therefore, realized variance measures
based on intraday returns can be noisy as well. This is especially true for securities
with wide bid–ask spreads and infrequent trading. Notice on the other hand that the
range-based variance measure discussed earlier is relatively immune to the market
microstructure noise. The true maximum can easily be calculated as the observed
maximum less one half of the bid–ask spread, and the true minimum as the observed
minimum plus one half of the bid–ask price. The range-based variance measure thus
has clear advantages in less liquid markets.

In the absence of trading imperfections, however, range-based variance proxies can
be shown to be only about as useful as 4-hour intraday returns. Furthermore, as we
shall see in Chapter 7, the idea of realized variance extends directly to realized covari-
ance and correlation, whereas the range-based covariance and correlation measures
are less obvious.

7 GARCH Variance Forecast Evaluation Revisited

In the previous chapter we briefly introduced regressions using daily squared returns
to evaluate the GARCH model forecasts. But we quickly argued that daily returns
are too noisy to proxy for observed daily variance. In this chapter we have developed
more informative proxies based on RV and RP and they should clearly be useful for
variance forecast evaluation.

The realized variance measure can be used instead of the squared return for eval-
uating the forecasts from variance models. If only squared returns are available then
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we can run the regression

R2
t+1 = b0+ b1σ

2
t+1|t+ εt+1

where σ 2
t+1|t is the forecast from the GARCH model.

If we have RV-based estimates available then we would instead run the regression

RVAvr
t+1 = b0+ b1σ

2
t+1|t+ εt+1

where we have used the Average RV estimator as an example.
The range-based proxy could of course also be used instead of the squared return

for evaluating the forecasts from variance models. Thus we could run the regression

RPt+1 = b0+ b1σ
2
t+1|t+ εt+1

where RPt+1 can be constructed for example using

RPt+1 = 0.361ln
(

SHigh
t+1 /S

Low
t+1

)2

Using R2
t+1 on the left-hand side of these regressions is likely to yield the finding

that the volatility forecast is poor. The fit of the regression will be low but notice that
this does not necessarily mean that the volatility forecast is poor. It could also mean
that the volatility proxy is poor. If regressions using RVAvr

t+1 or RPt+1 yield a much
better fit than the regression using R2

t+1 then the volatility forecast is much better than
suggested by the noisy squared-return proxy.

8 Summary

Realized volatility and range-based volatility are likely to be much more informa-
tive about daily volatility than is the daily squared return. This fact has important
implications for the evaluation of volatility forecasts but it has even more important
implications for volatility forecast construction. If intraday information is available
then it should be used to construct more accurate volatility forecasts than those that
can be constructed from daily returns alone. This chapter has introduced a number of
practical approaches to volatility forecasting using intraday information.

Further Resources

The classic references on realized volatility include Andersen et al. (2001, 2003), and
Barndorff-Nielsen and Shephard (2002). See the survey in Andersen et al. (2010) for
a thorough literature review.

The HAR model for RV was developed in Corsi (2009) and has been used in Ander-
sen et al. (2007b) among others. Engle (2002) suggested RV in the GARCH-X model
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and the Realized GARCH model was developed in Hansen et al. (2011). See also the
HEAVY model in Shephard and Sheppard (2010).

The crucial impact on RV of liquidity and market microstructure effects more gen-
erally has been investigated in Andersen et al. (2011), Bandi and Russell (2006), and
Ait-Sahalia and Mancini (2008).

The choice of sampling frequency has been analyzed by Ait-Sahalia et al. (2005),
and Bandi and Russell (2008). The volatility signature plot was suggested in Ander-
sen et al. (1999). The Average RV estimator is discussed in Zhang et al. (2005). The
RV estimates corrected for return autocorrelations were developed by Zhou (1996),
Barndorff-Nielsen et al. (2008), and Hansen and Lunde (2006).

The use of RV in volatility forecast evaluation was pioneered by Andersen and
Bollerslev (1998). See also Andersen et al. (2004, 2005) and Patton (2011).

The use of RV in risk management is discussed in Andersen et al. (2007a), and the
use of RV in portfolio allocation is developed in Bandi et al. (2008) and Fleming et al.
(2003).

For forecasting applications of RV see Martens (2002), Thomakos and Wang
(2003), Pong et al. (2004), Koopman et al. (2005), and Maheu and McCurdy (2011).

For treating overnight gaps see Hansen and Lunde (2005), and for data issues in
RV construction see Brownlees and Gallo (2006), Muller (2001), and Dacorogna et al.
(2001).

Range-based estimates variance models are introduced in Parkinson (1980) and
Garman and Klass (1980), and more recent contributions include Rogers and Satchell
(1991) and Yang and Zhang (2000). Range-based models of dynamic variance are
developed in Azalideh et al. (2002), Brandt and Jones (2006), and Chou (2005), and
they are surveyed in Chou et al. (2009). Brandt and Jones (2006) use the range rather
than the squared return as the fundamental innovation in an EGARCH model and find
that the range improves the model’s variance forecasts significantly.
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Empirical Exercises

Open the Chapter5Data.xlsx file from the web site.

1. Run a regression of daily squared returns on the variance forecast from the GARCH model
with a leverage term from Chapter 4. Include a constant term in the regression

R2
t+1 = b0+ b1σ

2
t+1+ et+1

(Excel hint: Use the function LINEST.) What is the fit of the regression as measured by the
R2? Is the constant term significantly different from zero? Is the coefficient on the forecast
significantly different from one?

http://www.olsendata.com
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2. Run a regression using RP instead of the squared returns as proxies for observed variance;
that is, regress

RPt+1 = b0+ b1σ
2
t+1+ et+1, where

RPt+1 =
1

4ln(2)
D2

t+1

Is the constant term significantly different from zero? Is the coefficient on the forecast signif-
icantly different from one? What is the fit of the regression as measured by the R2? Compare
your answer with the R2 from exercise 1.

3. Run a regression using RV instead of the squared returns as proxies for observed variance;
that is, regress

RVt+1 = b0+ b1σ
2
t+1+ et+1

Is the constant term significantly different from zero? Is the coefficient on the forecast signif-
icantly different from one? What is the fit of the regression as measured by the R2? Compare
your answer with the R2 from exercises 1 and 2.

4. Estimate a HAR model in logarithms on the RP data you constructed in exercise 2. Use the
next day’s RP on the left-hand side and use daily, weekly, and monthly regressors on the
right-hand side. Compute the regression fit.

5. Estimate a HAR model in logarithms on the RV data. Use the next day’s RV on the left-
hand side and use daily, weekly, and monthly regressors on the right-hand side. Compare the
regression fit from this equation with that from exercise 4.

The answers to these exercises can be found in the Chapter5Results.xls file, which can be
found on the companion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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6 Nonnormal Distributions

1 Chapter Overview

We now turn to the final part of the stepwise univariate distribution modeling
approach, namely accounting for conditional nonnormality in portfolio returns. In
Chapter 1, we saw that asset returns are not normally distributed. If we construct a
simple histogram of past returns on the S&P 500 index, then it will not conform to
the density of the normal distribution: The tails of the histogram are fatter than the
tails of the normal distribution, and the histogram is more peaked around zero. From
a risk management perspective, the fat tails, which are driven by relatively few but
very extreme observations, are of most interest. These extreme observations can be
symptoms of liquidity risk or event risk as defined in Chapter 1.

One motivation for the time-varying variance models discussed in Chapters 4 and 5
is that they are capable of accounting for some of the nonnormality in the daily returns.
For example a GARCH(1,1) model with normally distributed shocks, zt = Rt/σ t will
imply a nonnormal distribution of returns Rt because the distribution of returns is a
function of all the past return variances σ 2

i , i= 1,2, . . . , t.
GARCH models with normal shocks by definition do not capture what we call con-

ditional nonnormality in the returns. Returns are conditionally normal if the shocks zt

are normally distributed. Histograms from shocks, (i.e. standardized returns) typically
do not conform to the normal density. Figure 6.1 illustrates this point.

The top panel shows the histogram of the raw returns superimposed on the nor-
mal distribution and the bottom panel shows the histogram of the standardized returns
superimposed on the normal distribution as well. The volatility model used to stan-
dardize the returns is the NGARCH(1,1) model, which includes a leverage effect.
Notice that while the bottom histogram conforms more closely to the normal distribu-
tion than does the top histogram, there are still some systematic deviations, including
fat tails and a more pronounced peak around zero.

2 Learning Objectives

We will analyze the conditional nonnormality in several ways:

1. We introduce the quantile-quantile (QQ) plot, which is a graphical tool better at
describing tails of distributions than the histogram.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00006-3
c© 2012 Elsevier, Inc. All rights reserved.
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Figure 6.1 Histogram of daily S&P 500 returns (top panel) and histogram of GARCH shocks
(bottom panel).
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Notes: The top panel shows a histogram of daily S&P 500 returns and the bottom panel shows
a histogram of returns standardized by the dynamic variance from a GARCH model.

2. We define the Filtered Historical Simulation approach, which combines GARCH
with Historical Simulation.

3. We introduce the simple Cornish-Fisher approximation to VaR in nonnormal dis-
tributions.

4. We consider the standardized Student’s t distribution and discuss the estimation of
it.

5. We extend the Student’s t distribution to a more flexible asymmetric version.
6. We consider extreme value theory for modeling the tail of the conditional distribu-

tion.

For each of these methods we will provide the Value-at-Risk and the expected
shortfall formulas.

Throughout this chapter, we will assume that we are working with a time series
of portfolio returns using today’s portfolio weights and past returns on the underly-
ing assets in the portfolio. Therefore, we are modeling a univariate time series. We
will assume that the portfolio variance has already been modeled using the methods
presented in Chapters 4 and 5.
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Working with the univariate time series of portfolio returns is convenient from
a modeling perspective but it has the disadvantage of being conditional on exactly
the current set of portfolio weights. If the weights are changed, then the portfolio
distribution modeling will have to be redone. Multivariate risk models will be studied
in Chapters 7–9.

3 Visualizing Nonnormality Using QQ Plots

As in Chapter 2, consider a portfolio of n assets. If we today own Ni,t units or shares
of asset i then the value of the portfolio today is

VPF,t =

n∑
i=1

Ni,tSi,t

Using today’s portfolio holdings but historical asset prices we can compute the
history of (pseudo) portfolio values. For example, yesterday’s portfolio value is

VPF,t−1 =

n∑
i=1

Ni,tSi,t−1

The log return can now be defined as

RPF,t = ln
(
VPF,t/VPF,t−1

)
Allowing for a dynamic variance model we can write

RPF,t = σPF,tzt, with zt
i.i.d.
∼ D(0,1)

where σPF,t is the conditional volatility forecast constructed using the methods in the
previous two chapters.

The focus in this chapter is on modeling the distribution of the innovations, D(0,1),
which has a mean of zero and a standard deviation of 1. So far, we have relied on
setting D(0,1) to N(0,1), but we now want to assess the problems of the normality
assumption in risk management, and we want to suggest viable alternatives.

Before we venture into the particular formulas for suitable nonnormal distributions,
let us first introduce a valuable visual tool for assessing nonnormality, which we will
also use later as a diagnostic check on nonnormal alternatives. The tool is commonly
known as a quantile-quantile (QQ) plot, and the idea is to plot the empirical quantiles
of the calculated returns, which is simply the returns ordered by size, against the cor-
responding quantiles of the normal distribution. If the returns are truly normal, then
the graph should look like a straight line at a 45-degree angle. Systematic deviations
from the 45-degree line signal that the returns are not well described by the normal
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distribution. QQ plots are, of course, particularly relevant to risk managers who care
about Value-at-Risk, which itself is a quantile.

The QQ plot is constructed as follows: First, sort all standardized returns zt =

RPF,t/σPF,t in ascending order, and call the ith sorted value zi. Second, calculate the
empirical probability of getting a value below the actual as (i− 0.5)/T, where T is
the total number of observations. The subtraction of 0.5 is an adjustment for using a
continuous distribution on discrete data.

Calculate the standard normal quantiles as 8−1
(i−0.5)/T , where 8−1 denotes the

inverse of the standard normal density as before. We can then scatter plot the stan-
dardized and sorted returns on the Y-axis against the standard normal quantiles on the
X-axis as follows:

{Xi,Yi} =

{
8−1
(i−0.5)/T ,zi

}
If the data were normally distributed, then the scatterplot should conform roughly to
the 45-degree line.

Figure 6.2 shows a QQ plot of the daily S&P 500 returns from Chapter 1. The top
panel uses standardized returns from the unconditional standard deviation, σPF , so that
zt = RPF,t/σPF , and the bottom panel uses returns standardized by an NGARCH(1,1)
with a leverage effect, zt = RPF,t/σPF,t.

Notice that the GARCH model does capture some of the nonnormality in the
returns, but some still remains. The patterns of deviations from the 45-degree line indi-
cate that large positive returns are captured remarkably well by the normal GARCH
model but that the model does not allow for a sufficiently fat left tail as compared with
the data.

4 The Filtered Historical Simulation Approach

The Filtered Historical Simulation approach (FHS), which we present next, attempts
to combine the best of the model-based with the best of the model-free approaches in
a very intuitive fashion. FHS combines model-based methods of dynamic variance,
such as GARCH, with model-free methods of distribution in the following way.

Assume we have estimated a GARCH-type model of our portfolio variance.
Although we are comfortable with our variance model, we are not comfortable making
a specific distributional assumption about the standardized returns, such as a normal
distribution. Instead, we would like the past returns data to tell us about the distribution
directly without making further assumptions.

To fix ideas, consider again the simple example of a GARCH(1,1) model:

RPF,t+1 = σPF,t+1zt+1

where

σ 2
PF,t+1 = ω+αR2

PF,t+βσ
2
PF,t
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Figure 6.2 QQ plot of daily S&P 500 returns and GARCH shocks.
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Notes: In the top panel we scatter plot the empirical quantiles of the S&P 500 returns (in
standard deviations) against the normal distribution. In the bottom panel we scatter plot the
empirical quantiles of the S&P 500 GARCH shocks against the quantiles of the normal
distribution. The two red lines have a slope of one.

Given a sequence of past returns,
{
RPF,t+1−τ

}m
τ=1, we can estimate the GARCH

model and calculate past standardized returns from the observed returns and from the
estimated standard deviations as

ẑt+1−τ = RPF,t+1−τ /σPF,t+1−τ , for τ = 1,2, . . . ,m

We will refer to the set of standardized returns as
{
ẑt+1−τ

}m
τ=1 .

We can simply calculate the 1-day VaR using the percentile of the database of stan-
dardized residuals as in

VaRp
t+1 =−σPF,t+1Percentile

{{
ẑt+1−τ

}m
τ=1 ,100p

}
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At the end of Chapter 2, we introduced expected shortfall (ES) as an alternative risk
measure to VaR. ES is defined as the expected return given that the return falls below
the VaR. For the 1-day horizon, we have

ESp
t+1 =−Et

[
RPF,t+1|RPF,t+1 <−VaRp

t+1

]
The ES measure can be calculated from the historical shocks via

ESp
t+1 =−

σPF,t+1

p ·m

m∑
i=1

ẑt+1−τ · 1
(
ẑt+1−τ <−Percentile

{{
ẑt+1−τ

}m
τ=1 ,100p

})
where the indicator function 1(•) returns a 1 if the argument is true and zero if not.

An interesting and useful feature of FHS as compared with the simple Histori-
cal Simulation approach introduced in Chapter 2 is that it can generate large losses
in the forecast period, even without having observed a large loss in the recorded
past returns. Consider the case where we have a relatively large negative z in our
database, which occurred on a relatively low variance day. If this z gets combined with
a high variance day in the simulation period then the resulting hypothetical loss will be
large.

We close this section by reemphasizing that the FHS method suggested here com-
bines a conditional model for variance with a Historical Simulation method for the
standardized returns. FHS thus retains the key conditionality feature through σ t+1 but
saves us from having to make assumptions beyond that the sample of historical zs pro-
vides a good description of the distribution of future zs. Note that this is very different
from the standard Historical Simulation approach in which the sample of historical Rs
is assumed to provide a good description of the distribution of future Rs.

5 The Cornish-Fisher Approximation to VaR

Filtered Historical Simulation offers a nice model-free approach to the conditional
distribution. But FHS relies heavily on the recent series of observed shocks, zt. If
these shocks are interesting from a risk perspective (that is, they contain sufficiently
many large negative values) then the FHS will deliver accurate results; if not, FHS
may suffer.

We now consider a simple alternative way of calculating VaR, which has certain
advantages. First, it does allow for skewness as well as excess kurtosis. Second, it is
easily calculated from the empirical skewness and excess kurtosis estimates from the
standardized returns, zt. Third, it can be viewed as an approximation to the VaR from
a wide range of conditionally nonnormal distributions.

We again start by defining standardized portfolio returns by

zt+1 = RPF,t+1/σPF,t+1
i.i.d.
∼ D(0,1)

where D(0,1) denotes a distribution with a mean equal to 0 and a variance equal to 1.
As in Chapter 4, i.i.d. denotes independently and identically distributed.
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The Cornish-Fisher VaR with coverage rate p can then be calculated as

VaRp
t+1 =−σPF,t+1CF−1

p

where

CF−1
p =8

−1
p +

ζ 1

6

[
(8−1

p )2− 1
]
+
ζ 2

24

[
(8−1

p )3− 38−1
p

]
−
ζ 2

1

36

[
2(8−1

p )3− 58−1
p

]
where ζ 1 is the skewness and ζ 2 is the excess kurtosis of the standardized returns, zt.
The Cornish-Fisher quantile can be viewed as a Taylor expansion around the normal
distribution. Notice that if we have neither skewness nor excess kurtosis so that ζ 1 =

ζ 2 = 0, then we simply get the quantile of the normal distribution

CF−1
p =8

−1
p , for ζ 1 = ζ 2 = 0

Consider now for example the 1% VaR, where 8−1
.01 ≈−2.33. Allowing for skew-

ness and kurtosis we can calculate the Cornish-Fisher 1% quantile as

CF−1
p ≈−2.33+ 0.74ζ 1− 0.24ζ 2+ 0.38ζ 2

1

and the portfolio VaR can be calculated as

VaR.01
t+1 =−(−2.33+ 0.74ζ 1− 0.24ζ 2+ 0.38ζ 2

1)σPF,t+1

Thus, for example, if skewness equals –1 and excess kurtosis equals 4, then we get

VaR.01
t+1 =−(−2.33− 0.74− 0.24 · 4+ 0.38)σPF,t+1 = 3.63σPF,t+1

which is much higher than the VaR number from a normal distribution, which equals
2.33σPF,t+1.

The expected shortfall can be derived as

ESp
t+1 =−σPF,t+1ESCF (p)

where

ESCF (p)=
−φ

(
CF−1

p

)
p

[
1+

ζ 1

6

(
CF−1

p

)3
+
ζ 2

24

[(
CF−1

p

)4
−2

(
CF−1

p

)2
−1

]]
This derivation can be found in Appendix B. Recall from Chapter 2 that the ES for the
normal distribution is

ESp
t+1 = σPF,t+1

φ
(

CF−1
p

)
p

which is also a special case of ESCF (p) when ζ 1 = ζ 2 = 0.
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The CF approach is easy to implement and we avoid having to make an assumption
about exactly which distribution fits the data best. However, exact distributions have
advantages too. Perhaps most importantly for risk management, exact distributions
allow us to compute VaR and ES for extreme probabilities (as we did in Chapter 2) for
which the approximative CF may not be well-defined. Exact distributions also enable
Monte Carlo simulation, which we will discuss in Chapter 8. We therefore consider
useful examples of exact distributions next.

6 The Standardized t Distribution

Perhaps the most important deviations from normality we have seen are the fatter tails
and the more pronounced peak in the distribution of zt as compared with the normal
distribution. The Student’s t distribution captures these features. It is defined by

ft(d)(x;d)=
0((d+ 1)/2)

0(d/2)
√

dπ
(1+ x2/d)−(1+d)/2, for d > 0

The 0(•) notation refers to the gamma function, which can be found in most quan-
titative software packages. Conveniently, the distribution has only one parameter,
namely d. In the Student’s t distribution we have the following first two moments:

E [x]= 0, when d > 1

Var[x]= d/(d− 2) when d > 2

We have already modeled variance using GARCH and other models and so we
are interested in a distribution that has a variance equal to 1. The standardized t
distribution—call it the t̃(d) distribution—is derived from the Student’s t to achieve
this goal.

Define z by standardizing x so that

z=
x−E [x]
√

Var[x]
=

x
√

d/(d− 2)

The standardized t̃(d) density is then defined by

ft̃(d)(z;d)= C (d)(1+ z2/(d− 2))−(1+d)/2, for d > 2

where

C (d)=
0((d+ 1)/2)

0(d/2)
√
π(d− 2)

Note that the standardized t distribution is defined so that the random variable z has
mean equal to zero and a variance (and standard deviation) equal to 1. Note also that
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the parameter d must be larger than two for the standardized distribution to be well
defined.

The key feature of the t̃(d) distribution is that the random variable, z, is taken to a
power, rather than an exponential, which is the case in the standard normal distribution
where

f (z)= (2π)−1/2 exp
(
−z2/2

)
The power function driven by d will allow for the t̃(d) distribution to have fatter

tails than the normal; that is, higher values of ft̃(d)(•) when z is far from zero.
The t̃(d) distribution is symmetric around zero, and the mean (µ), variance

(
σ 2
)
,

skewness (ζ 1), and excess kurtosis (ζ 2) of the distribution are

µ≡ E[z]= 0

σ 2
≡ E[(z−E[z])2]= 1

ζ 1 ≡ E[z3]/σ 3
= 0

ζ 2 ≡ E[z4]/σ 4
− 3= 6/(d− 4)

Thus, notice that d must be higher than 4 for the kurtosis to be well defined. Notice
also that for large values of d the distribution will have an excess kurtosis of zero, and
we can show that it converges to the standard normal distribution as d goes to infinity.
Indeed, for values of d above 50, the t̃(d) distribution is difficult to distinguish from
the standard normal distribution.

6.1 Maximum Likelihood Estimation

Combining a dynamic volatility model such as GARCH with the standardized t distri-
bution we can now specify our model portfolio returns as

RPF,t = σPF,tzt, with zt
i.i.d.
∼ t̃(d)

If we ignore the fact that variance is estimated with error, we can treat the standardized
return as a regular random variable, calculated as zt = RPF,t/σPF,t. The d parameter
can then be estimated using maximum likelihood by choosing the d, which maximizes

lnL1 =

T∑
t=1

ln(ft̃(d)(zt;d))

= T {ln(0((d+ 1)/2))− ln(0(d/2))− ln(π)/2− ln(d− 2)/2}

−
1

2

T∑
t=1

(1+ d) ln(1+ (RPF,t/σPF,t)
2/(d− 2))
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Given that we have already modeled and estimated the portfolio variance σ 2
PF,t, and

taken it as given, we can maximize lnL1 with respect to the parameter d only. This
approach builds again on the quasi-maximum likelihood idea, and it is helpful in
that we are only estimating few parameters at a time, in this case only one. The sim-
plicity is important because we are relying on numerical optimization to estimate the
parameters.

If we instead want to estimate the variance parameters and the d parameter simul-
taneously, we must adjust the distribution to take into account the variance, σ 2

PF,t, and
we get

f (RPF,t;d)=
C (d)

σPF,t
(1+ (RPF,t/σPF,t)

2/(d− 2))−(1+d)/2

To estimate all the parameters together, we must maximize the log-likelihood of
the sample of returns, which can be written

lnL2 =

T∑
t=1

ln(f (RPF,t;d))= lnL1−

T∑
t=1

ln(σ 2
PF,t)/2

When we maximize lnL2 over all the parameters simultaneously, including the
GARCH parameters implicit in σ 2

PF,t, then we will typically get more precise param-
eter estimates compared with stepwise estimation of the GARCH parameters first and
the distribution parameters second.

As a simple univariate example of the difference between quasi-maximum like-
lihood estimation (QMLE) and maximum likelihood estimate (MLE) consider the
GARCH(1,1)-t̃(d) model with leverage. We have

RPF,t+1 = σPF,t+1zt+1, with zt+1
i.i.d.
∼ t̃(d), where

σ 2
PF,t+1 = ω+α

(
RPF,t− θσPF,t

)2
+βσ 2

PF,t

We can estimate all the parameters {ω,α,β,θ,d} in one step using lnL2 from before,
which would correspond to exact MLE. Alternatively, we can first estimate the
GARCH parameters {ω,α,β,θ} using the QMLE method in Chapter 4, which assumes
the likelihood from a normal distribution, and then estimate the conditional distribu-
tion parameter, d, from lnL1. In this simple example, exact MLE is clearly feasible as
the total number of parameters is only five.

6.2 An Easy Estimate of d

While the maximum likelihood estimation outlined here has nice properties, there is
a very simple alternative estimation procedure available for the t distribution. If the
conditional variance model has already been estimated, then we are only estimating
one parameter, namely d. Because there is a simple closed-form relationship between
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d and the excess kurtosis, ζ 2, this suggests first simply calculating ζ 2 from the zt

variable and then calculating d from

ζ 2 = 6/(d− 4)⇒ d = 6/ζ 2+ 4

Thus, if excess kurtosis is found to be 1, for example, then the estimate of d is 10. This
is an example of a method-of-moments estimate, where we match the fourth sample
moment of the data (in this case zt) to the fourth moment from the assumed distribution
(in this case the t distribution). Notice that this estimate of d is conditional on having
estimated the GARCH parameters in a previous step using QMLE. Only when the
GARCH parameters have been estimated on returns can we define the time series of
GARCH shocks, zt.

6.3 Calculating Value-at-Risk and Expected Shortfall

Once d is estimated, we can calculate the VaR for the portfolio return

RPF,t+1 = σPF,t+1zt+1, with zt+1
i.i.d.
∼ t̃(d)

as

VaRp
t+1 =−σPF,t+1 t̃−1

p (d)

where t̃−1
p (d) is the pth quantile of the t̃(d) distribution.

Thus, we have

VaRp
t+1 =−σPF,t+1

√
d− 2

d
t−1
p (d)

where we have used the below result relating the quantiles of the standardized t̃(d)
distribution to that of the conventional Student’s t(d).

The formula for the expected shortfall is

ESp
t+1 =−σPF,t+1ESt̃(d)(p), where

ESt̃(d)(p)=
C (d)

p

[[
1+

1

d− 2
t−1
p (d)

] 1−d
2 d− 2

1− d

]
, with

C (d)=
0((d+ 1)/2)

0(d/2)
√
π(d− 2)

as before.

Appendix A at the end of this chapter gives the derivation of ESt̃(d)(p).
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6.4 QQ Plots

We can generalize the preceding QQ plot to assess the appropriateness of nonnormal
distributions as well. In particular, we would like to assess if the returns standardized
by the GARCH model conform to the t̃(d) distribution.

However, the quantile of the standardized t̃(d) distribution is usually not easily
found in software packages, whereas the quantile from the conventional Student’s t(d)
distribution is. We therefore need the relationship

Pr

(
zt

√
d

d− 2
< t−1

p (d)

)
= p

⇔ Pr

(
zt < t−1

p (d)

√
d− 2

d

)
= p

⇔ t̃−1
p (d)=

√
d− 2

d
t−1
p (d)

where t−1
p (d) is the pth quantile of the conventional Student’s t(d) distribution.

We are now ready to construct the QQ plot as

{Xi,Yi} =

{√
d− 2

d
t−1
(i−0.5)/T (d) ,zi

}

where zi again denotes the ith sorted standardized return.
Figure 6.3 shows the QQ plot of the standardized returns from the GARCH-t̃(d)

with leverage, estimated using QMLE. d is estimated to be 11.4. Notice that the
t distribution fits the left tail better than the normal distribution, but this happens partly
at the cost of fitting the right tail worse.

Figure 6.3 QQ plot of S&P 500 GARCH shocks against the standardized t distribution.
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Notes: We scatter plot the empirical quantiles of the S&P 500 GARCH shocks against the
quantiles of the standardized Student’s t distribution. The red line has a slope of one.
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The symmetry of the t̃(d) distribution appears to be somewhat at odds with this
particular data set. We therefore next consider a generalization of the t distribution
that allows for asymmetry.

7 The Asymmetric t Distribution

The Student’s t distribution can allow for kurtosis in the conditional distribution but
not for skewness. It is possible, however, to develop a generalized, asymmetric version
of the Student’s t distribution. It is defined by pasting together two distributions at a
point −A/B on the horizontal axis. The density function is defined by

fasyt(z;d1,d2)=

BC
[
1+(Bz+A)2 /

(
(1−d2)

2 (d1−2)
)]−(1+d1)/2

, if z<−A/B

BC
[
1+(Bz+A)2 /

(
(1+d2)

2 (d1−2)
)]−(1+d1)/2

, if z≥−A/B

where

A= 4d2C
d1− 2

d1− 1
, B=

√
1+ 3d2

2 −A2, C =
0((d1+ 1)/2)

0(d1/2)
√
π(d1− 2)

and where d1 > 2, and −1< d2 < 1. Note that C(d1)= C(d) from the symmetric
Student’s t distribution. Figure 6.4 shows the asymmetric t distribution for {d1,d2} =

{8,−0.4} in blue, and {d1,d2} = {8,+0.4} in red.

Figure 6.4 The asymmetric t distribution.
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Notes: The red line plots the asymmetric t distribution with d2 =+0.4, which implies a
skewness of +1. The blue line corresponds to d2 =−0.4, which implies a skewness of −1.
The d2 parameter is set to 8 in both cases, which implies an excess kurtosis of 2.6.
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In order to derive the moments of the distribution we first define

m2 = 1+ 3d2
2

m3 = 16Cd2

(
1+ d2

2

) (d1− 2)2

(d1− 1)(d1− 3)
, for d1 > 3

m4 = 3
(d1− 2)

(d1− 4)

(
1+ 10d2

2 + 5d4
2

)
, for d1 > 4

With these in hand, we can derive the first four moments of the asymmetric t distribu-
tion to be

µ≡ E[z]= 0

σ 2
≡ E[(z−E[z])2]= 1

ζ 1 ≡ E[z3]/σ 3
=

[
m3− 3Am2+ 2A3

]
/B3

ζ 2 ≡ E[z4]/σ 4
− 3=

[
m4− 4Am3+ 6A2m2− 3A4

]
/B4
− 3

Note from the formulas that although skewness is zero if d2 is zero, skewness and
kurtosis are generally highly nonlinear functions of d1 and d2.

Consider again the two distributions in Figure 6.4. The red line corresponds to a
skewness of+1 and an excess kurtosis of 2.6; the blue line corresponds to a skewness
of −1 and an excess kurtosis of 2.6.

Skewness and kurtosis are both functions of d1 as well as d2. The upper panel of
Figure 6.5 shows skewness plotted as a function of d2 on the horizontal axis. The blue
line uses d1 = 5 (high kurtosis) and the red line uses d1 = 10 (moderate kurtosis). The
lower panel of Figure 6.5 shows kurtosis plotted as a function of d1 on the horizontal
axis. The red line uses d2 = 0 (no skewness) and the blue line uses d2 = 0.5 (positive
skewness). The asymmetric t distribution is capable of generating a wide range of
skewness and kurtosis levels.

Notice that the symmetric standardized Student’s t is a special case of the asym-
metric t where d1 = d, d2 = 0, which implies A= 0 and B= 1, so we get

m2 = 1,m3 = 0,m4 = 3
(d− 2)

(d− 4)

which yields

ζ 1 = 0,and ζ 2 = 3
(d− 2)

(d− 4)
− 3= 6/(d− 4)

as in the previous section.

7.1 Estimation of d1 and d2

The parameters d1 and d2 in the asymmetric t distribution can be estimated via max-
imum likelihood as before. The only added complication is that the shape of the
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Figure 6.5 Skewness and kurtosis in the asymmetric t distribution.
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Notes: In the top panel we plot skewness in the asymmetric t distribution as a function of the
d2 parameter. Skewness is also a function of d1. The blue line uses d1 = 5 and the red line uses
d1 = 10. In the bottom panel we plot excess kurtosis as a function of d1. Excess kurtosis is also
a function of d2. The red line uses d2 = 0 and the blue line uses d2 = 0.5.

likelihood function on any given day will depend on the value of the shock zt. As
before we can define the likelihood function for zt as

lnL1 =

T∑
t=1

ln( fasyt(zt;d1,d2))

where

ln( fasyt(zt;d1,d2))=


ln(BC)− (1+d1)

2 ln

([
1+ (Bzt+A)2(

(1−d2)
2(d1−2)

)]) , if zt <−A/B

ln(BC)− (1+d1)
2 ln

([
1+ (Bzt+A)2(

(1+d2)
2(d1−2)

)]) , if zt ≥−A/B

This estimation assumes that the conditional variance is estimated without error so
that we can treat zt = RPF,t/σPF,t as a regular data point. Alternatively joint estimation
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of the volatility and distribution parameters can be done using

lnL2 =

T∑
t=1

ln( fasyt(RPF,t;d1,d2))= lnL1−

T∑
t=1

ln(σ 2
PF,t)/2

as before.
We can also estimate d1 and d2 using sample estimates of skewness, ζ 1, and kur-

tosis, ζ 2. Unfortunately, the relationship between the parameters and the moments is
nonlinear and so the equations

ζ 1 =

[
m3− 3Am2+ 2A3

]
/B3

ζ 2 =

[
m4− 4Am3+ 6A2m2− 3A4

]
/B4
− 3

must be solved numerically to get moment-based estimates of d1 and d2 using the
formulas for A, B, m2, m3, and m4, earlier.

7.2 Calculating Value-at-Risk and Expected Shortfall

Once d1 and d2 are estimated, we can calculate the Value-at-Risk for the portfolio
return

RPF,t+1 = σPF,t+1zt+1, with zt+1
i.i.d.
∼ Fasyt(d1,d2)

as

VaRp
t+1 =−σPF,t+1F−1

asyt(p;d1,d2)

where F−1
asyt(p;d1,d2) is the pth quantile of the asymmetric t distribution, which is

given by

F−1
asyt(p;d1,d2)=


1
B

[
(1− d2)

√
d1−2

d1
t−1
p/(1−d2)

(d1)−A
]
, if p< 1−d2

2

1
B

[
(1+ d2)

√
d1−2

d1
t−1
(p+d2)/(1+d2)

(d1)−A
]
, if p≥ 1−d2

2

where we have used the inverse of the symmetric t distribution, t−1
p (d), for different

values of p and d.
The expected shortfall can be computed as

ESp
t+1 =−σPF,t+1ESasyt(p)

where the formula for ESasyt(p) is a complicated function of d1 and d2 and is given in
Appendix A at the end of this chapter.
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Figure 6.6 QQ plot of S&P 500 GARCH shocks against the asymmetric t distribution.
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Notes: We scatter plot the empirical quantiles of the S&P 500 GARCH shocks against the
quantiles of the asymmetric Student’s t distribution. The red line has a slope of one.

7.3 QQ Plots

Armed with the earlier formula for the inverse cumulative density function (CDF) we
can again construct the QQ plot as

{Xi,Yi} =

{
F−1

asyt((i− 0.5)/T;d1,d2),zi

}
where zi again denotes the ith sorted standardized return.

Figure 6.6 shows the QQ plot for the asymmetric t distribution. Note that the asym-
metric t distribution is able to fit the S&P 500 shocks quite well. Only the single largest
negative shock seems to deviate substantially from the 45-degree line.

In conclusion, the asymmetric t distribution is somewhat cumbersome to estimate
and implement but it is capable of fitting GARCH shocks from daily asset returns
quite well.

The t distributions—and any other distribution—attempt to fit the entire range of
outcomes using all the data available. Consequently, the estimated parameters in the
distribution (for example d1 and d2) may be influenced excessively by data values
close to zero, of which we observe many but of which risk managers care little about.
We therefore now turn to an alternative approach that only makes use of the extreme
return observations that of course contain crucial information for risk management.

8 Extreme Value Theory (EVT)

Typically, the biggest risks to a portfolio is the sudden occurrence of a single large
negative return. Having explicit knowledge of the probabilities of such extremes is,
therefore, at the essence of financial risk management. Consequently, risk managers
ought to focus on modeling the tails of the returns distribution. Fortunately, a branch
of statistics is devoted exactly to the modeling of such extreme values.
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The central result in extreme value theory states that the extreme tail of a wide range
of distributions can approximately be described by a relatively simple distribution, the
so-called Generalized Pareto Distribution (GPD).

Virtually all results in extreme value theory (EVT) assume that returns are i.i.d.
and therefore are not very useful unless modified to the asset return environment.
Asset returns appear to approach normality at long horizons, thus EVT is more impor-
tant at short horizons, such as daily. Unfortunately, the i.i.d. assumption is the least
appropriate at short horizons due to the time-varying variance patterns. Therefore we
need to get rid of the variance dynamics before applying EVT. Consider again, there-
fore, the standardized portfolio returns

zt+1 = RPF,t+1/σPF,t+1
i.i.d.
∼ D(0,1)

Fortunately, it is typically reasonable to assume that these standardized returns are
i.i.d. Thus, we will proceed to apply EVT to the standardized returns and then combine
EVT with the variance models estimated in Chapters 4 and 5 in order to calculate VaRs.

8.1 The Distribution of Extremes

Consider the entire distribution of the shocks, zt, as illustrated for example by the
histogram in Figure 6.1. EVT is concerned only with the tail of the distribution and
we first have to decide what we mean by the tail. To this end define a threshold value
u on the horizontal axis of the histogram. The threshold could for example be set to
0.02 in the top panel of Figure 6.1.

The key result in extreme value theory states that as you let the threshold u go to
infinity, in almost any distribution you can think of, the distribution of observations
beyond the threshold (call them y) converge to the Generalized Pareto Distribution,
GPD(y;ξ,β), where

GPD(y;ξ,β)=

{
1− (1+ ξy/β)−1/ξ if ξ > 0
1− exp(−y/β) if ξ = 0

with β > 0 and y≥ u. The so-called tail-index parameter ξ is key as it controls the
shape of the distribution tail and in particular how quickly the tail goes to zero when
the extreme, y, goes to infinity.

Standard distributions that are covered by the EVT result include those that are
heavy tailed, for example the Student’s t(d) distribution, where the tail-index parame-
ter, ξ, is positive. This is, of course, the case of most interest in financial risk manage-
ment, where returns tend to have fat tails.

The normal distribution is also covered. We noted earlier that a key difference
between the Student’s t(d) distribution and the normal distribution is that the former
has power tails and the latter has exponential tails. Thus, for the normal distribution
we have that the tail parameter, ξ, equals zero.

Finally, thin-tailed distributions are covered when the tail parameter ξ < 0, but they
are not relevant for risk management and so we will not consider that case here.
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8.2 Estimating the Tail Index Parameter, ξ

We could use MLE to estimate the GPD distribution defined earlier. However, if we
are willing to assume that the tail parameter, ξ, is strictly positive, as is typically the
case in risk management, then a very easy estimator exists, namely the so-called Hill
estimator. The idea behind the Hill estimator is to approximate the GPD distribution by

F(y)= 1− cy−1/ξ
≈ 1− (1+ ξy/β)−1/ξ

= GPD(y;ξ,β)

for y> u and ξ > 0. Recall now the definition of a conditional distribution,

f (y|y> u)= f (y)/Pr(y> u)= f (y)/(1−F(u)) , for y> u

Note that from the definition of F(y) we have

F (u)= 1− cu−1/ξ

We can also get the density function of y from F(y):

f (y)=
∂F(y)

∂y
=

1

ξ
cy−1/ξ−1

We are now ready to construct the likelihood function for all observations yi larger
than the threshold, u, as

L=
Tu∏

i=1

f (yi)/(1−F(u))=
Tu∏

i=1

1

ξ
cy−1/ξ−1

i /(cu−1/ξ ), for yi > u

where Tu is the number of observations y larger than u. The log-likelihood function is
therefore

lnL=
Tu∑

i=1

(
− ln(ξ)− (1/ξ + 1) ln(yi)+

1

ξ
ln(u)

)

Taking the derivative with respect to ξ and setting it to zero yields the Hill estimator
of the tail index parameter

ξ =
1

Tu

Tu∑
i=1

ln(yi/u)

We can estimate the c parameter by ensuring that the fraction of observations beyond
the threshold is accurately captured by the density as in

F(u)= 1− cu−1/ξ
= 1−Tu/T
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Solving this equation for c yields the estimate

c=
Tu

T
u1/ξ

Our estimate of the cumulative density function for observations beyond u is, therefore

F(y)= 1− cy−1/ξ
= 1−

Tu

T
(y/u)−1/ξ

Notice that our estimates are available in closed form—they do not require numer-
ical optimization. They are, therefore, extremely easy to calculate.

So far we have implicitly referred to extreme returns as being large gains. Of
course, as risk managers we are more interested in extreme negative returns corre-
sponding to large losses. To this end, we simply do the EVT analysis on the negative
of returns instead of returns themselves.

8.3 Choosing the Threshold, u

Until now, we have focused on the benefits of the EVT methodology, such as the
explicit focus on the tails, and the ability to study each tail separately, thereby avoiding
unwarranted symmetry assumptions. The EVT methodology does have an Achilles
heel however, namely the choice of threshold, u. When choosing u we must balance
two evils: bias and variance. If u is set too large, then only very few observations are
left in the tail and the estimate of the tail parameter, ξ , will be very noisy. If on the
other hand u is set too small, then the EVT theory may not hold, meaning that the
data to the right of the threshold does not conform sufficiently well to the Generalized
Pareto Distribution to generate unbiased estimates of ξ .

Simulation studies have shown that in typical data sets with daily asset returns, a
good rule of thumb is to set the threshold so as to keep the largest 50 observations for
estimating ξ ; that is, we set Tu = 50. Visually gauging the QQ plot can provide useful
guidance as well. Only those observations in the tail that are clearly deviating from
the 45-degree line indicating the normal distribution should be used in the estimation
of the tail index parameter, ξ .

8.4 Constructing the QQ Plot from EVT

We next want to show the QQ plot of the large losses using the EVT distribution.
Define y to be a standardized loss; that is,

yi =−RPF,i/σPF,i

The first step is to estimate ξ and c from the losses, yi, using the Hill estimator from
before.
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Next, we need to compute the inverse cumulative distribution function, which gives
us the quantiles. Recall the EVT cumulative density function from before:

F(y)= 1− cy−1/ξ
= 1−

Tu

T
(y/u)−1/ξ

We now set the estimated cumulative probability function equal to 1− p so that there
is only a p probability of getting a standardized loss worse than the quantile, F−1

1−p,
which is implicitly defined by

F(F−1
1−p)= 1− p

From the definition of F(•), we can solve for the quantile to get

F−1
1−p = u [p/(Tu/T)]

−ξ

We are now ready to construct the QQ plot from EVT using the relationship

{Xi,Yi} =
{
u [{(i− 0.5)/T}/(Tu/T)]

−ξ,yi
}

where yi is the ith sorted standardized loss.
Figure 6.7 shows the QQ plots of the EVT tails for large losses from the standard-

ized S&P 500 returns. For this data, ξ is estimated to be 0.22.

8.5 Calculating VaR and ES from the EVT Quantile

We are, of course, ultimately interested not in QQ plots but rather in portfolio risk
measures such as Value-at-Risk. Using again the loss quantile F−1

1−p defined earlier by

F−1
1−p = u [p/(Tu/T)]

−ξ

Figure 6.7 QQ plot of daily S&P 500 tail shocks against the EVT distribution.
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the VaR from the EVT combined with the variance model is now easily calculated as

VaRp
t+1 = σPF,t+1F−1

1−p = σPF,t+1u [p/(Tu/T)]
−ξ

The reason for using the (1− p)th quantile from the EVT loss distribution in the
VaR with coverage rate p is that the quantile such that (1− p) ·100% of losses are
smaller than it is the same as minus the quantile such that p·100% of returns are
smaller than it.

We usually calculate the VaR taking 8−1
p to be the pth quantile from the standard-

ized return so that

VaRp
t+1 =−σPF,t+18

−1
p

But we now take F−1
1−p to be the (1− p)th quantile of the standardized loss so that

VaRp
t+1 = σPF,t+1F−1

1−p

The expected shortfall can be computed using

ESp
t+1 = σPF,t+1ESEVT (p)

where

ESEVT (p)=−
u

ξ − 1
[p/(Tu/T)]

−ξ

when ξ < 1. This expression is derived in Appendix C.
In general, the ratio of ES to VaR for fat-tailed distribution will be higher than

that of the normal. When using the Hill approximation of the EVT tail the previous
formulas for VaR and ES show that we have a particularly simple relationship, namely

ESp
t+1

VaRp
t+1

=
1

1− ξ

so that for fat-tailed distributions where ξ > 0, the fatter the tail, the larger the ratio of
ES to VaR.

In Figure 6.8 we plot the tail shape of a normal distribution (the blue line) and
EVT distribution (red line) where ξ = 0.5. The plot has been constructed so that the
1% VaR is 2.33 in both distributions. The probability mass under the two curves is
therefore 1% in both cases. Note however, that the risk profile is very different. The
normal distribution has a tail that goes to a virtual zero very quickly as the losses get
extreme. The EVT distribution on the other hand implies a nontrivial probability of
getting losses in excess of five standard deviations.

The preceding formula shows that when ξ = 0.5 then the ES to VaR ratio is 2. Thus
even though the 1% VaR is the same in the two distributions by construction, the ES
measure reveals the differences in the risk profiles of the two distributions, which
arises from one being fat-tailed. The VaR does not reveal this difference unless the
VaR is reported for several extreme coverage probabilities, p.
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Figure 6.8 Tail shapes of the normal distribution (blue) and EVT (red).
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Notes: We plot the tail shape of the standard normal distribution in blue and the tail shape of an
EVT distribution with tail index parameter of 0.5 in red. Both distributions have a 1%
VaR of 2.33.

9 Summary

Time-varying variance models help explain nonnormal features of financial returns
data. However, the distribution of returns standardized by a dynamic variance tends to
be fat-tailed and may be skewed. This chapter has considered methods for modeling
the nonnormality of portfolio returns by building on the variance and correlation mod-
els established in earlier chapters and using the same maximum likelihood estimation
techniques.

We have introduced a graphical tool for visualizing nonnormality in the data, the
so-called QQ plot. This tool was used to assess the appropriateness of alternative dis-
tributions.

Several alternative approaches were considered for capturing nonnormality in the
portfolio risk distribution.

l The Filtered Historical Simulation approach, which uses the empirical distribution
of the GARCH shocks and avoids making specific distribution choices

l The Cornish-Fisher approximation to the shock distribution, which allows for
skewness and kurtosis using the sample moments that are easily estimated

l The standardized t distribution, which allows for fatter tails than the normal, but
assumes that the distribution is symmetric around zero

l The asymmetric t distribution, which is more complex but allows for skewness as
well as kurtosis

l Extreme value theory, which models the tail of the distribution directly using only
extreme shocks in the sample



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 11-ch06-121-150-9780123744487 2011/10/28 17:05 Page 144 #24

144 Univariate Risk Models

This chapter has focused on one-day-ahead distribution modeling. The multiday
distribution requires Monte Carlo simulation, which will be covered in Chapter 8.

We end this chapter by stressing that in Part II of the book we have analyzed the
conditional distribution of the aggregate portfolio return only. Thus, the distribution is
dependent on the particular set of current portfolio weights, and the distribution must
be reestimated when the weights change. Part III of the book presents multivariate risk
models where portfolio weights can be rebalanced without requiring reestimation of
the model.

Appendix A: ES for the Symmetric and Asymmetric t
Distributions

In this appendix we derive the expected shortfall (ES) measure for the asymmetric t
distribution. The ES for the symmetric case will be given as a special case at the end.

We want to compute ESasyt(p). Let us assume for simplicity that p is such that
Q≡ F−1

asyt(p;d1,d2) <−
A
B , then

ESasyt(p)=
BC

p

Q∫
−∞

z

[
1+

1

d1− 2

(
Bz+A

1− d2

)2
]− d1+1

2

dz

We use the change of variable

x=
Bz+A

1− d2

dx=
B

1− d2
dz

which yields

ESasyt(p)=
C(1− d2)

Bp

BQ+A
1−d2∫
−∞

(x(1− d2)−A)

[
1+

1

d1− 2
x2
]− d1+1

2

dx

=
C(1− d2)

2

Bp

BQ+A
1−d2∫
−∞

x

[
1+

1

d1− 2
x2
]− d1+1

2

dx

−
AC(1− d2)

Bp

BQ+A
1−d2∫
−∞

[
1+

1

d1− 2
x2
]− d1+1

2

dx
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The first integral can be solved to get

C(1− d2)
2

Bp

[1+
1

d1− 2
x2
] 1−d1

2 d1− 2

1− d1


BQ+A
1−d2

−∞

=
C(1− d2)

2

Bp

[[
1+

1

d1− 2

(
BQ+A

1− d2

)]2
] 1−d1

2 d1− 2

1− d1

and the second integral can be related to the regular symmetric Student’s t distribu-
tion by

−
AC(1− d2)

Bp

√
π(d1− 2)0

(
d1
2

)
0
(

d1+1
2

) td1

(√
d1

d1− 2

BQ+A

1− d2

)

where td1 is the CDF of a Student’s t distribution with d1 degrees of freedom.
Therefore,

ESasyt(p)=
C(1− d2)

2

Bp

[1+
1

d1− 2

(
BQ+A

1− d2

)2
] 1−d1

2 d1− 2

1− d1


−

AC(1− d2)

Bp

√
π(d1− 2)0

(
d1
2

)
0
(

d1+1
2

) td1

(√
d1

d1− 2

BQ+A

1− d2

)

In the symmetric case we have d1 = d, d2 = 0, A= 0, and B= 1 and so we get

ESt̃(d)(p)=
C

p

[[
1+

1

d− 2
Q2
] 1−d

2 d− 2

1− d

]

where now Q≡ t−1
p (d).

Appendix B: Cornish-Fisher ES

The Cornish-Fisher approach assumes an approximate distribution of the form

f (z)= φ (z)

{
1+

ζ 1

6

(
z3
− 3z

)
+
ζ 2

24

(
z4
− 6z2

+ 3
)}
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The expected shortfall is again defined as

ESCF (p)=
1

p

Q∫
−∞

zφ (z)

{
1+

ζ 1

6

(
z3
− 3z

)
+
ζ 2

24

(
z4
− 6z2

+ 3
)}

dz

where Q= CF−1
p . Solving the integral we get

ESCF (p)=
1

p

Q∫
−∞

zφ (z)

{
1+

ζ 1

6

(
z3
− 3z

)
+
ζ 2

24

(
z4
− 6z2

+ 3
)}

dz

=
1

p


Q∫

−∞

zφ (z)dz+
ζ 1

6

Q∫
−∞

(
z4
− 3z2

)
φ (z)dz

+
ζ 2

24

Q∫
−∞

(
z5
− 6z3

+ 3z
)
φ (z)dz


=

1

p

{
[−φ (z)]Q

−∞+
ζ 1

6

[
−z3φ (z)

]Q

−∞

+
ζ 2

24

[
(−z4
+ 2z2

+1)φ (z)
]Q

−∞

}
=

1

p

{
−φ (Q)−

ζ 1

6
Q3φ (Q)+

ζ 2

24
(−Q4

+ 2Q2
+ 1)φ (Q)

}
=
−φ (Q)

p

{
1+

ζ 1

6
Q3
+
ζ 2

24
(Q4
− 2Q2

− 1)

}

Appendix C: Extreme Value Theory ES

Expected shortfall in the Hill approximation to EVT can be derived as

ESEVT (p)=
1

p

∞∫
F−1

1−p

yd

[
1−

Tu

T
(y/u)−1/ξ

]

=
1

p

∞∫
F−1

1−p

y
Tuu1/ξ

ξT
y−

1
ξ
−1dy=

Tuu1/ξ

pξT

∞∫
F−1

1−p

y−
1
ξ dy

=
Tuu1/ξ

pξT

[
y−

1
ξ
+1

−
1
ξ
+ 1

]∞
F−1

1−p

=
Tuu1/ξ

p(ξ − 1)T

[
−(F−1

1−p)
−

1
ξ
+1
]

=
Tuu1/ξ

p(ξ − 1)T

[
−
(
u [p/(Tu/T)]

−ξ
)− 1

ξ
+1
]
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=−
u

ξ − 1

(
Tu

pT

)ξ
=−

u

ξ − 1
(p/(Tu/T))

−ξ

Further Resources

Details on the asymmetric t distribution considered here can be found in Hansen
(1994), Fernandez and Steel (1998), and Jondeau and Rockinger (2003). Hansen
(1994) and Jondeau and Rockinger (2003) also discuss time-varying skewness and
kurtosis models. The GARCH-t̃(d) model was introduced by Bollerslev (1987).

Applications of extreme value theory to financial risk management is discussed
in McNeil (1999). The choice of threshold value in the GARCH-EVT model is
discussed in McNeil and Frey (2000). Huisman, Koedijk, Kool, and Palm (2001)
explore improvements to the simple Hill estimator considered here. McNeil (1997)
and McNeil and Saladin (1997) discuss the use of QQ plots in deciding on the thresh-
old parameter, u. Brooks, Clare, Molle, and Persand (2005) compare various EVT
approaches.

Multivariate extensions to the univariate EVT analysis considered here can be
found in Longin (2000), Longin and Solnik (2001), and Poon, Rockinger, and Tawn
(2003).

The expected shortfall measure for the Cornish-Fisher approximation is developed
in Giamouridis (2006). In the spirit of the Cornish-Fisher approach, Jondeau and
Rockinger (2001) develop a Gram-Charlier approach to return distribution modeling.

Many alternative conditional distribution approaches exist. Kuerster et al. (2006)
perform a large-scale empirical study.

GARCH and RV models can also be combined with jump processes. See Maheu
and McCurdy (2004), Ornthanalai (2010), and Christoffersen, Jacobs, and Ornthanalai
(2010).

Artzner, Delbaen, Eber, and Heath (1999) define the concept of a coherent risk mea-
sure and showed that expected shortfall (ES) is coherent whereas VaR is not. Study-
ing dynamic portfolio management based on ES and VaR, Basak and Shapiro (2001)
found that when a large loss does occur, ES risk management leads to lower losses
than VaR risk management. Cuoco, He, and Issaenko (2008) argued instead that VaR
and ES risk management lead to equivalent results as long as the VaR and ES risk mea-
sures are recalculated often. Both Basak and Shapiro (2001) and Cuoco et al. (2008)
assumed that returns are normally distributed. Chen (2008) and Taylor (2008) consider
nonparametric ES methods.

For analyses of GARCH-based risk models more generally see Bali, Mo, and Tang
(2008), Mancini and Trojani (2011), and Jalal and Rockinger (2008).
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Empirical Exercises

Open the Chapter6Data.xlsx file from the companion site.

1. Construct a QQ plot of the S&P 500 returns divided by the unconditional standard deviation.
Use the normal distribution. Compare your result with the top panel of Figure 6.2. (Excel
hint: Use the NORMSINV function to calculate the standard normal quantiles.)

2. Copy and paste the estimated NGARCH(1,1) volatilities from Chapter 4.
3. Standardize the returns using the volatilities from exercise 2. Construct a QQ plot for the

standardized returns using the normal distribution. Compare your result with the bottom
panel of Figure 6.2.

4. Using QMLE, estimate the NGARCH(1,1)-t̃(d) model. Fix the variance parameters at their
values from exercise 3. Set the starting value of d equal to 10. (Excel hint: Use the GAM-
MALN function for the log-likelihood function of the standardized t(d) distribution.)

Construct a QQ plot for the standardized returns using the standardized t(d) distribution.
Compare your result with Figure 6.3. (Excel hint: Excel contains a two-sided quantile from
the t(d) distribution. To compute one-sided quantiles from the standardized t(d) distribution,
we use the relationship

t̃−1
p (d)=

{
−|tinv(2p,d)|

√
(d− 2)/d, if p≤ 0.5

|tinv(2(1− p),d)|
√
(d− 2)/d, if p> 0.5

where tinv is the function in Excel, and where t̃−1
p (d) is the standardized one-sided quantile

we need for the QQ plot.)
5. Estimate the EVT model on the standardized portfolio returns using the Hill estimator. Use

the 50 largest losses to estimate EVT. Calculate the 0.01% standardized return quantile
implied by each of the following models: normal, t(d), EVT, and Cornish-Fisher. Notice
how different the 0.01% VaRs would be from these four models.

6. Construct the QQ plot using the EVT distribution for the 50 largest losses. Compare your
result with Figure 6.7.

7. For each day in 2010, calculate the 1-day, 1% VaRs using the following methods: (a) Risk-
Metrics, that is, normal distribution with an exponential smoother on variance using the
weight λ= 0.94; (b) NGARCH(1,1)-t̃(d) with the parameters estimated in exercise 5; (c)
Historical Simulation; and (d) Filtered Historical Simulation. Use a 251-day moving sample
for Historical Simulation. Plot the VaRs.

8. Use the asymmetric t distribution to construct Figure 6.4.
9. Use the asymmetric t distribution to construct Figure 6.5.

The answers to these exercises can be found in the Chapter6Results.xlsx file, which is avail-
able from the companion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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7 Covariance and Correlation Models

1 Chapter Overview

Chapters 4 through 6 covered various aspects of modeling the aggregate portfolio
return. The univariate methods in those chapters can also be used to model the return
on each individual asset. Chapters 7 through 9 will cover multivariate risk models.
They will enable us to join together the univariate asset level models in Chapters 4
through 6.

Although modeling the aggregate portfolio return directly is useful for passive port-
folio risk measurement, it is not as useful for active risk management. In order to
perform sensitivity analysis (for example, what happens to my portfolio risk if I buy
another share of IBM?) and in order to assess the benefits of diversification, we need
models of the dependence between the return on individual assets. We will proceed on
this front in three steps. Chapter 7 (the present chapter) will model dynamic covariance
and correlation, which together with the dynamic volatility models in Chapters 4 and 5
can be used to construct covariance matrices. Chapter 8 will develop some important
simulation tools such as Monte Carlo and bootstrapping, which are needed for multi-
period risk assessments. Chapter 9 will introduce copula models, which can be used to
link together the nonnormal univariate distributions in Chapter 6. Correlation models
only allow for linear dependence between asset returns whereas copula models allow
for nonlinear dependence.

The objective of this chapter is to model the linear dependence, or correlation,
between returns on different assets, such as IBM and Microsoft stocks, or on different
classes of assets, such as stock indices and foreign exchange (FX) rates. Once this
is done, we will be able to calculate risk measures on portfolios of securities such as
stocks, bonds, and foreign exchange rates for many different combinations of portfolio
weights.

We first present a general model of portfolio risk for large-dimensional portfolios
with many assets and consider ways to reduce the problem of dimensionality. Just
as the main topic of the previous chapter was modeling the dynamic aspects of vari-
ance, the main topic of this chapter is modeling the dynamic aspects of correlation. We
then consider dynamic correlation models of varying degrees of sophistication, both
in terms of their specification and of the information required to calculate them.

Just as Chapters 4 and 5 temporarily assumed the univariate normal distribution in
order to focus on volatility modeling, in this chapter we will assume the multivariate
normal distribution for the purpose of covariance and correlation modeling. We hasten

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00007-5
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to add that the assumption of multivariate normality is made for convenience and is not
realistic. Important methods for dealing with the multivariate nonnormality evident in
daily returns will be discussed in Chapters 8 and 9.

2 Portfolio Variance and Covariance

We now establish some notation that is necessary to study the risk of portfolios con-
sisting of an arbitrary number of securities, n. The return on the portfolio on day t+ 1
is defined as

rPF,t+1 =

n∑
i=1

wi,tri,t+1

where the sum is taken over the n securities in the portfolio. wi,t denotes the relative
weight of security i at the end of day t. Note that as in Chapter 1, lowercase r denotes
rates of return rather than log returns, R.

For daily log returns the portfolio return relationship will hold approximately

RPF,t+1 ≈

n∑
i=1

wi,tRi,t+1

Chapters 4 through 6 modeled the univariate rPF,t+1 time series (or RPF,t+1), Chap-
ters 7 through 9 will model the multivariate time series ri,t+1, i= 1,2, . . . ,n (or Ri,t+1).
The models we will develop later for dynamic covariance and correlation can equally
well be used for log returns and rates of returns, but σ 2

PF,t+1, VaR, and ES computa-
tions that depend on the portfolio weights, wi,t, will only be exact when we use the
rate of return definition, rPF,t+1.

The variance of the portfolio can be written as

σ 2
PF,t+1 =

n∑
i=1

n∑
j=1

wi,twj,tσ ij,t+1 =

n∑
i=1

n∑
j=1

wi,twj,tσ i,t+1σ j,t+1ρij,t+1

where σ ij,t+1 and ρij,t+1 are respectively the covariance and correlation between secu-
rity i and j on day t+ 1. Notice we have σ ij,t+1 = σ ji,t+1 and ρij,t+1 = ρji,t+1 for all i
and j. We also have ρii,t+1 = 1 and σ ii,t+1 = σ

2
i,t+1 for all i.

Using vector notation, we will write

σ 2
PF,t+1 = w′t6t+1wt

where wt is the n× 1 vector of portfolio weights and 6t+1 is the n× n covariance
matrix of returns. In the case where n= 2, we simply have

σ 2
PF,t+1 =

[
w1,t w2,t

][ σ 2
1,t+1 σ 12,t+1

σ 12,t+1 σ
2
2,t+1

][
w1,t
w2,t

]
= w2

1,tσ
2
1,t+1+w2

2,tσ
2
2,t+1+ 2w1,tw2,tσ 12,t+1

as σ 21,t+1 = σ 12,t+1.
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If we are willing to assume that returns are multivariate normal, then the portfolio
return, which is just a linear combination of asset returns, will be normally distributed,
and we have

VaRp
t+1 =−σPF,t+18

−1
p

and

ESp
t+1 = σPF,t+1

φ
(
8−1

p

)
p

Notice that even if we have already constructed volatility forecasts for each of the
securities in the portfolio, then we still have to model and forecast all the correlations.
If we have n assets, then we will have n(n− 1)/2 different correlations, so if n is 100,
then we’ll have 4950 correlations to model, which would be a daunting task. We will
therefore explicitly be looking for methods that are able to handle large-dimensional
portfolios.

2.1 Exposure Mappings

A very simple way to reduce the dimensionality of the portfolio variance is to impose
a factor structure using observed market returns as factors. In the extreme case we
may be able to assume that the portfolio return is just the (systematic) market return
plus a portfolio specific (idiosyncratic) risk term as in

rPF,t+1 = rMkt,t+1+ εt+1

where we assume that the idiosyncratic risk term, εt+1, is independent of the market
return and has constant variance.

The portfolio variance in this case is

σ 2
PF,t+1 = σ

2
Mkt,t+1+ σ

2
ε

In the case of a very well diversified stock portfolio, for example, it may be rea-
sonable to assume that the variance of the portfolio equals that of the S&P 500 market
index. In this case, only one volatility—that of the S&P 500 index return—needs to
be modeled, and no correlation modeling is necessary. This is referred to as index
mapping and can be written as

σ 2
PF,t+1 ≈ σ

2
Mkt,t+1

The 1-day VaR assuming normality is simply

VaRp
t+1 =−σMkt,t+18

−1
p

More generally, in portfolios that contain systematic risk, we have

rPF,t+1 = βrMkt,t+1+ εt+1
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so that

σ 2
PF,t+1 = β

2σ 2
Mkt,t+1+ σ

2
ε

If the portfolio is well diversified so that systematic market risk explains a large
part of the variation in the portfolio return then the portfolio-specific idiosyncratic risk
can be ignored, and we can pose a linear relationship between the portfolio and the
market index and use the so-called beta mapping, as in

σ 2
PF,t+1 ≈ β

2σ 2
Mkt,t+1

In this case, only an estimate of β is necessary and no further correlation modeling is
needed.

Finally, the risk manager of a large-scale portfolio may consider risk as mainly
coming from a reasonable number of factors nF where nF << n so that we have many
fewer risk factors than assets. The exact choice of factors depends highly on the par-
ticular portfolio at hand, but they could be, for example, country equity indices, FX
rates, or commodity price indices. Let us assume that we need 10 factors. We can write
the 10-factor return model as

rPF,t+1 = β1rF1,t+1+ ·· ·+β10rF10,t+1+ εt+1

where again the εt+1 are assumed to be independent of the risk factors.
In this case, it makes sense to model the variances and correlations of these risk

factors and assign exposures to each factor to get the portfolio variance. The portfolio
variance in this general factor structure can be written

σ 2
PF,t+1 = β

′
F6

F
t+1βF + σ

2
ε

where wF,t is a vector of exposures to each risk factor and where6F
t+1 is the covariance

matrix of the returns from the risk factors. Again, if the factor model explains a large
part of the portfolio return variation, then we can assume that

σ 2
PF,t+1 ≈ w′F,t6

F
t+1wF,t

2.2 GARCH Conditional Covariances

Suppose the portfolio under consideration contains n assets. Alternatively, we can
think of the risk manager as having chosen nF risk factors to be the main drivers of the
risk in the portfolio. In either case, a covariance matrix must be estimated. To simplify
notation, let us assume that we need an n-dimensional covariance matrix where n is
10 or larger. In portfolios with relatively few assets n will be the number of assets and
in portfolios with many assets n will be the number of risk factors. We will refer to the
assets or risk factors generically as “assets” in the following.

We now turn to various methods for constructing the time-varying covariance
matrix 6t+1. Arguably the simplest way to model time-varying covariances is to rely



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 12-ch07-151-172-9780123744487 2011/10/28 17:12 Page 157 #5

Covariance and Correlation Models 157

on plain rolling averages, a method that we considered for volatility in Chapter 4. For
the covariance between asset (or risk factor) i and j, we can simply estimate

σ ij,t+1 =
1

m

m∑
τ=1

Ri,t+1−τRj,t+1−τ

where m is the number of days used in the moving estimation window. This estimate
is very easy to construct but it is not satisfactory due to the dependence on the choice
of m and the equal weighting put on past cross products of returns. Notice that, as in
previous chapters, we assume the average expected return on each asset (or risk factor)
is simply zero. Figure 7.1 shows the rolling covariance between the S&P 500 and the
return on an index of 10-year treasury notes when m= 25.

In order to avoid equal weighting we can instead use a simple exponential smoother
model on the covariances, and let

σ ij,t+1 = (1− λ)Ri,tRj,t+ λσ ij,t

where λ= 0.94 as it was for the corresponding volatility model in the previous chap-
ters. Figure 7.2 shows the exponential smoother covariance between the S&P 500 and
the 10-year treasury note.

The caveats that applied to the exponential smoother volatility model in Chapter 4
apply to the exponential smoother covariance model as well. The restriction that the
coefficient (1− λ) on the cross product of returns

(
Ri,tRj,t

)
and the coefficient λ on the

Figure 7.1 Rolling covariance between S&P 500 and 10-year treasury note index.
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Notes: We plot the rolling covariance computed on a moving window of 25 trading days.
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Figure 7.2 Exponentially smoothed covariance between S&P 500 and 10-year treasury note
index.
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Notes: We use the RiskMetrics exponential smoother with λ= 0.94 on the cross product of
returns.

past covariance
(
σ ij,t

)
sum to one is not necessarily desirable. It implies that there is

no mean-reversion in covariance. Consider two highly correlated assets. If the forecast
for tomorrow’s covariance happens to be low today, then the forecast will be low for
all future horizons in the exponential smoother model. The forecast from the model
will not revert back to its (higher) mean when the horizon increases.

We can instead consider models with mean-reversion in covariance. For example,
a GARCH-style specification for covariance would be

σ ij,t+1 = ωij+αRi,tRj,t+βσ ij,t

which will tend to revert to its long-run average covariance, which equals

σ ij = ωij/(1−α−β)

Notice that so far we have not allowed the persistence parameters λ in RiskMetrics
and α and β in GARCH to vary across pairs of securities in the covariance models.
This is no coincidence. It must be done to guarantee that the portfolio variance will be
positive regardless of the portfolio weights, wt. We will say that a covariance matrix
6t+1 is internally consistent if for all possible vectors wt of portfolio weights we have

w′t6t+1wt ≥ 0
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This corresponds to saying that the covariance matrix is positive semidefinite. It is
ensured by estimating volatilities and covariances in an internally consistent fashion.
For example, relying on exponential smoothing using the same λ for every volatility
and every covariance will work. Similarly, using a GARCH(1,1) model with α and β
identical across variances and covariances and with long-run variances and covari-
ances estimated consistently will work as well.

Unfortunately, it is not clear that the persistence parameters λ,α, and β should be
the same for all variances and covariance. We therefore next consider methods that are
not subject to this restriction.

3 Dynamic Conditional Correlation (DCC)

We now turn to the modeling of correlation rather than covariance. This is motivated
by the desire to free up the restriction that variances and covariance have the same per-
sistence parameters. We also want to assess if the time-variation in covariances arises
solely from time-variation in the volatilities or if correlation has its own dynamic pat-
tern. There is ample empirical evidence that correlations increase during financial tur-
moil and thereby increase risk even further; therefore, modeling correlation dynamics
is crucial to a risk manager.

From Chapter 3, correlation is defined from covariance and volatility by

ρij,t+1 = σ ij,t+1/(σ i,t+1σ j,t+1)

If, for example, we have the RiskMetrics model, then

σ ij,t+1 = (1− λ)Ri,tRj,t+ λσ ij,t, for all i, j

and then we get the implied dynamic correlations

ρij,t+1 =
(1− λ)Ri,tRj,t+ λσ ij,t√

((1− λ)R2
i,t+ λσ

2
i,t)((1− λ)R

2
j,t+ λσ

2
j,t)

which, of course, is not particularly intuitive. We therefore now consider models where
the dynamic correlation is modeled directly.

The definition of correlation can be rearranged to provide the decomposition of
covariance into volatility and correlation

σ ij,t+1 = σ i,t+1σ j,t+1ρij,t+1

In matrix notation, we can write

6t+1 = Dt+1ϒt+1Dt+1
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where Dt+1 is a matrix of standard deviations, σ i,t+1, on the ith diagonal and zero
everywhere else, and where ϒt+1 is a matrix of correlations, ρij,t+1, with ones on the
diagonal. In the two-asset case, we have

6t+1 =

[
σ 2

1,t+1 σ 12,t+1

σ 12,t+1 σ
2
2,t+1

]
=

[
σ 1,t+1 0

0 σ 2,t+1

][
1 ρ12,t+1

ρ12,t+1 1

][
σ 1,t+1 0

0 σ 2,t+1

]
We will consider the volatilities of each asset to already have been estimated

through GARCH or one of the other methods considered in Chapter 4 or 5. We can
then standardize each return by its dynamic standard deviation to get the standardized
returns,

zi,t+1 = Ri,t+1/σ i,t+1 for all i

By dividing the returns by their conditional standard deviation, we create variables,
zi,t+1, i= 1,2, . . . ,n, which all have a conditional standard deviation of one. The con-
ditional covariance of the zi,t+1 variables equals the conditional correlation of the raw
returns as can be seen from

Et
(
zi,t+1zj,t+1

)
= Et

((
Ri,t+1/σ i,t+1

)(
Rj,t+1/σ j,t+1

))
= Et

(
Ri,t+1Rj,t+1

)
/(σ i,t+1σ j,t+1)

= σ ij,t+1/(σ i,t+1σ j,t+1)

= ρij,t+1, for all i, j

Thus, modeling the conditional correlation of the raw returns is equivalent to modeling
the conditional covariance of the standardized returns.

3.1 Exponential Smoother Correlations

We first consider simple exponential smoothing correlation models. Let the correla-
tion dynamics be driven by qij,t+1, which gets updated by the cross product of the
standardized returns zi,t and zj,t as in

qij,t+1 = (1− λ)
(
zi,tzj,t

)
+ λqij,t, for all i, j

The exact conditional correlation can now be obtained by normalizing the qij,t+1 vari-
able as in

ρij,t+1 =
qij,t+1

√
qii,t+1qjj,t+1

The reason we need to do the normalization is to ensure that

−1< ρij,t+1 <+1

on each day.
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Figure 7.3 Exponentially smoothed correlation between S&P 500 and 10-year treasury note
index.
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Notes: We use the DCC model with exponential smoother dynamics to plot the dynamic
correlation. The individual variances are modeled using NGARCH.

Figure 7.3 shows the exponential smoothed DCC correlations for the S&P 500 and
10-year treasury note example. Notice the dramatic changes in correlation over time.

The DCC model requires estimation of λ and we will discuss estimation in detail
later.

3.2 Mean-Reverting Correlation

Just as we did for volatility and covariance models, we may want to consider a gen-
eralization of the exponential smoothing correlation model, which allows for corre-
lations to revert to a long-run average correlation, ρij = E

[
zi,tzj,t

]
. We can consider

GARCH(1,1)-type specifications of the form

qij,t+1 = ρij+α
(
zi,tzj,t− ρij

)
+β

(
qij,t− ρij

)
If we rely on correlation targeting, and set ρ̄ij =

1
T

∑T
t=1 zi,tzj,t, then we have

qij,t+1 = ρ̄ij+α
(
zi,tzj,t− ρ̄ij

)
+β

(
qij,t− ρ̄ij

)
Again we have to normalize to get the conditional correlations

ρij,t+1 =
qij,t+1

√
qii,t+1qjj,t+1



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 12-ch07-151-172-9780123744487 2011/10/28 17:12 Page 162 #10

162 Multivariate Risk Models

Figure 7.4 Mean-reverting correlation between S&P 500 and 10-year treasury note.
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Notes: We use the DCC model with mean-reverting dynamics to plot the dynamic correlation.
The individual variances are modeled using NGARCH.

The key thing to note about this model is that the correlation persistence parameters
α and β are common across i and j. Thus, the model implies that the persistence of the
correlation between any two assets in the portfolio is the same. It does not, however,
imply that the level of the correlations at any time are the same across pairs of assets.
The level of correlation is controlled by ρij and will thus vary over i and j. It does
also not imply that the persistence in correlation is the same as the persistence in
volatility. The persistence in volatility can vary from asset to asset, and it can vary from
the persistence in correlation between the assets. But the model does imply that the
persistence in correlation is constant across assets. Figure 7.4 shows the GARCH(1,1)
correlations for the S&P 500 and 10-year treasury note example.

We can write the DCC models in matrix notation as

Qt+1 = (1− λ)
(
ztz
′
t

)
+ λQt

for the exponential smoother, and for the mean-reverting DCC, we can write

Qt+1 = E
[
ztz
′
t

]
(1−α−β)+α

(
ztz
′
t

)
+βQt

In the two-asset case for the mean-reverting model, we have

Qt+1 =

[
q11,t+1 q12,t+1
q12,t+1 q22,t+1

]
=

[
1 ρ12
ρ12 1

]
(1−α−β)+α

[
z2

1,t z1,tz2,t

z1,tz2,t z2
2,t

]
+β

[
q11,t q12,t
q12,t q22,t

]
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where ρ12 is the unconditional correlation between the two assets, which can be
estimated in advance as

ρ̄12 =
1

T

T∑
t=1

z1,tz2,t

An important feature of these models is that the matrix Qt+1 is positive semidefinite
since it is a weighted average of positive semidefinite and positive definite matrices.
This will in turn ensure that the correlation matrix ϒt+1 and the covariance matrix
6t+1 will be positive semidefinite as required.

Another important practical advantage of the DCC model is that we can estimate
the parameters in a sequential fashion. First, all the individual variances are estimated
one by one using one of the methods from Chapter 4 or 5. Second, the returns are
standardized and the unconditional correlation matrix is estimated. Third, the corre-
lation persistence parameters α and β are estimated. The key issue is that only very
few parameters are estimated simultaneously using numerical optimization. This fea-
ture makes the dynamic correlation models considered here extremely tractable for
risk management of large portfolios. We now turn to the details of the estimation
procedure.

3.3 Bivariate Quasi Maximum Likelihood Estimation

Fortunately, in estimating the dynamic conditional correlation models suggested ear-
lier, we can rely on the quasi maximum likelihood estimation (QMLE) method, which
we used for estimating the GARCH volatility models in Chapter 4.

Although a key benefit of the correlation models suggested here is that they are
easy to estimate even for large portfolios, we will begin by analyzing the case of a
portfolio consisting of only two assets. In this case, we can use the bivariate normal
distribution function for z1,t and z2,t to write the log likelihood as

ln
(
Lc,12

)
=−

1

2

T∑
t=1

ln
(

1− ρ2
12,t

)
+

(
z2

1,t+ z2
2,t− 2ρ12,tz1,tz2,t

)
(

1− ρ2
12,t

)


where ρ12,t is given from the particular correlation model being estimated and the
normalization rule. Note that we have omitted the constant term involving π , which is
irrelevant when optimizing. In the simple exponential smoother example,

ρ12,t =
q12,t

√
q11,tq22,t

where

q11,t = (1− λ)
(

z2
1,t−1

)
+ λq11,t−1

q12,t = (1− λ)
(
z1,t−1z2,t−1

)
+ λq12,t−1

q22,t = (1− λ)
(

z2
2,t−1

)
+ λq22,t−1
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We find the optimal correlation parameter(s), in this case λ, by maximizing
the correlation log-likelihood function, ln(Lc,12). To initialize the dynamics, we set
q11,0 = 1,q22,0 = 1, and q12,0 =

1
T

∑T
t=1 z1,tz2,t.

Notice that the variables that enter the likelihood are the standardized returns, zt,

and not the original raw returns, Rt themselves. We are essentially treating the stan-
dardized returns as actual observations here.

As before, the QMLE method will give us consistent but inefficient estimates.
In theory, we could obtain more precise results by estimating all the volatility models
and the correlation model simultaneously. In practice, this is not feasible for large port-
folios. In realistic situations, we are forced to rely on a stepwise QMLE method where
we first estimate the volatility model for each of the assets and second estimate the
correlation models. This approach gives decent parameter estimates while avoiding
numerical optimization in high dimensions.

In the case of the mean-reverting GARCH correlations we have the same likelihood
function and correlation definition but now

q11,t+1 = 1+α
(

z2
1,t− 1

)
+β

(
q11,t− 1

)
q12,t+1 = ρ̄12+α

(
z1,tz2,t− ρ̄12

)
+β

(
q12,t− ρ̄12

)
q22,t+1 = 1+α

(
z2

2,t− 1
)
+β

(
q22,t− 1

)
where ρ̄12 can be estimated using

ρ̄12 =
1

T

T∑
t=1

z1,tz2,t

Therefore we only have to find α and β using numerical optimization. Again,
in order to initialize the dynamics, we set q11,0 = 1,q22,0 = 1, and q12,0 = ρ̄12 =
1
T

∑T
t=1 z1,tz2,t.

3.4 Composite Likelihood Estimation in Large Systems

In the general case of n assets in the portfolio, we typically have to rely on the
n−dimensional normal distribution function to write the log likelihood as

ln(Lc)=−
1

2

∑
t

(
log |ϒt| + z′tϒ

−1
t zt

)
where |ϒt| denotes the determinant of the correlation matrix, ϒt. Maximizing this
likelihood can be very cumbersome if n is large. The correlation matrix ϒt must be
inverted on each day and for many possible values of the parameters in the model
when doing the numerical search for optimal parameter values. When n is large the
inversion of ϒt will be slow and potentially inaccurate causing biases in the estimated
parameter values.
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Fortunately a very simple solution to this dimensionality problem is available in
the DCC model. Rather than maximizing the n-dimensional log likelihood we can
maximize the sum of the bivariate likelihoods

ln(CLc)=−
1

2

T∑
t=1

n∑
i=1

∑
j>i

ln
(

1− ρ2
ij,t

)
+

(
z2

i,t+ z2
j,t− 2ρij,tzi,tzj,t

)
(

1− ρ2
ij,t

)


Computationally this composite likelihood function is much easier to maximize
than the likelihood function where the n-dimensional correlation matrix must be
inverted numerically. Note that rather than using all the available bivariate likelihoods
in ln(CLc) we could just use a subset of them. The more we use the more precise our
estimates will get.

3.5 An Asymmetric Correlation Model

So far we have considered only symmetric correlation models where the effect of two
positive shocks is the same as the effect of two negative shocks of the same magnitude.
But, just as we modeled the asymmetry in volatility (the leverage effect), we may
want to allow for a down-market effect in correlation. This can be achieved using the
asymmetric DCC model where

Qt+1 = (1−α−β)E
[
ztz
′
t

]
+α

(
ztz
′
t

)
+βQt+ γ

(
ηtη
′
t−E

[
ηtη
′
t

])
where the ηi,t for asset i is defined as the negative part of zi,t as follows:

ηi,t =

{
zi,t, if zi,t < 0
0, if zi,t > 0

for all i

Note that γ corresponds to a leverage effect in correlation: When γ is positive
then the correlation for asset i and j will increase more when zi,t and zj,t are negative
than in any other case. If we envision a scatterplot of zi,t and zj,t, then γ > 0 will
provide an extra increase in correlation when we observe an observation in the lower-
left quadrant of the scatterplot. This captures a phenomenon often observed in markets
for risky assets: Their correlation increases more in down markets (zi,t and zj,t both
negative) than in up markets (zi,t and zj,t both positive). The basic DCC model does
not directly capture this down-market effect but the asymmetric DCC model does.

4 Estimating Daily Covariance from Intraday Data

In Chapter 5 we considered methods for daily volatility estimation and forecasting that
made use of intraday data. These methods can be extended to covariance estimation as
well. When constructing RVs in Chapter 5 our biggest concern was biases arising from
illiquidity effects: bid–ask bounces for example would bias upward our RV measure
if we constructed intraday returns at a frequency that is too high.
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The main concern when computing realized covariance is not bid–ask bounces but
rather the asynchronicity of intraday prices across assets. Asynchronicity of intraday
prices will cause a bias toward zero of realized covariance unless we estimate it care-
fully. Because asset covariances are typically positive a bias toward zero means we
will be underestimating covariance and thus underestimating portfolio risk. This is
clearly not a mistake we want to make.

4.1 Realized Covariance

Consider first daily covariance estimation using, say, 1-minute returns. As in Chap-
ter 5, let the jth observation on day t+ 1 for asset 1 be denoted S1,t+j/m. Then the jth
return on day t+ 1 is

R1,t+j/m = ln(S1,t+j/m)− ln(S1,t+(j−1)/m), for j= 1,2, . . . ,m

Observing m returns within a day for two assets recorded at exactly the same time
intervals, we can in principle calculate an estimate of the realized daily covariance
from the intraday cross product of returns simply as

RCovm
12,t+1 =

m∑
j=1

R1,t+j/mR2,t+j/m

Given estimates of the two volatilities, the realized correlation can, of course, then
easily be calculated as

ρm
12,t+1 = RCovm

12,t+1/
√

RVm
1,t+1RVm

2,t+1

where RVm
1,t+1 is the All RV estimator defined in Chapter 5 computed for asset 1.

However, from Chapter 5 we quickly realize that using the All RV estimate based
on all m intraday returns is not a good idea because of the biases arising from illiquidity
at high frequencies. We can instead rely on the Average (Avr) RV estimator, which
averages across a number of sparse (using lower-frequency returns) RVs. Using the
averaging idea for the RCov as well we would then have

RCorrAvr
12,t+1 = RCovAvr

12,t+1/

√
RVAvr

1,t+1RVAvr
2,t+1

where RVAvr is as defined in Chapter 5 and where RCovAvr can also be computed as the
average of, say, 15 sparse RCovs

12,t+1 estimators computed on overlapping 15-minute
grids.

Going from All RV to Average RV will fix the bias problems in the RV estimates
but it will unfortunately not fix the bias in the RCov estimates: Asynchronicity will
still cause a bias toward zero in RCov.

The current best practice for alleviating the asynchronicity bias in daily RCov relies
on changing the time scale of the intraday observations. When we observe intraday
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prices on n assets the prices all arrive randomly throughout the day and randomly
across assets. The trick for dealing with asynchronous data is to synchronize them
using so-called refresh times.

Let τ (1) be the first time point on day t+ 1 when all assets have changed their price
at least once since market open. Let τ (2) be the first time point on day t+ 1 when
all assets have changed their price at least once since τ (1), and so on for τ (j), j=
1,2, . . . ,N. The synchronized intraday returns for the n assets can now be computed
using the τ (j) time points. For assets 1 and 2 we have

R1,τ (j) = ln(S1,τ (j))− ln(S1,τ (j−1)), for j= 1,2, . . . ,N

R2,τ (j) = ln(S2,τ (j))− ln(S2,τ (j−1)), for j= 1,2, . . . ,N

so that we can define the synchronized realized covariance between them as

RCovSync
12,t+1 ≡

N∑
j=1

R1,τ (j)R2,τ (j)

If realized variances are computed from the same refresh grid of prices

RVSync
1,t+1 ≡

N∑
j=1

R2
1,τ (j), and RVSync

2,t+1 ≡

N∑
j=1

R2
2,τ (j)

then the variance-covariance matrix RVSync
1,t+1 RCovSync

12,t+1

RCovSync
12,t+1 RVSync

2,t+1


will be positive definite.

The synchronized RV and RCov estimates can be further refined by correcting for
autocorrelation in the cross products of intraday returns as we did for RV in Chapter 5.

The RCov and RV measures can be used to build multivariate models for forecast-
ing covariance and correlation. Some of the relevant references are listed at the end of
the chapter.

4.2 Range-Based Covariance Using No-Arbitrage Conditions

Aside from the important synchronization problems, it is relatively straightforward
to generalize the idea of realized volatility to realized correlation. However, extend-
ing range-based volatility to range-based correlation is not obvious because the cross
product of the ranges does not capture covariance.

However, sometimes asset prices are linked together by no-arbitrage restrictions,
and if so then range-based covariance can be constructed. Consider, for example, the
case where S1 is the US$/yen FX rate, and S2 is the Euro/US$ FX rate. If we define S3
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to be the Euro/yen FX rate, then by ruling out arbitrage opportunities, we can write

S3,t = S1,tS2,t

S3,t+1 = S1,t+1S2,t+1

Therefore, the log returns can be written

R3,t+1 = R1,t+1+R2,t+1

and the variances as

σ 2
3,t+1 = σ

2
1,t+1+ σ

2
2,t+1+ 2σ 12,t+1

Thus, we can rearrange to get the covariance between US$/yen and Euro/US$ from

σ 12,t+1 =

(
σ 2

3,t+1− σ
2
1,t+1− σ

2
2,t+1

)
/2

If we then use one of the range-based proxies from Chapter 5, for example

RPi,t+1 ≈ 0.361D2
i,t+1 = .361

[
ln
(

SHigh
i,t+1

)
− ln

(
SLow

i,t+1

)]2
, for i= 1,2,3

we can define the range-based covariance proxy

RPCov12,t+1 ≡
(
RP3,t+1−RP1,t+1−RP2,t+1

)
/2

≈ 0.185
(

D2
3,t+1−D2

1,t+1−D2
2,t+1

)
Similar arbitrage arguments can be made between spot and futures prices and

between portfolios and individual assets assuming of course that the range prices can
be found on all the involved series.

Finally, as we suggested for volatility in Chapter 5, range-based proxies for covari-
ance can be used as regressors in GARCH covariance models. Consider, for example,

σ ij,t+1 = ωij+αRi,tRj,t+βσ ij,t+ γ RPRPij,t+1

Including the range-based covariance estimate in a GARCH model instead of using
it by itself will have the beneficial effect of smoothing out some of the inherent noise
in the range-based estimate of covariance.

5 Summary

Risk managers who want to calculate risk measures such as Value-at-Risk and
Expected Shortfall for different portfolio allocations need to construct the matrix of
variances and covariances for potentially large sets of assets. If returns are assumed
to be normally distributed with a mean of zero, then the covariance matrix is all that
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is needed to calculate the VaR. This chapter thus considered methods for constructing
the covariance matrix. First, we presented simple rolling estimates of covariance,
followed by simple exponential smoothing and GARCH models of covariance.
We then discussed the important issue of estimating variances and covariances in
an internally consistent way so as to ensure that the covariance matrix is positive
semidefinite and therefore generates sensible portfolio variances for all possible
portfolio weights. This discussion led us to consider modeling the conditional
correlation rather than the conditional covariance. We presented a simple framework
for dynamic correlation modeling, which is based on standardized returns and which
thus relies on preestimated volatility models such as those discussed in Chapters 4
and 5. Finally, methods for daily covariance and correlation estimation that make use
of intraday information were introduced.

Further Resources

The choice of risk factors may be obvious for some portfolios, but in general it is
not. It is therefore useful to let the return data help when deciding on what the factors
should look like and how many factors we need. The choice of factors in a variety
of portfolios is discussed in detail in Connor et al. (2010). A nice overview of the
mechanics of assigning risk factor exposures can be found in Jorion (2006).

Bollerslev et al. (1988), Bollerslev (1990), Bollerslev and Engle (1993), and Engle
and Kroner (1995) are some classic references on the first generation of multivariate
GARCH models. See also the recent survey in Bauwens et al. (2006).

The conditional correlation model in this chapter is developed in Engle (2002),
Engle and Sheppard (2001), and Tse and Tsui (2002). Aielli (2009) derives a refine-
ment to the QMLE DCC estimation procedure described in this chapter. Cappiello
et al. (2006) and Hafner and Franses (2009) develop extensions and alternatives to
the basic DCC model. Composite likelihood estimation of DCC models is suggested
in Engle et al. (2009). For a large-scale application of DCC models to international
equity markets see Christoffersen et al. (2011).

Asynchronicity in returns is not just an issue in intraday data. It can also be a prob-
lem in daily returns for illiquid assets or for assets from markets that close at different
times of the day. Burns et al. (1998) and Audrino and Buhlmann (2004) develop vector
ARMA methods to deal with biases in correlation. Scholes and Williams (1977) use
measurement error models to analyze bias of the beta estimate in the market model
when daily closing prices are stale.

The construction of realized covariances is detailed in Barndorff-Nielsen et al.
(2011), which also contains useful information on the cleaning of intraday data.
Forecasting models using realized covariance and correlation are built in Bauer and
Vorkink (2011), Chiriac and Voev (2011), Hansen et al. (2010), Jin and Maheu (2010),
Voev (2008), and Noureldin et al. (2011).

Range-based covariance estimation is considered in Brandt and Diebold (2006),
who also discuss ways to ensure positive semidefiniteness of the covariance matrix.
Foreign exchange covariances estimated from intraday returns are reported in Andersen
et al. (2001).
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Finally, methods for the evaluation of covariance and correlation forecasts can be
found in Patton and Sheppard (2009).
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Empirical Exercises

Open the Chapter7Data.xlsx file from the companion site.

1. Calculate daily log returns and plot them on the same scale. How different is the magnitude
of variations across the two assets?

2. Compute the unconditional covariance and the correlation for the two assets.
3. Calculate the unconditional 1-day, 1% Value-at-Risk for a portfolio consisting of 50% in

each asset. Calculate also the 1-day, 1% Value-at-Risk for each asset individually. Use the
normal distribution. Compare the portfolio VaR with the sum of individual VaRs. What do
you see?

4. Estimate an NGARCH(1,1) model for the two assets. Standardize each return using its
GARCH standard deviation.

5. Use QMLE to estimate λ in the exponential smoother version of the dynamic conditional
correlation (DCC) model for two assets. Set the starting value of λ to 0.94. Calculate the
1-day, 1% VaR.

6. Estimate the GARCH DCC model for the two assets. Set the starting values to α = 0.05 and
β = 0.9. Plot the dynamic correlations. Calculate and plot the 1-day, 1% VaR.

The answers to these exercises can be found in the Chapter7Results.xlsx file, which is avail-
able from the companion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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8 Simulating the Term Structure
of Risk

1 Chapter Overview

So far we have focused on the task of computing VaR and ES for the one-day-ahead
horizon only. The dynamic risk models we have introduced have closed-form solu-
tions for one-day-ahead VaR and ES but not when the horizon of interest is longer
than one day. In this case we need to rely on simulation methods for computing VaR
and ES. This chapter introduces two methods for doing so. The simulation-based meth-
ods introduced here allow the risk manager to use the dynamic risk model to compute
VaR and ES at any horizon of interest and therefore to compute the entire term struc-
ture of risk. By analogy with the term structure of variance plots in Chapter 4 we refer
to the term structure of risk as the VaR (or ES) plotted against the horizon of interest.

The chapter proceeds as follows:

l First, we will consider simulating forward the univariate risk models from Part II of
the book. We will introduce two techniques: Monte Carlo simulation, which relies
on artificial random numbers, and Filtered Historical Simulation (FHS), which uses
historical random shocks.

l Second, we simulate forward in time multivariate risk models with constant corre-
lations across assets. Again we will consider Monte Carlo as well as FHS.

l Third, we simulate multivariate risk models with dynamic correlations using the
DCC model from Chapter 7.

We are assuming that the portfolio variance (in the case of univariate risk models)
and individual asset variances (in the case of multivariate risk models) have already
been modeled and estimated on historical returns using the techniques in Chapters 4
and 5. We are also assuming that the correlation dynamics have been modeled and
estimated using the DCC model in Chapter 7.

For convenience we are assuming normally distributed variables when doing
Monte Carlo simulation in this chapter. Chapter 9 will provide the details on simu-
lating random variables from the t distribution.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00008-7
c© 2012 Elsevier, Inc. All rights reserved.
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2 The Risk Term Structure in Univariate Models

In the simplistic case, where portfolio returns are normally distributed with a constant
variance, σ 2

PF , the returns over the next K days are also normally distributed, but with
variance Kσ 2

PF . In that case, we can easily calculate the VaR for returns over the next
K days calculated on day t, as

VaRp
t+1:t+K =−

√
KσPF8

−1
p =

√
KVaRp

t+1

and similarly ES can be computed as

ESp
t+1:t+K =

√
KσPF

φ
(
8−1

p

)
p

=
√

KESp
t+1

In the much more realistic case where the portfolio variance is time varying, going
from 1-day-ahead to K-days-ahead VaR is not so simple. As we saw in Chapter 4, the
variance of the K-day return is in general

σ 2
t+1:t+K ≡ Et

(
K∑

k=1

Rt+k

)2

=

K∑
k=1

Et
[
σ 2

t+k

]
where we have omitted the portfolio, PF, subscripts.

In the simple RiskMetrics variance model, where σ 2
t+1 = λσ

2
t + (1− λ)R

2
t , we get

σ 2
t+1:t+K =

K∑
k=1

σ 2
t+1 = Kσ 2

t+1

so that variances actually do scale by K in the RiskMetrics model. However, we argued
in Chapter 4 that the absence of mean-reversion in variance will imply counterfactual
variance forecasts at longer horizons. Furthermore, although the variance is scaled by
K in this model, the returns at horizon K are no longer normally distributed. In fact, we
can show that the RiskMetrics model implies that returns get further away from nor-
mality as the horizon increases, which is counterfactual as we discussed in Chapter 1.

In the symmetric GARCH(1,1) model, where σ 2
t+1 = ω+αR2

t +βσ
2
t , we instead

get

σ 2
t+1:t+K = Kσ 2

+

K∑
k=1

(α+β)k−1 (σ 2
t+1− σ

2)
6= Kσ 2

t+1

where

σ 2
=

ω

1−α−β
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is the unconditional, or average, long-run variance. Recall that in GARCH models
tomorrow’s variance, σ 2

t+1, can conveniently be calculated at the end of today when
Rt is realized.

In the GARCH case, the variance does mean revert and it therefore does not
scale by the horizon K, and again the returns over the next K days are not normally
distributed, even if the 1-day returns are assumed to be. However, a nice feature of
mean-reverting GARCH models is that as K gets large, the return distribution does
approach the normal. This appears to be a common feature of real-life return data as
we argued in Chapter 1.

The upshot is that we are faced with the challenge of computing risk measures such
as VaR at multiday horizons, without knowing the analytical form for the distribution
of returns at those horizons. Fortunately, this challenge can be met through the use of
Monte Carlo simulation techniques.

In Chapter 1 we discussed two stylized facts regarding the mean or average daily
return—first, that it is very difficult to forecast, and, second that it is very small rel-
ative to the daily standard deviation. At a longer horizon, it is still fairly difficult to
forecast the mean but its relative importance increases with horizon. Consider a sim-
ple example where daily returns are normally distributed with a constant mean and
variance as in

Rt+1
i.i.d.
∼ N

(
µ,σ 2)

The 1-day VaR is thus

VaRp
t+1 =−

(
µ+ σ8−1

p

)
≈−σ8−1

p

where the last equation holds approximately because the daily mean is typically orders
of magnitude smaller than the standard deviation as we saw in Chapter 1.

The K-day return in this case is distributed as

Rt+1:t+K ∼ N
(
Kµ,Kσ 2)

and the K-day VaR is thus

VaRp
t+1:t+K =−

(
Kµ+

√
Kσ8−1

p

)
6≈ −
√

Kσ8−1
p

As the horizon, K, gets large, the relative importance of the mean increases and the
zero-mean approximation no longer holds. Similarly, for ES

ESp
t+1:t+K =−

(
Kµ+

√
Kσ

φ
(
8−1

p

)
p

)
6≈
√

Kσ
φ
(
8−1

p

)
p

Although the mean return is potentially important at longer horizons, in order to
save on notation, we will still assume that the mean is zero in the sections that follow.
However, it is easy to generalize the analysis to include a nonzero mean.
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2.1 Monte Carlo Simulation

We illustrate the power of Monte Carlo simulation (MCS) through a simple example.
Consider our GARCH(1,1)-normal model of returns, where

Rt+1 = σ t+1zt+1, with zt+1
i.i.d.
∼ N(0,1)

and

σ 2
t+1 = ω+αR2

t +βσ
2
t

As mentioned earlier, at the end of day t we obtain Rt and we can calculate σ 2
t+1,

which is tomorrow’s variance in the GARCH model.
Using random number generators, which are standard in most quantitative software

packages, we can generate a set of artificial (or pseudo) random numbers

ži,1, i= 1,2, . . . ,MC

drawn from the standard normal distribution, N(0,1). MC denotes the number of
draws, which should be large, for example, 10,000. To confirm that the random num-
bers do indeed conform to the standard normal distribution, a QQ plot of the random
numbers can be constructed.

From these random numbers we can calculate a set of hypothetical returns for
tomorrow as

Ři,t+1 = σ t+1ži,1

Given these hypothetical returns, we can update the variance to get a set of hypotheti-
cal variances for the day after tomorrow, t+ 2, as follows:

σ̌
2
i,t+2 = ω+αŘ2

i,t+1+βσ
2
t+1

Given a new set of random numbers drawn from the N(0,1) distribution,

ži,2, i= 1,2, . . . ,MC

we can calculate the hypothetical return on day t+ 2 as

Ři,t+2 = σ̌ i,t+2ži,2

and the variance is now updated using

σ̌
2
i,t+3 = ω+αŘ2

i,t+2+βσ̌
2
i,t+2
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Graphically, we can illustrate the simulation of hypothetical daily returns from day
t+ 1 to day t+K as

ž1,1→ Ř1,t+1→ σ̌
2
1,t+2 ž1,2→ Ř1,t+2→ σ̌

2
1,t+3 . . . ž1,K→ Ř1,t+K

↗ ž2,1→ Ř2,t+1→ σ̌
2
2,t+2 ž2,2→ Ř2,t+2→ σ̌

2
2,t+3 . . . ž2,K→ Ř2,t+K

σ 2
t+1 −→ . . . . . . . . . . . .

↘ . . . . . . . . . . . .

žMC,1→ ŘMC,t+1→ σ̌
2
MC,t+2 žMC,2→ ŘMC,t+2→ σ̌

2
MC,t+3 . . . žMC,K→ ŘMC,t+K

Each row corresponds to a so-called Monte Carlo simulation path, which branches
out from σ 2

t+1 on the first day, but which does not branch out after that. On each
day a given branch gets updated with a new random number, which is different from
the one used any of the days before. We end up with MC sequences of hypothetical
daily returns for day t+ 1 through day t+K. From these hypothetical future daily
returns, we can easily calculate the hypothetical K-day return from each Monte Carlo
path as

Ři,t+1:t+K =

K∑
k=1

Ři,t+k, for i= 1,2, . . . ,MC

If we collect these MC hypothetical K-day returns in a set
{

Ři,t+1:t+K

}MC

i=1
, then we

can calculate the K-day value at risk simply by calculating the 100pth percentile as in

VaRp
t+1:t+K =−Percentile

{{
Ři,t+1:t+K

}MC

i=1
,100p

}
We can also use Monte Carlo to compute the expected shortfall at different horizons

ESp
t+1:t+K =−

1

p ·MC

MC∑
i=1

Ři,t+1:t+K · 1
(

Ři,t+1:t+K <−VaRp
t+1:t+K

)
where 1(•) takes the value 1 if the argument is true and zero otherwise.

Notice that in contrast to the HS and WHS techniques introduced in Chapter 2,
the GARCH-MCS method outlined here is truly conditional in nature as it builds on
today’s estimate of tomorrow’s variance, σ 2

t+1.

A key advantage of the MCS technique is its flexibility. We can use MCS for any
assumed distribution of standardized returns—normality is not required. If we think
the standardized t(d) distribution with d = 12 for example describes the data better,
then we simply draw from this distribution. Commercial software packages typically
contain the regular t(d) distribution, but we can standardize these draws by multiply-
ing by

√
(d− 2)/d as we saw in Chapter 6. Furthermore, the MCS technique can be

used for any fully specified dynamic variance model.
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Figure 8.1 VaR term structures using NGARCH and Monte Carlo simulation.
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Notes: The top panel shows the S&P 500 VaR per day across horizons when the current
volatility is one-half its long-run value. The bottom panel assumes the current volatility is three
times its long-run value. The VaR is simulated using Monte Carlo on an NGARCH model.

In Figure 8.1 we apply the NGARCH model for the S&P 500 from Chapter 4 along
with a normal distribution assumption. We use Monte Carlo simulation to construct
and plot VaR per day, VaRp

t+1:t+K/
√

K, as a function of horizon K for two different
values of σ t+1. In the top panel the initial volatility is one-half the unconditional level
and in the bottom panel σ t+1 is three times the unconditional level. The horizon goes
from 1 to 500 trading days, corresponding roughly to two calendar years.

The VaR coverage level p is set to 1%. Figure 8.1 gives a VaR-based picture of
the term structure of risk. Perhaps surprisingly the term structure of VaR is initially
upward sloping both when volatility is low and when it is high. The VaR term structure
is driven partly by the variance term structure, which is upward sloping when current
volatility is low and downward sloping when current volatility is high as we saw in
Chapter 4. But the VaR term structure is also driven by the term structure of skewness
and kurtosis and other moments. Kurtosis is strongly increasing at short horizons and
then decreasing for longer horizons. This hump-shape in the term structure of kurtosis
creates the hump in the VaR that we see in the bottom panel of Figure 8.1 when the
initial volatility is high.
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Figure 8.2 ES term structures using NGARCH and Monte Carlo simulation.
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Notes: The top panel shows the S&P 500 ES per day across horizons when the current
volatility is one-half its long-run value. The bottom panel assumes the current volatility is three
times its long-run value. The ES is simulated using Monte Carlo on an NGARCH model.

In Figure 8.2 we plot the ESp
t+1:t+K per day, ESp

t+1:t+K/
√

K, against horizon K.
The coverage level p is again set to 1% and the horizon goes from 1 to 500 trad-

ing days. Figure 8.2 gives an ES-based picture of the term structure of risk, which is
clearly qualitatively similar to the term structure of VaR in Figure 8.1. Note however,
that the slope of the ES term structure in the upper panel of Figure 8.2 is steeper than
the corresponding VaR term structure in the upper panel of Figure 8.2. Note also that
the hump in the ES term structure in the bottom panel of Figure 8.2 is more pronounced
than the hump in the VaR term structure in the upper panel of Figure 8.1.

2.2 Filtered Historical Simulation (FHS)

In the book so far, we have discussed methods that take very different approaches:
Historical Simulation (HS) in Chapter 2 is a completely model-free approach, which
imposes virtually no structure on the distribution of returns: the historical returns cal-
culated with today’s weights are used directly to calculate a percentile. The GARCH
Monte Carlo simulation (MCS) approach in this chapter takes the opposite view and
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assumes parametric models for variance, correlation (if a disaggregate model is esti-
mated), and the distribution of standardized returns. Random numbers are then drawn
from this distribution to calculate the desired risk measure.

Both of these extremes in the model-free/model-based spectrum have pros and
cons. Taking a model-based approach (MCS, for example) is good if the model is a
fairly accurate description of reality. Taking a model-free approach (HS, for example)
is sensible in that the observed data may capture features of the returns distribution
that are not captured by any standard parametric model.

The Filtered Historical Simulation (FHS) approach, which we introduced in
Chapter 6, attempts to combine the best of the model-based with the best of the model-
free approaches in a very intuitive fashion. FHS combines model-based methods of
variance with model-free methods of the distribution of shocks.

Assume we have estimated a GARCH-type model of our portfolio variance.
Although we are comfortable with our variance model, we are not comfortable making
a specific distributional assumption about the standardized returns, such as a normal
or a t̃(d) distribution. Instead, we would like the past returns data to tell us about the
distribution directly without making further assumptions.

To fix ideas, consider again the simple example of a GARCH(1,1) model:

Rt+1 = σ t+1zt+1

where

σ 2
t+1 = ω+αR2

t +βσ
2
t

Given a sequence of past returns, {Rt+1−τ }
m
τ=1, we can estimate the GARCH model

and calculate past standardized returns from the observed returns and from the esti-
mated standard deviations as

ẑt+1−τ = Rt+1−τ /σ t+1−τ , for τ = 1,2, . . . ,m

We will refer to the set of standardized returns as
{
ẑt+1−τ

}m
τ=1. The number of histor-

ical observations, m, should be as large as possible.
Moving forward now, at the end of day t we obtain Rt and we can calculate σ 2

t+1,
which is day t+ 1’s variance in the GARCH model. Instead of drawing random ẑs
from a random number generator, which relies on a specific distribution, we can draw
with replacement from our own database of past standardized residuals,

{
ẑt+1−τ

}m
τ=1 .

The random drawing can be operationalized by generating a discrete uniform random
variable distributed from 1 to m. Each draw from the discrete distribution then tells us
which τ and thus which ẑt+1−τ to pick from the set

{
ẑt+1−τ

}m
τ=1.

We again build up a distribution of hypothetical future returns as

ẑ1,1→ R̂1,t+1→ σ̂
2
1,t+2 ẑ1,2→ R̂1,t+2→ σ̂

2
1,t+3 . . . ẑ1,K→ R̂1,t+K

↗ ẑ2,1→ R̂2,t+1→ σ̂
2
2,t+2 ẑ2,2→ R̂2,t+2→ σ̂

2
2,t+3 . . . ẑ2,K→ R̂2,t+K

σ 2
t+1 −→ . . . . . . . . . . . .

↘ . . . . . . . . . . . .

ẑFH,1→ R̂FH,t+1→ σ̂
2
FH,t+2 ẑFH,2→ R̂FH,t+2→ σ̂

2
FH,t+3 . . . ẑFH,K→ R̂FH,t+K
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where FH is the number of times we draw from the standardized residuals on each
future date, for example 10,000, and where K is the horizon of interest measured in
number of days.

We end up with FH sequences of hypothetical daily returns for day t+ 1 through
day t+K. From these hypothetical daily returns, we calculate the hypothetical K-day
returns as

R̂i,t+1:t+K =

K∑
k=1

R̂i,t+k, for i= 1,2, . . . ,FH

If we collect the FH hypothetical K-day returns in a set
{

R̂i,t+1:t+K

}FH

i=1
, then we

can calculate the K-day Value-at-Risk simply by calculating the 100pth percentile as in

VaRp
t+1:t+K =−Percentile

{{
R̂i,t+1:t+K

}FH

i=1
,100p

}
The ES measure can again be calculated from the simulated returns by simply tak-

ing the average of all the R̂i,t+1:t+Ks that fall below the −VaRp
t+1:t+K number; that is,

ESp
t+1:t+K =−

1

p ·FH
·

FH∑
i=1

R̂i,t+1:t+K · 1
(

R̂i,t+1:t+K <−VaRp
t+1:t+K

)
where as before the indicator function 1(•) returns a 1 if the argument is true and zero
if not.

An interesting and useful feature of FHS as compared with simple HS is that it
can generate large losses in the forecast period, even without having observed a large
loss in the recorded past returns. Consider the case where we have a relatively large
negative z in our database, which occurred on a relatively low variance day. If this
z gets combined with a high variance day in the simulation period then the resulting
hypothetical loss will be large.

In Figure 8.3 we use the FHS approach based on the NGARCH model for the S&P
500 returns. We use the NGARCH-FHS model to construct and plot the VaRp

t+1:t+K
per day as a function of horizon K for two different values of σ t+1. In the top panel
the initial volatility is one-half the unconditional level and in the bottom panel σ t+1
is three times the unconditional level. The horizons goes from 1 to 500 trading days,
corresponding roughly to two calendar years.

The VaR coverage level p is set to 1% again. Comparing Figure 8.3 with Figure 8.1
we see that for this S&P 500 portfolio the Monte Carlo and FHS simulation methods
give roughly equal VaR term structures when the initial volatility is the same.

In Figure 8.4 we plot the ESp
t+1:t+K per day against horizon K.

The coverage level p is again set to 1% and the horizon goes from 1 to 500 trading
days. The FHS-based ES term structure in Figure 8.4 closely resembles the NGARCH
Monte Carlo-based ES term structure in Figure 8.2.

We close this section by reemphasizing that the FHS method suggested here com-
bines a conditional model for variance with a Historical Simulation method for the
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Figure 8.3 VaR term structures using NGARCH and filtered Historical Simulation.
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Notes: The top panel shows the S&P 500 VaR per day across horizons when the current
volatility is one-half its long-run value. The bottom panel assumes the current volatility is three
times its long run value. The VaR is simulated using FHS on an NGARCH model.

standardized returns. FHS thus captures the current level of market volatility via σ t+1
but we do not need to make assumptions about the tail distribution. The FHS method
has been found to perform very well in several studies and it should be given serious
consideration by any risk management team.

3 The Risk Term Structure with Constant Correlations

The univariate methods discussed in Section 2 are useful if the main purpose of the risk
model is risk measurement. If instead the model is required for active risk management
including deciding on optimal portfolio allocations, or VaR sensitivities to allocation
changes, then a multivariate model is required. In this section, we use the multivari-
ate models built in Chapter 7 to simulate VaR and ES for different maturities. The
multivariate risk models allow us to compute risk measures for different hypothetical
portfolio allocations without having to reestimate model parameters.

We will assume that the risk manager knows his or her set of assets of interest. This
set can either contain all the assets in the portfolio or a smaller set of base assets, which
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Figure 8.4 ES term structures using NGARCH and filtered Historical Simulation.
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Notes: The top panel shows the S&P 500 ES per day across horizons when the current
volatility is one-half its long-run value. The bottom panel assumes the current volatility is
three times its long-run value. The ES is simulated using FHS on an NGARCH model.

are believed to be the main drivers of risk in the portfolio. Base asset choices are, of
course, portfolio-specific, but typical examples include equity indices, bond indices,
and exchange rates as well as more fundamental economic drivers such as oil prices
and real estate prices as discussed in Chapter 7.

Once the set of assets has been determined, the next step in the multivariate model
is to estimate a dynamic volatility model of the type in Chapters 4 and 5 for each of
the n assets. When this is complete, we can write the n asset returns in vector form as
follows:

rt+1 = Dt+1zt+1

where Dt+1 is an n× n diagonal matrix containing the dynamic standard deviations on
the diagonal, and zeros on the off diagonal. The n× 1 vector zt+1 contains the shocks
from the dynamic volatility model for each asset.

Now, define the conditional covariance matrix of the returns as

Vart (rt+1)=6t+1 = Dt+1ϒDt+1
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where ϒ is a constant n× n matrix containing the base asset correlations on the off
diagonals and ones on the diagonal. Later we will consider DCC models where the
correlation matrix is time varying.

When simulating the multivariate model forward we face a new challenge, namely,
that we must ensure that the vector of shocks have the correct correlation matrix, ϒ .
Random number generators provide us with uncorrelated random standard normal
variables, zu

t , and we must correlate them before using them to simulate returns
forward.

In the case of two uncorrelated shocks, we have

E
[
zu

t+1

(
zu

t+1

)′]
=

[
1 0
0 1

]
but we want to create correlated shocks with the correlation matrix

E
[
zt+1 (zt+1)

′
]
= ϒ =

[
1 ρ1,2
ρ1,2 1

]
We therefore need to find the matrix square root, ϒ1/2, so that ϒ1/2

(
ϒ1/2

)′
= ϒ and

so that zt+1 = ϒ
1/2zu

t+1 will give the correct correlation matrix, namely

E
[
zt+1 (zt+1)

′
]
= E

[
ϒ1/2zu

t+1

(
zu

t+1

)′(
ϒ1/2

)′]
= ϒ

In the bivariate case we have that

ϒ1/2
=

[
1 0

ρ1,2

√
1− ρ2

1,2

]

so that when multiplying out zt+1 = ϒ
1/2zu

t+1 we get

z1,t+1 = zu
1,t+1

z2,t+1 = ρ1,2zu
1,t+1+

√
1− ρ2

1,2zu
2,t+1

which implies that

E
[
z1,t+1

]
= E

[
zu

1,t+1

]
= 0

E
[
z2,t+1

]
= ρ1,2E

[
zu

1,t+1

]
+

√
1− ρ2

1,2E
[
zu

2,t+1

]
= 0

and

Var
[
z1,t+1

]
= Var

[
zu

1,t+1

]
= 1

Var
[
z2,t+1

]
= ρ2

1,2Var
[
zu

1,t+1

]
+

(
1− ρ2

1,2

)
Var

[
zu

2,t+1

]
= 1
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because Var
[
zu

1,t+1

]
= Var

[
zu

2,t+1

]
= 1. Thus z1,t+1 and z2,t+1 will each have a mean

of 0 and a variance of 1 as desired. Finally we can check the correlation. We have

E
[
z1,t+1z2,t+1

]
= ρ1,2E

[
zu

1,t+1zu
1,t+1

]
+

√
1− ρ2

1,2E
[
zu

1,t+1zu
2,t+1

]
= ρ1,2

so that the shocks will have a correlation of ρ1,2 as desired.
We can also verify the ϒ1/2 matrix by multiplying it by its transpose

ϒ1/2
(
ϒ1/2

)′
=

[
1 0

ρ1,2

√
1− ρ2

1,2

][
1 ρ1,2

0
√

1− ρ2
1,2

]
=

[
1 ρ1,2
ρ1,2 1

]
= ϒ

In the case of n> 2 assets we need to use a so-called Cholesky decomposition or a
spectral decomposition of ϒ to compute ϒ1/2. See the references for details on these
methods.

3.1 Multivariate Monte Carlo Simulation

In order to simulate the model forward in time using Monte Carlo we need to assume
a multivariate distribution of the vector of shocks, ž. In this chapter we will rely on
the multivariate standard normal distribution because it is convenient and so allows
us to focus on the issues involved in simulation. In Chapter 9 we will look at more
complicated multivariate t distributions.

The algorithm for multivariate Monte Carlo simulation is as follows:

l First, draw a vector of uncorrelated random normal variables žu
i,1 with a mean of

zero and a variance of one.

l Second, use the matrix square root ϒ1/2 to correlate the random variables; this
gives ži,t+1 = ϒ

1/2zu
i,1.

l Third, update the variances for each asset using the approach in Section 2.

l Fourth, compute returns for each asset using the approach in Section 2.

Loop through these four steps from day t+ 1 until day t+K. Now we can compute
the portfolio return using the known portfolio weights and the vector of simulated
returns on each day.

Repeating these steps i= 1,2, . . . ,MC times gives a Monte Carlo distribution of
portfolio returns. From these MC portfolio returns we can compute VaR and ES from
the simulated portfolio returns as in Section 2.

3.2 Multivariate Filtered Historical Simulation

Multivariate Filtered Historical Simulation can be done easily when we assume con-
stant correlations.
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l First, draw a vector (across assets) of historical shocks from a particular day in
the historical sample of shocks, and use that to simulate tomorrow’s shock, ẑi,1.
The key insight is that when we draw the entire vector (across assets) of histori-
cal shocks from the same day, they will preserve the correlation across assets that
existed historically as long as correlations are constant over time.

l Second, update the variances for each asset using the approach in Section 2.

l Third, compute returns for each asset using the approach in Section 2.

Loop through these steps from day t+ 1 until day t+K. Now we can compute the
portfolio return using the known portfolio weights and the vector of simulated returns
on each day as before.

Repeating these steps i= 1,2, . . . ,FH times gives a simulated distribution of port-
folio returns. From these FH portfolio returns we can compute VaR and ES from the
simulated portfolio returns as in Section 2.

4 The Risk Term Structure with Dynamic Correlations

We now consider the more complicated case where the correlations are dynamic as in
the DCC model in Chapter 7. We again have

rt+1 = Dt+1zt+1

where Dt+1 is an n× n diagonal matrix containing the GARCH standard deviations
on the diagonal, and zeros on the off diagonal. The n× 1 vector zt contains the shocks
from the GARCH models for each asset.

Now, we have

Vart (rt+1)=6t+1 = Dt+1ϒt+1Dt+1

where ϒt+1 is an n× n matrix containing the base asset correlations on the off diago-
nals and ones on the diagonal. The elements in Dt+1 can be simulated forward using
the methods in Section 2 but we now also need to simulate the correlation matrix
forward.

4.1 Monte Carlo Simulation with Dynamic Correlations

As mentioned before, random number generators typically provide us with uncorre-
lated random standard normal variables, žu, and we must correlate them before simu-
lating returns forward.

At the end of day t the GARCH and DCC models provide us with Dt+1 and ϒt+1
without having to do simulation. We can therefore compute a random return for day
t+ 1 as

ři,t+1 = Dt+1ϒ
1/2
t+1 žu

i,1 = Dt+1ži,t+1

where ži,t+1 = ϒ
1/2
t+1 žu

i,1.
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Using the new simulated shock vector, ži,t+1, we can update the volatilities and
correlations using the GARCH models and the DCC model. We thus obtain simulated
Ďi,t+2 and ϒ̌i,t+2. Drawing a new vector of uncorrelated shocks, žu

i,2, enables us to
simulate the return for the second day ahead as

ři,t+2 = Ďi,t+2ϒ̌
1/2
i,t+2žu

i,2 = Ďi,t+2ži,t+2

where ži,t+2 = ϒ̌
1/2
i,t+2žu

i,2.
We continue this simulation from day t+ 1 through day t+K, and repeat it for

i= 1,2, . . . ,MC vectors of simulated shocks on each day. As before we can compute
the portfolio return using the known portfolio weights and the vector of simulated
returns on each day. From these MC portfolio returns we can compute VaR and ES
from the simulated portfolio returns as in Section 2.

In Figure 8.5 we use the DCC model for S&P 500 returns and the 10-year treasury
bond index from Chapter 7 to plot the expected future correlations. We have assumed
four different values of the current correlation, ranging from −0.5 in the blue line to
+0.5 in the purple line. Note that over the 60-day horizon considered, the correlations
converge toward the long-run correlation value but significant differences remain even
after 60 days.

In Chapter 4 we saw how the expected future variance can be computed analyt-
ically from current variance using the GARCH model dynamics. The key equations
were repeated in Section 2. Unfortunately for dynamic correlation models, such exact
analytical formulas for expected future correlation do not exist. We need to rely on the
simulation methods developed here in order to construct correlation forecasts for more
than one day ahead. If we for example want to construct a forecast for the correlation

Figure 8.5 DCC correlation forecasts by Monte Carlo simulation.
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the S&P 500 and 10-year treasury bond.
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matrix two days ahead we can use

ϒt+2|t =
1

MC

MC∑
i=1

ϒ̌i,t+2

where the Monte Carlo average is done element by element for each of the correlations
in the matrix.

4.2 Filtered Historical Simulation with Dynamic Correlations

When correlations across assets are assumed to be constant then FHS is relatively
easy because we can draw from historical asset shocks, using the entire vector (across
assets) of historical shocks. The (constant) historical correlation will be preserved in
the simulated shocks. When correlations are dynamic then we need to ensure that
the correlation dynamics are simulated forward but in FHS we still want to use the
historical shocks.

In this case we must first create a database of historical dynamically uncorrelated
shocks from which we can resample. We create the dynamically uncorrelated historical
shock as

ẑu
t+1−τ = ϒ

−1/2
t+1−τ ẑt+1−τ , for τ = 1,2, . . . ,m

where ẑt+1−τ is the vector of standardized shocks on day t+ 1− τ and where ϒ−1/2
t+1−τ

is the inverse of the matrix square-root of the conditional correlation matrix ϒt+1−τ .
When calculating the multiday conditional VaR and ES from the model, we again

need to simulate daily returns forward from today’s (day t) forecast of tomorrow’s
matrix of volatilities, Dt+1 and correlations, ϒt+1.

From the database of uncorrelated shocks
{
ẑu

t+1−τ

}m
τ=1

, we can draw a random
vector of historical uncorrelated shocks, called ẑu

i,1. It is important to note that in order
to preserve asset-specific characteristics and potential nonlinear dependence in the
shocks, we draw an entire vector representing the same day for all the assets.

From this draw, we can compute a random return for day t+ 1 as

r̂i,t+1 = Dt+1ϒ
1/2
t+1 ẑu

i,1 = Dt+1ẑi,t+1

where ẑi,t+1 = ϒ
1/2
t+1 ẑu

i,1.
Using the new simulated shock vector, ẑi,t+1, we can update the volatilities and

correlations using the GARCH models and the DCC model. We thus obtain simulated
D̂i,t+2 and ϒ̂i,t+2. Drawing a new vector of uncorrelated shocks, ẑu

i,2, enables us to
simulate the return for the second day as

r̂i,t+2 = D̂i,t+2ϒ̂
1/2
i,t+2ẑu

i,2 = Dt+2ẑi,t+2

where ẑi,t+2 = ϒ̂
1/2
t+1 ẑu

i,2. We continue this simulation for K days, and repeat it for FH
vectors of simulated shocks on each day. As before we can compute the portfolio
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return using the known portfolio weights and the vector of simulated returns on each
day. From these FH portfolio returns we can compute VaR and ES from the simulated
portfolio returns as in Section 2.

The advantages of the multivariate FHS approach tally with those of the univari-
ate case: It captures current market conditions by means of dynamic variance and
correlation models. It makes no assumption on the conditional multivariate shock
distributions. And, it allows for the computation of any risk measure for any invest-
ment horizon of interest.

5 Summary

Risk managers rarely have one particular horizon of interest but rather want to know
the risk profile across many different horizons; that is, the term structure of risk. The
purpose of this chapter has therefore been to introduce Monte Carlo simulation and fil-
tered Historical Simulation techniques, which can be used to compute the term struc-
ture of risk in the univariate risk models in Part II as well as in the multivariate risk
models in Chapter 7. It is important to keep in mind that because we are simulating
from dynamic risk models, we use all the relevant information available at any given
time to compute the risk forecasts across future horizons.

Chapter 7 assumed the multivariate normal distribution. This assumption was made
for convenience and not for realism. We need to develop nonnormal multivariate dis-
tributions that can be used in risk computation across different horizons as well. This
is the task of the upcoming Chapter 9.

Further Resources

Theoretical issues involved in temporal aggregation of GARCH models are analyzed
in Drost and Nijman (1993). Diebold et al. (1998a) study the problems arising in risk
management from simple scaling rules of variance across horizons. Christoffersen
et al. (1998) elaborate on the issues involved in calculating VaRs at different hori-
zons. Christoffersen and Diebold (2000) investigate the usefulness of dynamic vari-
ance models for risk management at various forecast horizons. Portfolio aggregation
of GARCH models is analyzed in Zaffaroni (2007).

A thorough and current treatment of Monte Carlo methods in financial engineering
can be found in the Glasserman (2004) book. Hammersley and Handscomb (1964) is
the classic reference on Monte Carlo methods.

Diebold et al. (1998a); Hull and White (1998); and Barone-Adesi et al. (1999)
independently suggested the filtered Historical Simulation approach. See also Barone-
Adesi et al. (1998); and Barone-Adesi et al. (2002), who consider an application of
FHS to portfolios of options and futures. Pritsker (2006) provides a powerful compar-
ison between FHS and traditional Historical Simulation.

When constructing correlated random shocks, Patton and Sheppard (2009) recom-
mend the spectral decomposition of the correlation matrix over the standard Cholesky
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decomposition because the latter is not invariant to the ordering of the assets in the
vector of shocks.

Engle (2009) and Engle and Sheppard (2001) develop approximate formulas for
correlation forecasts in DCC models. Asai and McAleer (2009) consider a stochastic
correlation modeling approach.

Parametric alternatives to the Filtered Historical Simulation approach include speci-
fying a multivariate normal or t distribution for the GARCH shocks. See, for example,
Pesaran et al. (2009) as well as Chapter 9 in this book.

See Engle and Manganelli (2004) for a survey of different VaR modeling
approaches. Manganelli (2004) considers a unique asset allocation approach that only
requires a univariate model.
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Empirical Exercises

Open the Chapter8Data.xlsx file from the web site.

1. Construct the 10-day, 1% VaR on the last day of the sample using FHS (with 10,000 sim-
ulations), RiskMetrics scaling the daily VaRs by

√
10 (although it is incorrect), and Monte

Carlo simulations of the NGARCH(1,1) model with normally distributed shocks and with
parameters as estimated in Chapter 4.

2. Consider counterfactual scenarios where the volatility on the last day of the sample was
three times its actual value and also one-half its actual value. Recompute the 10-day VaR in
exercise 1. What do you see?

3. Repeat exercise 1 computing ES rather than VaR.
4. Using the DCC model estimated in Chapter 7 try to replicate the correlation forecasts in

Figure 8.5, using 10,000 Monte Carlo simulations. Compared with Figure 8.5 do you find
evidence of Monte Carlo estimation error when MC = 10,000?

The answers to these exercises can be found in the Chapter8Results.xlsx file. Which is avail-
able in the companion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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9 Distributions and Copulas for
Integrated Risk Management

1 Chapter Overview

In Chapter 7 we considered multivariate risk models that rely on the normal distri-
bution. In Chapter 6 we saw that the univariate normal distribution provides a poor
description of asset return distributions—even for well-diversified indexes such as the
S&P 500. The normal distribution is convenient but underestimates the probability
of large negative returns. The multivariate normal distribution has similar problems.
It underestimates the joint probability of simultaneous large negative returns across
assets. This in turn means that risk management models built on the multivariate nor-
mal distribution are likely to exaggerate the benefits of portfolio diversification. This
is clearly not a mistake we want to make as risk managers.

In Chapter 6 we built univariate standardized nonnormal distributions of the shocks

zt ∼ D(0,1)

where zt = rt/σ t and where D(∗) is a standardized univariate distribution.
In this chapter we want to build multivariate distributions for our shocks

zt ∼ D(0,ϒt)

where zt is now a vector of asset specific shocks, zi,t = ri,t/σ i,t, and where ϒt is
the dynamic correlation matrix. We are assuming that the individual variances have
already been modeled using the techniques in Chapters 4 and 5. We are also assuming
that the correlation dynamics have been modeled using the DCC model in Chapter 7.

The material in this chapter is relatively complex for two reasons: First, we are
departing from the convenient world of normality. Second, we are working with mul-
tivariate risk models. The chapter proceeds as follows:

l First, we define and plot threshold correlations, which will be our key graphical
tool for detecting multivariate nonnormality.

l Second, we review the multivariate standard normal distribution, and introduce the
multivariate standardized symmetric t distribution and the asymmetric extension.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00009-9
c© 2012 Elsevier, Inc. All rights reserved.
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l Third, we define and develop the copula modeling idea.

l Fourth, we consider risk management and in particular, integrated risk management
using the copula model.

2 Threshold Correlations

Just as we used QQ plots to visualize univariate nonnormality in Chapter 6 we need a
graphical tool for visualizing nonnormality in the multivariate case. Bivariate thresh-
old correlations are useful in this regard. Consider the daily returns on two assets, for
example the S&P 500 and the 10-year bond return introduced in Chapter 7. Threshold
correlations are conventional correlations but computed only on a selected subset of
the data. Consider a probability p and define the corresponding empirical percentile
for asset 1 to be r1( p) and similarly for asset 2, we have r2( p). These empirical per-
centiles, or thresholds, can be viewed as the unconditional VaR for each asset. The
threshold correlation for probability level p is now defined by

ρ(r1,t,r2,t;p)=

{
Corr

(
r1,t,r2,t|r1,t ≤ r1( p) and r2,t ≤ r2( p)

)
if p≤ 0.5

Corr
(
r1,t,r2,t|r1,t > r1( p) and r2,t > r2( p)

)
if p> 0.5

In words, we are computing the correlation between the two assets conditional on
both of them being below their pth percentile if p< 0.5 and above their pth percentile
if p> 0.5. In a scatterplot of the two assets we are including only the data in square
subsets of the lower-left quadrant when p< 0.5 and we are including only the data in
square subsets of the upper-right quadrant when p> 0.5. If we compute the threshold
correlation for a grid of values for p and plot the correlations against p then we get the
threshold correlation plot.

The threshold correlations are informative about the dependence across asset
returns conditional on both returns being either large and negative or large and posi-
tive. They therefore tell us about the tail shape of the bivariate distribution.

The blue line in Figure 9.1 shows the threshold correlation for the S&P 500
return versus the 10-year treasury bond return. When p gets close to 0 or 1 we run
out of observations and cannot compute the threshold correlations. We show only
correlations where at least 20 observations were available. We use a grid of p values
in increments of 0.01. Clearly the most extreme threshold correlations are quite vari-
able and so should perhaps be ignored. Nevertheless, we see an interesting pattern:
The threshold correlations get smaller when we observe large negative stock and bond
returns simultaneously in the left side of the figure. We also see that large positive
stock and bond returns seem to have much higher correlation than the large negative
stock and bond returns. This suggests that the bivariate distribution between stock and
bond returns is asymmetric.

The red line in Figure 9.1 shows the threshold correlations implied by the bivariate
normal distribution when using the average linear correlation coefficient implied by
the two return series. Clearly the normal distribution does not match the threshold
correlations found in the data.
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Figure 9.1 Threshold correlation for S&P 500 versus 10-year treasury bond returns.

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.1 0.30.2 0.4 0.6 0.80.5 0.7 0.9
Quantile

T
hr

es
ho

ld
 c

or
re

la
tio

n

Empirical threshold correlation
Threshold correlation implied
by the normal distribution

Notes: We use daily returns on the S&P 500 index and the 10-year treasury bond index. The
blue line shows the threshold correlations from the returns data and the red line shows the
threshold correlations implied by the normal distribution with a correlation matching that of
the returns data.

Given that we are interested in constructing distributions for the return shocks,
rather than the returns themselves we next compute threshold correlations for the
shocks as follows:

ρ(z1,t,z2,t;p)=

{
Corr

(
z1,t,z2,t|z1,t ≤ z1( p) and z2,t ≤ z2( p)

)
if p≤ 0.5

Corr
(
z1,t,z2,t|z1,t > z1( p) and z2,t > z2( p)

)
if p> 0.5

Figure 9.2 shows the threshold correlation plot using the GARCH shocks rather
than the returns themselves.

Notice that the patterns are quite different in Figure 9.2 compared with Figure 9.1.
Figure 9.2 suggests that the shocks have higher threshold correlations when both
shocks are negative than when they are both positive. This indicates that stocks and
bonds have important nonlinear left-tail dependencies that risk managers need to
model. The threshold correlations implied by the bivariate normal distribution again
provide a relatively poor match of the threshold correlations from the empirical shocks.

3 Multivariate Distributions

In this section we consider multivariate distributions that can be combined with
GARCH (or RV) and DCC models to provide accurate risk models for large systems of
assets. Because we have already modeled the covariance matrix, we need to develop
standardized multivariate distributions. We will first review the multivariate standard
normal distribution, then we will introduce the multivariate standardized symmetric
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Figure 9.2 Threshold correlation for S&P 500 versus 10-year treasury bond GARCH shocks.
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Notes: We use daily GARCH shocks on the S&P 500 index and the 10-year treasury bond
index. The blue line shows the threshold correlations from the empirical shocks and the red
line shows the threshold correlations implied by the normal distribution with a correlation
matching that of the empirical shocks.

t distribution, and finally an asymmetric version of the multivariate standardized t
distribution.

3.1 The Multivariate Standard Normal Distribution

In Chapter 8 we simulated returns from the normal distribution. In the bivariate case
we have the standard normal density with correlation ρ defined by

f (z1,t,z2,t;ρ)=8ρ
(
z1,t,z2,t

)
=

1

2π
√

1− ρ2
exp

(
−

z2
1,t+ z2

2,t− 2ρz1,tz2,t

2(1− ρ2)

)

where 1− ρ2 is the determinant of the bivariate correlation matrix

|ϒ | =

∣∣∣∣1 ρρ 1

∣∣∣∣= 1− ρ2

We can of course allow for the correlation ρ to be time varying using the DCC models
in Chapter 7.

Figure 9.3 shows the threshold correlation for a bivariate normal distribution for
different values of ρ. The figure has been constructed using Monte Carlo random
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Figure 9.3 Simulated threshold correlations from bivariate normal distributions with various
linear correlations.
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Notes: The threshold correlations from the bivariate normal distribution are plotted for various
values of the linear correlation parameter.

numbers as in Chapter 8. Notice that regardless of ρ the threshold correlations go to
zero as the threshold we consider becomes large (positive or negative). The bivariate
normal distribution cannot accurately describe data that has large threshold correla-
tions for extreme values of p.

In the multivariate case with n assets we have the density with correlation matrixϒ

f (zt;ϒ)=8ϒ (zt)=
1

(2π)n/2|ϒ |1/2
exp

(
−

1
2 z′tϒ

−1zt

)
which also will have the unfortunate property that each pair of assets in the vector zt

will have threshold correlations that tend to zero for large thresholds. Again we could
have a dynamic correlation matrix.

Because of the time-varying variances and correlations we had to use the simulation
methods in Chapter 8 to construct multiday VaR and ES. But we saw in Chapter 7 that
the 1-day VaR is easily computed via

VaR p
t+1 =−σPF,t+18

−1
p , where σPF,t+1 =

√
w′tDt+1ϒt+1Dt+1wt

where we have portfolio weights wt and the diagonal matrix of standard deviations
Dt+1.
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The 1-day ES is also easily computed using

ES p
t+1 = σPF,t+1

φ
(
8−1

p

)
p

The multivariate normal distribution has the convenient property that a linear
combination of multivariate normal variables is also normally distributed. Because
a portfolio is nothing more than a linear combination of asset returns, the multivariate
normal distribution is very tempting to use. However the fact that it does not ade-
quately capture the (multivariate) risk of returns means that the convenience of the
normal distribution comes at a too-high price for risk management purposes. We there-
fore now consider the multivariate t distribution.

3.2 The Multivariate Standardized t Distribution

In Chapter 6 we considered the univariate standardized t distribution that had the den-
sity

ft̃(d)(z;d)= C (d)(1+ z2/(d− 2))−(1+d)/2, for d > 2

where the normalizing constant is

C (d)=
0((d+ 1)/2)

0(d/2)
√
(d− 2)π

The bivariate standardized t distribution with correlation ρ takes the following
form:

f t̃(d,ρ)(z1,z2;d,ρ)= C (d,ρ)

(
1+

z2
1+ z2

2− 2ρz1z2

(d− 2)(1− ρ2)

)−(d+2)/2

, for d > 2

where

C (d,ρ)=
0((d+ 2)/2)

0 (d/2)(d− 2)π
(
1− ρ2

)1/2
Note that d is a scalar here and so the two variables have the same degree of tail
fatness.

Figure 9.4 shows simulated threshold correlations of the bivariate standard t dis-
tribution for different values of d and ρ. Notice that we can generate quite flexible
degrees of tail dependence between the two variables when using a multivariate t dis-
tribution. However, we are constrained in one important sense: Just as the univariate t
distribution is symmetric so is the multivariate t distributions. The threshold correla-
tions are therefore symmetric in the vertical axis.
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Figure 9.4 Simulated threshold correlations from the symmetric t distribution with various
parameters.
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Notes: We simulate a large number of realizations from the bivariate symmetric t distribution.
The figure shows the threshold correlations from the simulated data when using various values
of the correlation and d parameters.

In the case of n assets we have the multivariate t distribution

f t̃(d,ϒ)(z;d,ϒ)= C (d,ϒ)

(
1+

z′ϒ−1z

(d− 2)

)−(d+n)/2

, for d > 2

where

C (d,ϒ)=
0((d+ n)/2)

0 (d/2)((d− 2)π)n/2 |ϒ |1/2

Using the density definition we can construct the likelihood function

lnL=
T∑

t=1

ln
(
f t̃(d,ϒ)(zt;d,ϒ)

)
which can be maximized to estimate d. The correlation matrix can be preestimated
using

ϒ =
1

T

T∑
t=1

ztz
′

t
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The correlation matrix ϒ can also be made dynamic, which can be estimated in a
previous step using the DCC approach in Chapter 7.

Following the logic in Chapter 6, an easier estimate of d can be obtained by com-
puting the kurtosis, ζ 2, of each of the n variables. Recall that the relationship between
excess kurtosis and d is

ζ 2 =
6

d− 4

Using all the information in the n variables we can estimate d using

d =
6

1
n

∑n
i=1 ζ 2,i

+ 4

where ζ 2,i is the sample excess kurtosis of the ith variable.
A portfolio of multivariate t returns does not itself follow the t distribution unfortu-

nately. We therefore need to rely on Monte Carlo simulation to compute portfolio VaR
and ES even for the 1-day horizon.

The standardized symmetric n dimensional t variable can be simulated as follows:

z=

√
d− 2

d

√
WU

where W is a univariate inverse gamma random variable, W ∼ IG
( d

2 ,
d
2

)
, and U is a

vector of multivariate standard normal variables, U ∼ N (0,ϒ), and where U and W
are independent. This representation can be used to simulate standardized multivariate
t variables. First, simulate a scalar random W, then simulate a vector random U (as in
Chapter 8), and then construct z as just shown.

The simulated z will have a mean of zero, a standard deviation of one, and a corre-
lation matrix ϒ . Once we have simulated MC realizations of the vector z we can use
the techniques in Chapter 8 to simulate MC realizations of the vector of asset returns
(using GARCH for variances and DCC for correlations), and from this the portfolio
VaR and ES can be computed by simulation as well.

3.3 The Multivariate Asymmetric t Distribution

Just as we developed a relatively complex asymmetric univariate t distribution in
Chapter 6, we can also develop a relatively complex asymmetric multivariate t dis-
tribution.

Let λ be an n× 1 vector of asymmetry parameters. The asymmetric t distribution
is then defined by

fasỹt(z;d,λ,ϒ)

=

Casy
(
d, ϒ̇

)
K d+n

2

(√(
d+ (z− µ̇)′ ϒ̇−1 (z− µ̇)

)
λ′ϒ̇−1λ

)(
1+ 1

d (z− µ̇)
′ ϒ̇−1 (z− µ̇)

)−(d+n)/2

exp
(
−(z− µ̇)′ ϒ̇−1λ

)(√(
d+ (z− µ̇)′ ϒ̇−1 (z− µ̇)

)
λ′ϒ̇−1λ

)−(d+n)/2
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where

µ̇=−
d

d− 2
λ,

ϒ̇ =
d− 2

d

(
ϒ −

2d2

(d− 2)2 (d− 4)
λλ′
)
, and

Casy
(
d, ϒ̇

)
=

2(1−(d+n)/2)

0(d/2)(dπ)n/2 |ϒ̇ |
1
2

and where K d+n
2
(x) is the so-called modified Bessel function of the third kind, which

can be evaluated in Excel using the formula besselk(x, (d+ n)/2).
Note that the vector µ̇ and matrix ϒ̇ are constructed so that the vector of random

shocks z will have a mean of zero, a standard deviation of one, and the correlation
matrix ϒ . Note also that if λ= 0 then µ̇= 0 and ϒ̇ = d−2

d ϒ .
Although it is not obvious from this definition of fasỹt(z;d,λ), we can show that the

asymmetric t distribution will converge to the symmetric t distribution as the asym-
metry parameter vector λ goes to a vector of zeros.

Figure 9.5 shows simulated threshold correlations of the bivariate asymmetric t dis-
tribution when setting λ= 0.2 for both assets, d = 10, and when considering different
values of ρ. Look closely at Figure 9.5. Note that the asymmetric t distribution is able
to capture asymmetries in the threshold correlations and gaps in the threshold correla-
tion around the median (the 0.5 quantile on the horizontal axis), which we saw in the
stock and bond thresholds in Figures 9.1 and 9.2.

From the density fasỹt(z;d,λ,ϒ) we can construct the likelihood function

lnL=
T∑

t=1

ln
(

fasỹt(zt;d,λ,ϒ)
)

which can be maximized to estimate the scalar d and and vector λ. As before, the
correlation matrix can be preestimated using

ϒ =
1

T

T∑
t=1

ztz
′

t

The correlation matrix ϒ can also be made dynamic, ϒt, which can be estimated
in a previous step using the DCC approach in Chapter 7 as mentioned earlier.

Simulated values of the (nonstandardized) asymmetric t distribution can be con-
structed from inverse gamma and normal variables. We now have

z= µ̇+
√

WU+ λW

where W is again an inverse gamma variable W ∼ IG
( d

2 ,
d
2

)
, U is a vector of normal

variables, U ∼ N
(
0, ϒ̇

)
, and U and W are independent. Note that the asymmetric t dis-

tribution generalizes the symmetric t distribution by adding a term related to the same
inverse gamma random variable W, which is now scaled by the asymmetry vector λ.
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Figure 9.5 Simulated threshold correlations from the asymmetric t distribution with various
linear correlations.
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Notes: We simulate a large number of realizations from the bivariate asymmetric t distribution.
The figure shows the threshold correlations from the simulated data when using various
correlation values.

The simulated z vector will have the following mean:

E [z]= µ̇+
d

d− 2
λ= 0

where we have used the definition of µ̇ from before. The variance-covariance matrix
of the simulated shocks will be

Cov(z)=
d

d− 2
ϒ̇ +

2d2

(d− 2)2 (d− 4)
λλ′ = ϒ

where we have used the definition of ϒ̇ from before.
The asymmetric t distribution allows for much more flexibility than the symmetric

t distribution because of the vector of asymmetry parameters, λ. However in large
dimensions (i.e., for a large number of assets, n) estimating the n different λs may be
difficult.

Note that the scalar d and the vector λ have to describe the n univariate distributions
as well as the joint density of the n assets. We may be able to generate even more
flexibility by modeling the univariate distributions separately using for example the
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asymmetric t distribution in Chapter 6. In this case each asset i would have its own d1,i
and its own d2,i (using Chapter 6 notation) capturing univariate skewness and kurtosis.
But we then need a method for linking the n distributions together. Fortunately, this is
exactly what copula models do.

4 The Copula Modeling Approach

The multivariate normal distribution underestimates the threshold correlations typi-
cally found in daily returns. The multivariate t distribution allows for larger threshold
correlations but the condition that the d parameter is the same across all assets is
restrictive. The asymmetric t distribution is more flexible but it requires estimating
many parameters simultaneously.

Ideally we would like to have a modeling approach where the univariate models
from Chapters 4 through 6 can be combined to form a proper multivariate distribution.
Fortunately, the so-called copula functions have been developed in statistics to provide
us exactly with the tool we need.

Consider n assets with potentially different univariate (also known as marginal)
distributions, fi(zi) and cumulative density functions (CDFs) ui = Fi(zi) for i=
1,2, . . . , n. Note that ui is simply the probability of observing a value below zi for
asset i. Our goal is to link the marginal distributions across the assets to generate a
valid multivariate density.

4.1 Sklar’s Theorem

Sklar’s theorem provides us with the theoretical foundation we need. It states that
for a very general class of multivariate cumulative density functions, defined as
F(z1, . . . ,zn), with marginal CDFs F1(z1), . . . ,Fn(zn), there exists a unique copula
function, G(•) linking the marginals to form the joint distribution

F(z1, . . . ,zn)= G(F1(z1), . . . ,Fn(zn))

= G(u1, . . . ,un)

The G(u1, . . . ,un) function is sometimes known as the copula CDF.
Sklar’s theorem then implies that the multivariate probability density function

(PDF) is

f (z1, . . . ,zn)=
∂nG(F1(z1), . . . ,Fn(zn))

∂z1 · · ·∂zn

=
∂nG(u1, . . . ,un)

∂u1 · · ·∂un
×

n∏
i=1

fi(zi)

= g(u1, . . . ,un)×

n∏
i=1

fi(zi)
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where the copula PDF is defined in the last equation as

g(u1, . . . ,un)≡
∂nG(u1, . . . ,un)

∂u1 · · ·∂un

Consider now the logarithm of the PDF

ln f (z1, . . . ,zn)= lng(u1, . . . ,un)+

n∑
i=1

ln fi(zi)

This decomposition shows that we can build the large and complex multivariate
density in a number of much easier steps: First, we build and estimate n potentially
different marginal distribution models f1(z1), . . . , fn(zn) using the methods in Chap-
ters 4 through 6. Second, we decide on the copula PDF g(u1, . . . ,un) and estimate it
using the probability outputs ui from the marginals as the data.

Notice how Sklar’s theorem offers a very powerful framework for risk model
builders. Notice also the analogy with GARCH and DCC model building: The DCC
correlation model allows us to use different GARCH models for each asset. Similarly
copula models allow us to use a different univariate density model for each asset.

The log likelihood function corresponding to the entire copula distribution model
is constructed by summing the log PDF over the T observations in our sample

lnL=
T∑

t=1

lng(u1,t, . . . ,un,t)+

T∑
t=1

n∑
i=1

ln fi(zi,t)

But if we have estimated the n marginal distributions in a first step then the copula
likelihood function is simply

lnLg =

T∑
t=1

lng(u1,t, . . . ,un,t)

The upshot of this is that we only have to estimate the parameters in the copula
PDF function g(u1,t, . . . ,un,t) in a single step. We can estimate all the parameters in
the marginal PDFs beforehand. This makes high-dimensional modeling possible. We
can for example allow for each asset to follow different univariate asymmetric t dis-
tributions (from Chapter 6) each estimated one at a time. Taking these asset-specific
distributions as given we can then link them together by estimating the parameters in
g(u1,t, . . . ,un,t) in the second step.

Sklar’s theorem is very general: It holds for a large class of multivariate distri-
butions. However it is not very specific: It does not say anything about the functional
form of G(u1, . . . ,un) and thus g(u1,t, . . . ,un,t). In order to implement the copula mod-
elling approach we need to make specific modeling choices for the copula CDF.
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4.2 The Normal Copula

After Sklar’s theorem was published in 1959 researchers began to search for potential
specific forms for the copula function. Given that the copula CDF must take as inputs
marginal CDFs and deliver as output a multivariate CDF one line of research simply
took known multivariate distributions and reverse engineered them to take as input
probabilities, u, instead of shocks, z.

The most convenient multivariate distribution is the standard normal, and from this
we can build the normal copula function. In the bivariate case we have

G(u1,u2;ρ
∗)=8ρ∗(8

−1(u1),8
−1(u2))

=8ρ∗(8
−1(F1 (z1)),8

−1(F2 (z2)))

where ρ∗ is the correlation between8−1(u1) and8−1(u2) and we will refer to it as the
copula correlation. As in previous chapters, 8−1(•) denotes the univariate standard
normal inverse CDF.

Note that if the two marginal densities, F1 and F2, are standard normal then
we get

G(u1,u2;ρ
∗)=8ρ∗(8

−1(8(z1)),8
−1(8(z2)))

=8ρ∗(z1,z2)

which is simply the bivariate normal distribution. But note also that if the marginal
distributions are NOT the normal then the normal copula does NOT imply the normal
distribution. The normal copula is much more flexible than the normal distribution
because the normal copula allows for the marginals to be nonnormal, which in turn
can generate a multitude of nonnormal multivariate distributions.

In order to estimate the normal copula we need the normal copula PDF. It can be
derived as

g(u1,u2;ρ
∗)=

φρ∗(8
−1(u1),8

−1(u2))

φ
(
8−1(u1)

)
φ
(
8−1(u2)

)
=

1√
1− ρ∗2

exp

{
−
8−1(u1)

2
+8−1(u2)

2
− 2ρ∗8−1(u1)8

−1(u2)

2(1− ρ∗2)

+
8−1(u1)

2
+8−1(u2)

2

2

}

where φρ∗ (∗) denotes the bivariate standard normal PDF and φ (∗) denotes the uni-
variate standard normal PDF. The copula correlation, ρ∗, can now be estimated by
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maximizing the likelihood

lnLg =

T∑
t=1

lng(u1,t,u2,t)=−
T

2
ln
(
1− ρ∗2

)
−

T∑
t=1

8−1(u1,t)
2
+8−1(u2,t)

2
− 2ρ∗8−1(u1,t)8

−1(u2,t)

2(1− ρ∗2)

+
8−1(u1,t)

2
+8−1(u2,t)

2

2

where we have u1,t = F1
(
z1,t
)

and u2,t = F2
(
z2,t
)
.

In the general case with n assets we have the multivariate normal copula CDF and
copula PDF

G(u1, . . . ,un;ϒ
∗)=8ϒ∗(8

−1(u1), . . . ,8
−1(un))

g(u1, . . . ,u2;ϒ
∗)=

φϒ∗(8
−1(u1), . . . ,8

−1(un))∏n
i=1φ

(
8−1(ui)

)
=
∣∣ϒ∗∣∣− 1

2 exp

{
−

1

2
8−1(u)′(ϒ∗−1

− In)8
−1(u)

}
where u is the vector with elements (u1, . . . ,un), and where In is an n-dimensional
identity matrix that has ones on the diagonal and zeros elsewhere. The correlation
matrix, ϒ∗, in the normal copula can be estimated by maximizing the likelihood

lnLg =

T∑
t=1

lng(u1,t, . . . ,un,t)

=−
1

2

T∑
t=1

ln
∣∣ϒ∗∣∣− 1

2

T∑
t=1

8−1(ut)
′(ϒ∗−1

− In)8
−1(ut)

If the number of assets is large then ϒ∗ contains many elements to be estimated and
numerical optimization will be difficult.

Let us define the copula shocks for asset i on day t as follows:

z∗i,t =8
−1(ui,t)=8

−1 (Fi(zi,t)
)

An estimate of the copula correlation matrix can be obtained via correlation targeting

ϒ∗ =
1

T

T∑
t=1

z∗t z∗′t

In small dimensions this can be used as starting values of the MLE optimization. In
large dimensions it provides a feasible estimate where the MLE is infeasible.
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Figure 9.6 Simulated threshold correlations from the bivariate normal copula with various
copula correlations.

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5 0.75 1
Quantile

T
hr

es
ho

ld
 c

or
re

la
tio

n

ρ * = −0.3 ρ * = 0 ρ * = 0.3 ρ * = 0.6 ρ * = 0.9

Notes: We simulate a large number of realizations from the bivariate normal copula. The figure
shows the threshold correlations from the simulated data when using various values of the
copula correlation parameter.

Consider again the previous bivariate normal copula. We have the bivariate distri-
bution

F(z1,z2)= G(u1,u2)

=8ρ∗(8
−1(u1),8

−1(u2))

Figure 9.6 shows the threshold correlation between u1 and u2 for different values of
the copula correlation ρ∗. Naturally, the normal copula threshold correlations look
similar to the normal distribution threshold correlations in Figure 9.3.

Note that the threshold correlations are computed from the u1 and u2 probabilities
and not from the z1 and z2 shocks, which was the case in Figures 9.1 through 9.5.
The normal copula gives us flexibility by allowing the marginal distributions F1 and
F2 to be flexible but the multivariate aspects of the normal distribution remains: The
threshold correlations go to zero for extreme u1 and u2 observations, which is likely
not desirable in a risk management model where extreme moves are often highly cor-
related across assets.

4.3 The t Copula

The normal copula is relatively convenient and much more flexible than the normal
distribution but for many financial risk applications it does not allow for enough
dependence between the tails of the distributions of the different assets. This was
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illustrated by the normal copula threshold correlations in Figure 9.6, which decay to
zero for extreme tails.

Fortunately a copula model can be built from the t distribution as well. Consider
first the bivariate case. The bivariate t copula CDF is defined by

G(u1,u2;ρ
∗,d)= t(d,ρ∗)

(
t−1(u1;d), t

−1(u2;d)
)

where t(d,ρ∗) (∗) denotes the (not standardized) symmetric multivariate t distribution,
and t−1(u;d) denotes the inverse CDF of the symmetric (not standardized) univariate
t distribution, which we denoted t−1

u1
(d) in Chapter 6.

The corresponding bivariate t copula PDF is

g(u1,u2;ρ
∗,d)=

t(d,ρ∗)(t−1(u1;d), t−1(u2;d))

ft(d)
(
t−1(u1;d);d

)
ft(d)

(
t−1(u2;d);d

)
=

0
(

d+2
2

)
√

1− ρ20
(

d
2

)
 0

(
d
2

)
0
(

d+1
2

)
2

×

(
1+

(t−1(u1;d))2+ (t−1(u2;d))2− 2ρt−1(u1;d)t−1(u1;d)

d(1− ρ2)

)− d+2
2

(
1+

(t−1(u1;d))2

d

)− d+1
2
(

1+
(t−1(u2;d))2

d

)− d+1
2

In Figure 9.7 we plot the threshold correlation between u1 and u2 for different
values of the copula correlation ρ∗ and the tail fatness parameter d. Naturally, the t
copula threshold correlations look similar to the t distribution threshold correlations
in Figure 9.4 but different from the normal threshold correlations in Figure 9.6.

The t copula can generate large threshold correlations for extreme moves in the
assets. Furthermore it allows for individual modeling of the marginal distributions,
which allows for much flexibility in the resulting multivariate distribution.

In the general case of n assets we have the t copula CDF

G(u1, . . . ,un;ϒ
∗,d)= t(d,ϒ∗)

(
t−1(u1;d), . . . , t

−1(un;d)
)

and the t copula PDF
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Figure 9.7 Simulated threshold correlations from the symmetric t copula with various
parameters.
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Notes: We simulate a large number of realizations from the bivariate symmetric t copula. The
figure shows the threshold correlations from the simulated data when using various values of
the copula correlation and d parameter.

Notice that d is a scalar, which makes the t copula somewhat restrictive but also
makes it implementable for many assets.

Maximum likelihood estimation can again be used to estimate the parameters d and
ϒ∗ in the t copula. We need to maximize

lnLg =

T∑
t=1

lng(u1,t, . . . ,un,t)

defining again the copula shocks for asset i on day t as follows:

z∗i,t = t−1(ui,t;d)= t−1(Fi
(
zi,t
)
;d)

In large dimensions we need to target the copula correlation matrix, which can be done
as before using

ϒ∗ =
1

T

T∑
t=1

z∗t z∗′t

With this matrix preestimated we will only be searching for the parameter d in the
maximization of lnLg earlier.
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4.4 Other Copula Models

An asymmetric t copula can be developed from the asymmetric multivariate t distribu-
tion in the same way that we developed the symmetric t copula from the multivariate
t distribution earlier.

Figure 9.8 shows the iso-probability or probability contour plots of the bivariate
normal copula, the symmetric t copula, and the asymmetric (or skewed) t copula with
positive or negative λ. Each line in the contour plot represents the combinations of z1
and z2 that correspond to an equal level of probability. The more extreme values of
z1 and z2 in the outer contours therefore correspond to lower levels of probability. We
have essentially taken the bivariate distribution, which is a 3D graph, and sliced it at
different levels of probability. The probability levels for each ring are the same across
the four panels in Figure 9.8.

Consider the bottom-left corner of each panel in Figure 9.8. This corresponds to
extreme outcomes where both assets have a large negative shock. Notice that the
symmetric t copula and particularly the asymmetric t copula with negative λ can
accommodate the largest (negative) shocks on the outer contours. The two univari-
ate distributions are assumed to be standard normal in Figure 9.8.

In large dimensions it may be necessary to restrict the asymmetry parameter λ to be
the same across all or across subsets of the assets. But note that the asymmetric t copula
still offers flexibility because we can use the univariate asymmetric t distribution in
Chapter 6 to model the marginal distributions so that the λ in the asymmetric t copula
only has to capture multivariate aspects of asymmetry. In the multivariate asymmetric
t distribution the vector of λ parameters needs to capture asset-specific as well as
multivariate asymmetries.

We have only considered normal and t copulas here. Other classes of copula func-
tions exist as well. However, only a few copula functions are applicable in high dimen-
sions; that is, when the number of assets, n, is large.

So far we have assumed that the copula correlation matrix, ϒ∗, is constant across
time. However, we can let the copula correlations be dynamic using the DCC approach
in Chapter 7. We would now use the copula shocks z∗i,t as data input into the esti-
mation of the dynamic copula correlations instead of the zi,t that were used in
Chapter 7.

5 Risk Management Using Copula Models

5.1 Copula VaR and ES by Simulation

When we want to compute portfolio VaR and ES from copula models we need to
rely on Monte Carlo simulation. Monte Carlo simulation essentially reverses the steps
taken in model building. Recall that we have built the copula model from returns as
follows:

l First, estimate a dynamic volatility model, σ i,t (Chapters 4 and 5), on each asset to
get from observed return Ri,t to shock zi,t = ri,t/σ i,t.
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Figure 9.8 Contour probability plots for the normal, symmetric t, and asymmetric skewed t
copula.
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Notes: We plot the contour probabilities for the normal, symmetric t, and asymmetric skewed t
copulas. The marginal distributions are assumed to be standard normal. Each line on the figure
corresponds to a particular probability level. The probability levels are held fixed across the
four panels.
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l Second, estimate a density model for each asset (Chapter 6) to get the probabilities
ui,t = Fi(zi,t) for each asset.

l Third, estimate the parameters in the copula model using lnLg =∑T
t=1 lng(u1,t, . . . ,un,t).

When we simulate data from the copula model we need to reverse the steps taken
in the estimation of the model. We get the algorithm:

l First, simulate the probabilities (u1,t, . . . ,un,t) from the copula model.

l Second, create shocks from the copula probabilities using the marginal inverse
CDFs zi,t = F−1

i (ui,t) on each asset.

l Third, create returns from shocks using the dynamic volatility models, ri,t = σ i,tzi,t

on each asset.

Once we have simulated MC vectors of returns from the model we can easily com-
pute the simulated portfolio returns using a given portfolio allocation. The portfolio
VaR, ES, and other measures can then be computed on the simulated portfolio returns
in Chapter 8. For example, the 1% VaR will be the first percentile of all the simulated
portfolio return paths.

5.2 Integrated Risk Management

Integrated risk management is concerned with the aggregation of risks across different
business units within an organization. Each business unit may have its own risk model
but the senior management needs to know the overall risk to the organization arising
in the aggregate from the different units. In short, senior management needs a method
for combining the marginal distributions of returns in each business unit.

In the simplest (but highly unrealistic) case, we can assume that the multivariate
normal model gives a good description of the overall risk of the firm. If the correlations
between all the units are one (also not realistic) then we get a very simple result.
Consider first the bivariate case

VaRp
t+1 =−

√
w2

1,tσ
2
1,t+w2

2,tσ
2
2,t+ 2w1,tw2,tρ12,tσ 1,tσ 2,t8

−1
p

=−

√(
w1,tσ 1,t+w2,tσ 2,t

)2
8−1

p

=

(
w1,tVaRp

1,t+1+w2,tVaRp
2,t+1

)
where we have assumed the weights are positive. The total VaR is simply the
(weighted) sum of the two individual business unit VaRs under these specific
assumptions.

In the general case of n business units we similarly have

VaRp
t+1 =

n∑
i=1

wi,tVaRp
i,t+1
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but again only when the returns are multivariate normal with correlation equal to one
between all pairs of units.

In the more general case where the returns are not normally distributed with all
correlations equal to one, we need to specify the multivariate distribution from the
individual risk models. Copulas do exactly that and they are therefore very well suited
for integrated risk management. But we do need to estimate the copula parameters and
also need to rely on Monte Carlo simulation to compute organization wide VaRs and
other risk measures. The methods in this and the previous chapter can be used for this
purpose.

6 Summary

Multivariate risk models require assumptions about the multivariate distribution of
return shocks. The multivariate normal distribution is by far the most convenient
model but it does not allow for enough extreme dependence in most risk manage-
ment applications. We can use the threshold correlation to measure extreme depen-
dence in observed asset returns and in the available multivariate distributions. The
multivariate symmetric t and in particular the asymmetric t distribution provides the
larger threshold correlations that we need, but in high dimension the asymmetric t
may be cumbersome to estimate. Copula models allow us to link together a wide
range of marginal distributions. The normal and t copulas we have studied are fairly
flexible and are applicable in high dimensions. Copulas are also well suited for inte-
grated risk management where the risk models from individual business units must be
linked together to provide a sensible aggregate measure of risk for the organization as a
whole.

Further Resources

For powerful applications of threshold correlations in equity markets, see Longin and
Solnik (2001), Ang and Chen (2002), and Okimoto (2008).

Sklar’s theorem is proved in Sklar (1959). The multivariate symmetric and asym-
metric t distributions are analyzed in Demarta and McNeil (2005), who also develop
the t copula model. Jondeau and Rockinger (2006) develop the copula-GARCH
approach advocated here.

Thorough treatments of copula models are provided in the books by Cherubini et al.
(2004) and McNeil et al. (2005). Surveys focusing on risk management applications
of copulas can be found in Embrechts et al. (2003, 2002), Fischer et al. (2009), and
Patton (2009).

Model selection in the context of copulas is studied in Chen and Fan (2006) and
Kole et al. (2007). Default correlation modeling using copulas is done in Li (2000).

Dynamic copula models have been developed in Patton (2004, 2006), Patton and
Oh (2011), Chollete et al. (2009), Christoffersen et al. (2011), Christoffersen and Lan-
glois (2011), and Creal et al. (2011). Hafner and Manner (2010) suggest a stochastic
copula approach that requires simulation in estimation.
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A framework for integrated risk management using copulas is developed in Rosen-
berg and Schuermann (2006). Copula models are also well suited for studying financial
contagion as done in Rodriguez (2007).
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Empirical Exercises

Open the Chapter9Data.xlsx file from the web site.

1. Replicate the threshold correlations in Figures 9.1 and 9.2. Use a grid of thresholds from
0.15 to 0.85 in increments of 0.01.

2. Simulate 10,000 data points from a bivariate normal distribution to replicate the thresholds
in Figure 9.3.

3. Estimate a normal copula model on the S&P 500 and 10-year bond return data. Assume that
the marginal distributions have RiskMetrics volatility with symmetric t shocks. Estimate the
d parameter for each asset first. Assume that the correlation across the two assets is constant.

4. Simulate 10,000 sets of returns from the model in exercise 3. Compute the 1% VaR and ES
from the model.

The answers to these exercises can be found in the Chapter9Results.xlsx file on the compan-
ion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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10 Option Pricing

1 Chapter Overview

The previous chapters have established a framework for constructing the distribution
of a portfolio of assets with simple linear payoffs—for example, stocks, bonds, foreign
exchange, forwards, futures, and commodities. This chapter is devoted to the pricing
of options. An option derives its value from an underlying asset, but its payoff is not
a linear function of the underlying asset price, and so the option price is not a linear
function of the underlying asset price either. This nonlinearity adds complications to
pricing and risk management.

In this chapter we will do the following:

l Provide some basic definitions and derive a no-arbitrage relationship between put
and call prices on the same underlying asset.

l Briefly summarize the binomial tree approach to option pricing.

l Establish an option pricing formula under the simplistic assumption that daily
returns on the underlying asset follow a normal distribution with constant variance.
We will refer to this as the Black-Scholes-Merton (BSM) formula. While the BSM
model provides a useful benchmark, it systematically misprices observed options.
We therefore consider the following alternatives.

l Extend the normal distribution model by allowing for skewness and kurtosis in
returns. We will rely on the Gram-Charlier expansion around the normal distribu-
tion to derive an option pricing formula in this case.

l Extend the model by allowing for time-varying variance relying on the GARCH
models from Chapter 4. Two GARCH option pricing models are considered: one
allows for general variance specifications, but requires Monte Carlo simulation or
another numerical technique; the other assumes a specific variance dynamic but
provides a closed-form solution for the option price.

l Introduce the ad hoc implied volatility function (IVF) approach to option pric-
ing. The IVF method is not derived from any coherent theory but it works well
in practice.

In this chapter, we will mainly focus attention on the pricing of European options,
which can only be exercised on the maturity date. American options that can be

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00010-5
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exercised early will only be discussed briefly. The following chapter will describe in
detail the risk management techniques available when the portfolio contains options.

There is enough material in this chapter to fill an entire book, so needless to say
the discussion will be brief. We will simply provide an overview of different available
option pricing models and suggest further readings at the end of the chapter.

2 Basic Definitions

A European call option gives the owner the right but not the obligation (that is, it gives
the option) to buy a unit of the underlying asset T̃ days from now at the price X. We
refer to T̃ as the days to maturity and X as the strike price of the option. We denote the
price of the European call option today by c, the price of the underlying asset today by
St, and at maturity of the option by St+T̃ .

A European put option gives the owner of the option the right to sell a unit of the
underlying asset T̃ days from now at the price X. We denote the price of the European
put option today by p. The European option restricts the owner from exercising the
option before the maturity date. American options can be exercised any time before
the maturity date.

We note that the number of days to maturity, T̃ , is counted in calendar days and not
in trading days. A standard year of course has 365 calendar days but only around 252
trading days. In previous chapters, we have been using trading days for returns and
Value-at-Risk (VaR) horizons, for example, referring to a two-week VaR as a 10-day
VaR. In this chapter it is therefore important to note that we are using 365 days per
year when calculating volatilities and interest rates.

The payoff function is the option’s defining characteristic. Figure 10.1 contains
four panels. The top-left panel shows the payoff from a call option and the top-right
panel shows the payoff of a put option both with a strike price of 1137. The payoffs
are drawn as a function of the hypothetical price of the underlying asset at maturity of
the option, St+T̃ . Mathematically, the payoff function for a call option is

Max
{
St+T̃ −X,0

}
and for a put option it is

Max
{
X− St+T̃ ,0

}
The bottom-left panel of Figure 10.1 shows the payoff function of the underlying asset
itself, which is simply a straight line with a slope of one. The bottom right-hand panel
shows the value at maturity of a risk-free bond, which pays the face value 1, at maturity
t+ T̃ regardless of the future price of the underlying risky asset and indeed regardless
of any other assets. Notice the linear payoffs of stocks and bonds and the nonlinear
payoffs of options.

We next consider the relationship between European call and put option prices.
Put-call parity does not rely on any particular option pricing model. It states

St+ p= c+X exp(−rf T̃)
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Figure 10.1 Payoff as a function of the value of the underlying asset at maturity: Call option,
put option, underlying asset, and risk-free bond.
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Notes: All panels have the future value of the underlying asset on the horizontal axis. The
top-left panel plots the call option value, the top right plots the put option value, the bottom left
plots the underlying asset itself, and the bottom right plots the risk-free bond.

It can be derived from considering two portfolios: One consists of the underlying asset
and the put option and another consists of the call option, and a cash position equal to
the discounted value of the strike price. Whether the underlying asset price at maturity,
St+T̃ , ends up below or above the strike price X, both portfolios will have the same
value, namely Max

{
St+T̃ ,X

}
, at maturity and therefore they must have the same value

today, otherwise arbitrage opportunities would exist: Investors would buy the cheaper
of the two portfolios, sell the expensive portfolio, and make risk-free profits. The
portfolio values underlying this argument are shown in the following:

Time t Time t + T̃

Portfolio I If St+T̃ ≤ X If St+T̃ > X

St St+T̃ St+T̃

p X− St+T̃ 0

St+ p X St+T̃

Portfolio II If St+T̃ ≤ X If St+T̃ > X

c 0 St+T̃ −X

X exp(−rf T̃) X X

c+X exp(−rf T̃) X St+T̃

The put-call parity also suggests how options can be used in risk management. Sup-
pose an investor who has an investment horizon of T̃ days owns a stock with current
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value St. The value of the stock at the maturity of the option is St+T̃ , which in the worst
case could be zero. But an investor who owns the stock along with a put option with
a strike price of X is guaranteed the future portfolio value Max

{
St+T̃ ,X

}
, which is at

least X. The downside of the stock portfolio including this so-called protective put is
thus limited, whereas the upside is still unlimited. The protection is not free however
as buying the put option requires paying the current put option price or premium, p.

3 Option Pricing Using Binomial Trees

The key challenge we face when wanting to find a fair value of an option is that
it depends on the distribution of the future price of the underlying risky asset (the
stock). We begin by making the simplest possible assumption about this distribution,
namely that it is binomial. This means that in a short interval of time, the stock price
can only take on one of two values, which we can think of as up and down. Clearly
this is the simplest possible assumption we can make: If the stock could only take on
one possible value going forward then it would not be risky at all. While simple, the
binomial tree approach is able to compute the fair market value of American options,
which are complicated because early exercise is possible.

The binomial tree option pricing method will be illustrated using the following
example: We want to find the fair value of a call and a put option with three months to
maturity and a strike price of $900. The current price of the underlying stock is $1,000
and the volatility of the log return on the stock is 0.60 or 60% per year corresponding
to 0.60/

√
365= 3.1405% per calendar day.

3.1 Step 1: Build the Tree for the Stock Price

We first must model the distribution of the stock price. The binomial model assumes
that the stock price can only take on one of two values at the end of each period.
This simple assumption enables us to map out exactly all the possible future values of
the stock price. In our example we will assume that the tree has two steps during the
six-month maturity of the option, but in practice, a hundred or so steps will be used.
The more steps we use, the more accurate the model price will be, but of course the
computational burden will increase as well.

Table 10.1 shows how the tree is built in Excel. We know that today’s stock price
is $1,000 and so we know the starting point of the tree. We also know the volatility of
the underlying stock return (60% per year) and so we know the magnitude of a typical
move in the stock price. We need to make sure that the tree accurately reflects the 60%
stock return volatility per year.

If the option has three months to maturity and we are building a tree with two
steps then each step in the tree corresponds to 1.5 months. The magnitude of the
up and down move in each step should therefore reflect a volatility of 0.6

√
dt =

0.6
√
(3/12)/2≈ 21.21%. In this equation dt denotes the length (in years) of a step

in the tree. If we had measured volatility in days then dt should be measured in days
as well.
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Table 10.1 Building the binomial tree forward from the current
stock price

Market Variable D
St = 1000 1528.47
Annual rf = 0.05

Contract Terms
X= 900 B
T = 0.25 1236.31

Parameters
Annual Vol= 0.6
tree steps= 2 A E
dt= 0.125 1000.00 1000.00
u= 1.23631111
d= 0.808857893

C
808.86

F
654.25

Notes: We construct a two-step binomial tree from today’s price of $1,000 using an
annual volatility of 60%. The total maturity of the tree is three months.

Because we are using log returns a one standard deviation up move corresponds to
a gross return of

u= exp(0.2121)= 1.2363

and a one standard deviation down move corresponds to a gross return of

d = 1/u= exp(−0.2121)= 0.8089

Using these up and down factors the tree is built from the current price of $1,000
on the left side to three potential values in three months, namely $1,528.47 if the stock
price moves up twice, $1,000 if it has one up and one down move, and $654.25 if it
moves down twice.

3.2 Step 2: Compute the Option Payoff at Maturity

Once we have constructed the tree for the stock price we have three hypothetical stock
price values at maturity and we can easily compute the hypothetical call option at each
one. The value of an option at maturity is just the payoff stated in the option contract.
For a call option we have the payoff function from before:

Max
{
St+T̃ −X,0

}
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and so for the three terminal points in the tree in Table 10.1, we get

D : CallD =Max {1,528.47− 900,0} = 428.47

E : CallE =Max {1,000.00− 900,0} = 100.00

F : CallF =Max {654.25− 900,0} = 0

For the put option we have in general the payoff function

Max
{
X− St+T̃ ,0

}
and so in this case we get

D : PutD =Max {X− SD,0} =Max {900− 1,528.47,0} = 0

E : PutE =Max {X− SE,0} =Max {900− 1,000,0} = 0

F : PutF =Max {X− SF,0} =Max {900− 654.25,0} = 245.75

Table 10.2 shows the three terminal values of the call and put option in the right
side of the tree.

The call option values are shown in green font and the put option values are shown
in red font.

Table 10.2 Computing the hypothetical option payoffs at maturity

Market Variables D
St = 1000 1528.47
Annual rf = 0.05 628.47

0.00

Contract Terms
X= 900 B
T = 0.25 1236.31

Parameters
Annual Vol= 0.6
tree steps= 2 A E
dt= 0.125 1000.00 1000.00
u= 1.23631111 100.00
d= 0.808857893 0.00

C
Stock is black 808.86
Call is green
Put is red

F
654.25

0.00
245.75

Notes: For each of the three possible final values of the underlying stock (points D, E, and F)
we compute the option value at maturity of the call and put options.
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3.3 Step 3: Work Backward in the Tree to Get the Current Option Value

In the tree we have two possible stock price values 1.5 months from now: $1,236.31
at B and $808.86 at C. The challenge now is to compute a fair value of the option
corresponding to these two stock prices. Consider first point B. We know that going
forward from B the stock can only move to either D or E. We know the stock prices at
these two points. We also know the option prices at D and E. We need one more piece
of information, namely the return on a risk-free bond with 1.5 months to maturity,
which corresponds to the length of a step in the tree. The term structure of government
debt can be used to obtain this information. Let us assume that the term structure of
interest rates is flat at 5% per year.

The key insight is that in a binomial tree we are able to construct a risk-free port-
folio using the stock and the option. Because it is risk-free such a portfolio must earn
exactly the risk-free rate, which is 5% per year in our example. Consider a portfolio
of −1 call option and 1B shares of the stock. This means that we have sold one call
option and we have bought 1B shares of the stock. We need to find a 1B such that
the portfolio of the option and the stock is risk-free. A portfolio is risk-free if it pays
exactly the same in any future state of the world. In our simple binomial world there
are only two future states at the end of each step: up and down. Constructing a risk-
free portfolio is therefore incredibly simple. Starting from point B we need to find a
1B so that

SD ·1B−CallD = SE ·1B−CallE

which in this case gives

1528.47 ·1B− 628.47= 1000 ·1B− 100

which implies that

1B =
CallD−CallE

SD− SE
=

628.47− 100

528.47
= 1

This shows that we must hold one stock along with the short position of one option
in order for the portfolio to be risk-free. The value of this portfolio at D (or E) is $900
and the portfolio value at B is the discounted value using the risk-free rate for 1.5
months, which is

900 · exp(−0.05 · (3/12)/2)= $894.39

The stock is worth $1,236.31 at B and so the option must be worth

CallB = 1,236.31− 894.39= $341.92

which corresponds to the value in green at point B in Table 10.3.
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Table 10.3 Working backwards in the tree

Market Variables
St = 1000 D
Annual rf = 0.05 1528.47

628.47
Contract Terms 0.00
X= 900
T = 0.25 B

1236.31
Parameters 341.92
Annual Vol= 0.6 0.00
tree steps= 2
dt= 0.125 A E
u= 1.23631111 1000.00 1000.00
d= 0.808857893 181.47 100.00
RNP= 0.461832245 70.29 0.00

Stock is black C
Call is green 808.86
Put is red 45.90

131.43
F

654.25
0.00

245.75

Notes: We compute the call and put option values at points B, C, and A using the no-arbitrage
principle.

At point C we have instead that

1000 ·1C− 100= 654.25 ·1C− 0

so that

1C =
100− 0

345.75
= 0.2892

This means we have to hold approximately 0.3 shares for each call option we sell.
This in turn gives a portfolio value at E (or F) of 1000 · 0.2892− 100= $189.20. The
present value of this is

189.20 · exp(−0.05 · (3/12)/2)= $188.02

At point C we therefore have the call option value

CallC = 0.2892 · 808.86− 188.02= $45.90

which is also found in green at point C in Table 10.3.
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Now that we have the option prices at points B and C we can construct a risk-free
portfolio again to get the option price at point A. We get

1236.31 ·1A− 341.92= 808.86 ·1A− 45.90

which implies that

1A =
341.92− 45.90

1236.31− 808.86
= 0.6925

which gives a portfolio value at B (or C) of 808.86 · 0.6925− 45.90= $514.24 with a
present value of

514.24 · exp(−0.05 · (3/12)/2)= $511.04

which in turn gives the binomial call option value of

cBin = CallA = 0.6925 · 1000− 511.04= $181.47

which matches the value in Table 10.3. The same computations can be done for a
put option. The values are provided in red font in Table 10.3. Once the European call
option value has been computed, the put option values can also simply be computed
using the put-call parity provided earlier.

3.4 Risk Neutral Valuation

Earlier we priced options based on no-arbitrage arguments: We have constructed a
risk-free portfolio that in the absence of arbitrage must earn exactly the risk-free rate.
From this portfolio we can back out European option prices. For example, for a call
option at point B we used the formula

1B =
CallD−CallE

SD− SE
=

CallD−CallE
SBu− SBd

which we used to find the call option price at point B using the relationship

CallB = SB1B− (SBu1B−CallD)exp
(
−rf · dt

)
Using the 1B formula we can rewrite the CallB formula as

CallB = [RNP ·CallD+ (1−RNP) ·CallE]exp
(
−rf · dt

)
where the so-called risk neutral probability of an up move is defined as

RNP=
exp

(
rf · dt

)
− d

u− d
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where dt is defined as before. RNP can be viewed as a probability because the term
inside the [∗] in the CallB formula has the form of an expectation of a binomial vari-
able. RNP is termed a risk-neutral probability because the CallB price appears as
a discounted expected value when using RNP in the expectation. Only risk-neutral
investors would discount using the risk-free rate and so RNP can be viewed as the
probability of an up move in a world where investors are risk neutral.

In our example dt = (3/12)/2= 0.125, u= 1.2363, and d = 0.8089, so that

RNP=
exp(0.05 · 0.125)− 0.8089

1.2363− 0.8089
= 0.4618

We can use this number to check that the new formula works. We get

CallB = [RNP ·CallD+ (1−RNP) ·CallE]exp
(
−rf · dt

)
= [0.4618 · 628.47+ (1− 0.4618) · 100.00]exp(−0.05 · 0.125)

= 341.92

just as when using the no-arbitrage argument.
The new formula can be used at any point in the tree. For example at point A we

have

cBin = CallA = [RNP ·CallB+ (1−RNP) ·CallC]exp
(
−rf · dt

)
It can also be used for European puts. We have for a put at point C

PutC = [RNP ·PutE + (1−RNP) ·PutF]exp
(
−rf · dt

)
Notice that we again have to work from right to left in the tree when using these
formulas. Note also that whereas 1 changes values throughout the tree, RNP is con-
stant throughout the tree.

3.5 Pricing an American Option Using the Binomial Tree

American-style options can be exercised prior to maturity. This added flexibility gives
them potentially higher fair market values than European-style options. Fortunately,
binomial trees can be used to price American-style options also. We only have to add
one calculation in the tree: At the maturity of the option American- and European-style
options are equivalent. But at each intermediate point in the tree we must compare the
European option value (also known as the continuation value) with the early exercise
value and put the largest of the two into the tree at that point.

Consider Table 10.4 where we are pricing an American option that has a strike
price of 1,100 but otherwise is exactly the same as the European option considered in
Tables 10.1 through 10.3.
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Table 10.4 American options: check each node for early exercise

Market Variables
St = 1000 D
Annual rf = 0.05 1528.47

428.47
Contract Terms 0.00
X= 1100
T = 0.25 B

1236.31
Parameters 196.65
Annual Vol= 0.6 53.48
tree steps= 2
dt= 0.125 A E
u= 1.23631111 1000.00 1000.00
d= 0.808857893 90.25 0.00
RNP= 0.461832245 180.25 100.00

Stock is black C
American call is green 808.86
American put is red 0.00

291.14
F

654.25
0.00

445.75

Notes: We compute the American option values by checking for early exercise at each point in
the tree.

If we exercise the American put option at point C we get

Max {1,100− 808.86,0} = $291.14

Let us now compute the European put value at this point. Using the previous method
we have the risk-neutral probability of an up-move RNP= 0.4618, so that the Euro-
pean put value at point C is

PutC = [RNP ·PutE + (1−RNP) ·PutF]exp
(
−rf · dt

)
= $284.29

which is of course lower than the early exercise value $284.29. Early exercise of the
put is optimal at point C and the fair market value of the American option is therefore
$291.14 at this point. This value will now influence the American put option value at
point A, which will also be larger than its corresponding European put option value.
Table 10.4 shows that the American put is worth $180.25 at point A.

The American call option price is $90.25, which turns out to be the European call
option price as well. This is because American call stock options should only be
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exercised early if a large cash dividend is imminent. In our example there were no
dividends and so early exercise of the American call is never optimal, which in turn
makes the American call option price equal to the European call option price.

3.6 Dividend Flows, Foreign Exchange, and Futures Options

In the case where the underlying asset pays out a stream of dividends or other cash
flows we need to adjust the RNP formula. Consider an underlying stock index that
pays out cash at a rate of q per year. In this case we have

RNP=
exp

((
rf − q

)
· dt
)
− d

u− d

When the underlying asset is a foreign exchange rate then q is set to the interest rate
of the foreign currency. When the underlying asset is a futures contract then q= rf so
that RNP= (1− d)/(u− d) for futures options.

4 Option Pricing under the Normal Distribution

The binomial tree approach is very useful because it is so simple to derive and because
it allows us to price American as well as European options. A downside of binomial
tree pricing is that we do not obtain a closed-form formula for the option price.

In order to do so we now assume that daily returns on an asset be independently
and identically distributed according to the normal distribution,

Rt+1 = ln(St+1)− ln(St)
i.i.d.
∼ N

(
µ−

1

2
σ 2,σ 2

)
Then the aggregate return over T̃ days will also be normally distributed with the mean
and variance appropriately scaled as in

Rt+1:t+T̃ = ln
(
St+T̃

)
− ln(St)∼ N

(
T̃
(
µ−

1

2
σ 2
)
, T̃σ 2

)
and the future asset price can of course be written as

St+T̃ = St exp
(
Rt+1:t+T̃

)
The risk-neutral valuation principle calculates the option price as the discounted

expected payoff, where discounting is done using the risk-free rate and where the
expectation is taken using the risk-neutral distribution:

c= exp(−rf T̃)E∗t
[
Max

{
St+T̃ −X,0

}]
where Max

{
St+T̃ −X,0

}
as before is the payoff function and where rf is the risk-free

interest rate per day. The expectation E∗t [∗] is taken using the risk-neutral distribution
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where all assets earn an expected return equal to the risk-free rate. In this case the
option price can be written as

c= exp(−rf T̃)

∞∫
−∞

Max
{
St exp(x∗)−X,0

}
f (x∗)dx∗

= exp(−rf T̃)

∞∫
ln(X/St)

St exp(x∗)f (x∗)dx∗−

∞∫
ln(X/St)

Xf (x∗)dx∗

where x∗ is the risk-neutral variable corresponding to the underlying asset return
between now and the maturity of the option. f (x∗) denotes the risk-neutral distribu-
tion, which we take to be the normal distribution so that x∗ ∼ N(T̃(rf −

1
2σ

2), T̃σ 2).

The second integral is easily evaluated whereas the first requires several steps. In the
end we obtain the Black-Scholes-Merton (BSM) call option price

cBSM = exp(−rf T̃)
[
St exp(rf T̃)8(d)−X8

(
d− σ

√
T̃
)]

= St8(d)− exp(−rf T̃)X8
(
d− σ

√
T̃
)

where 8(•) is the cumulative density of a standard normal variable, and where

d =
ln(St/X)+ T̃

(
rf + σ

2/2
)

σ
√

T̃

Black, Scholes, and Merton derived this pricing formula in the early 1970s using a
model where trading takes place in continuous time when assuming continuous trading
only the absence of arbitrage opportunities is needed to derive the formula.

It is worth emphasizing that to stay consistent with the rest of the book, the volatility
and risk-free interest rates are both denoted in daily terms, and option maturity is
denoted in number of calendar days, as this is market convention.

The elements in the option pricing formula have the following interpretation:

l 8(d− σ
√

T̃) is the risk-neutral probability of exercise.

l X8(d− σ
√

T̃) is the expected risk-neutral payout when exercising.

l St8(d)exp(rf T̃) is the risk-neutral expected value of the stock acquired through
exercise of the option.

l 8(d)measures the sensitivity of the option price to changes in the underlying asset
price, St, and is referred to as the delta of the option, where δBSM ≡

∂cBSM
∂St

is the first
derivative of the option with respect to the underlying asset price. This and other
sensitivity measures are discussed in detail in the next chapter.
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Using the put-call parity result and the formula for cBSM , we can get the put price
formula as

pBSM = cBSM +X exp(−rf T̃)− St

= e−rf T̃
{

X
[
1−8

(
d− σ

√
T̃
)]
− St [1−8(d)]erf T̃

}
= e−rf T̃X8

(
σ
√

T̃ − d
)
− St8(−d)

where the last line comes from the symmetry of the normal distribution, which implies
that [1−8(z)]=8(−z) for any value of z.

In the case where cash flows such as dividends accrue to the underlying asset,
we discount the current asset price to account for the cash flows by replacing St by
St exp(−qT̃) everywhere, where q is the expected rate of cash flow per day until matu-
rity of the option. This adjustment can be made to both the call and the put price
formula, and in both cases the formula for d will then be

d =
ln(St/X)+ T̃

(
rf − q+ σ 2/2

)
σ
√

T̃

The adjustment is made because the option holder at maturity receives only the
underlying asset on that date and not the cash flow that has accrued to the asset during
the life of the option. This cash flow is retained by the owner of the underlying asset.

We now want to use the Black-Scholes pricing model to price a European call
option written on the S&P 500 index. On January 6, 2010, the value of the index was
1137.14. The European call option has a strike price of 1110 and 43 days to maturity.
The risk-free interest rate for a 43-day holding period is found from the T-bill rates to
be 0.0006824% per day (that is, 0.000006824) and the dividend accruing to the index
over the next 43 days is expected to be 0.0056967% per day. For now, we assume the
volatility of the index is 0.979940% per day. Thus, we have

St = 1137.14

X = 1110

T̃ = 43

rf = 0.0006824%

q= 0.0056967%

σ = 0.979940%

and we can calculate

d =
ln(St/X)+ T̃

(
rf − q+ σ 2/2

)
σ
√

T̃
= 0.374497, and d− σ

√
T̃ = 0.310238

which gives

8(d)= 0.645983, and 8
(

d− σ
√

T̃
)
= 0.621810
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from which we can calculate the BSM call option price as

cBSM = St exp(−qT̃)8(d)− exp(−rf T̃)X8
(

d− σ
√

T̃
)
= 42.77

4.1 Model Implementation

The simple BSM model implies that a European option price can be written as a non-
linear function of six variables,

cBSM = c(St,rf ,X, T̃,q;σ)

The stock price is readily available, and a treasury bill rate with maturity T̃ can
be used as the risk-free interest rate. The strike price and time to maturity are known
features of any given option contract, thus only one parameter needs to be estimated—
namely, the volatility, σ . As the option pricing formula is nonlinear, volatility can be
estimated from a sample of n options on the same underlying asset, minimizing the
mean-squared dollar pricing error (MSE):

MSEBSM =min
σ

{
1

n

n∑
i=1

(
cmkt

i − cBSM(St,rf ,Xi, T̃i,q;σ)
)2
}

where cmkt
i denotes the observed market price of option i. The web site that contains

answers to the exercises at the end of this chapter includes an example of this numer-
ical optimization. Notice that we also could, of course, simply have plugged in an
estimate of σ from returns on the underlying asset; however, using the observed mar-
ket prices of options tends to produce much more accurate model prices.

Using prices on a sample of 103 call options traded on the S&P 500 index
on January 6, 2010, we estimate the volatility, which minimizes the MSE to be
0.979940% per day. This was the volatility estimate used in the numerical pricing
example. Further details of this calculation can be found on the web page.

4.2 Implied Volatility

From Chapter 1, we know that the assumption of daily asset returns following the
normal distribution is grossly violated in the data. We therefore should worry that an
option pricing theory based on the normal distribution will not offer an appropriate
description of reality. To assess the quality of the normality-based model, consider the
so-called implied volatility calculated as

σ iv
BSM = c−1

BSM

(
St,rf ,X, T̃,q,c

mkt
)

where cmkt again denotes the observed market price of the option, and where c−1
BSM (∗)

denotes the inverse of the BSM option pricing formula derived earlier. The implied
volatilities can be found contract by contract by using a numerical equation solver.
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Returning to the preceding numerical example of the S&P 500 call option traded
on January 6, 2010, knowing that the actual market price for the option was 42.53, we
can calculate the implied volatility to be

σ iv
BSM = c−1

BSM

(
St,rf ,X, T̃,q,42.53

)
= 0.971427%

where the St,rf ,X, T̃, and q variables are as in the preceding example. The 0.971427%
volatility estimate is such that if we had used it in the BSM formula, then the model
price would have equalled the market price exactly; that is,

42.53= cBSM
(
St,rf ,X, T̃,q,0.971427%

)
If the normality assumption imposed on the model were true, then the implied

volatility should be roughly constant across strike prices and maturities. However,
actual option data displays systematic patterns in implied volatility, thus violating the
normality-based option pricing theory. Figure 10.2 shows the implied volatility of vari-
ous S&P 500 index call options plotted as a function of moneyness (S/X) on January 6,
2010. The picture shows clear evidence of the so-called smirk. Furthermore, the smirk
is most evident at shorter horizons. As we will see shortly, this smirk can arise from
skewness in the underlying distribution, which is ignored in the BSM model relying
on normality. Options on foreign exchange tend to show a more symmetric pattern of
implied volatility, which is referred to as the smile. The smile can arise from kurtosis
in the underlying distribution, which is again ignored in the BSM model.

Figure 10.2 Implied BSM daily volatility from S&P 500 index options with 43, 99, 71, and
162 days to maturity (DTM) quoted on January 06, 2010.
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To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 15-ch10-217-250-9780123744487 2011/10/28 17:20 Page 235 #17

Option Pricing 235

Smirk and smile patterns in implied volatility constitute evidence of misspecifica-
tion in the BSM model. Consider for example pricing options with the BSM formula
using a daily volatility of approximately 1% for all options. In Figure 10.2, the implied
volatility is approximately 1% for at-the-money options for which S/X ≈ 1. Therefore,
the BSM price would be roughly correct for these options. However, for options that
are in-the-money—that is, S/X > 1—the BSM implied volatility is higher than 1%,
which says that the BSM model needs a higher than 1% volatility to fit the market
data. This is because option prices are increasing in the underlying volatility. Using
the BSM formula with a volatility of 1% would result in a BSM price that is too low.
The BSM is thus said to underprice in-the-money call options. From the put-call parity
formula, we can conclude that the BSM model also underprices out-of-the-money put
options.

5 Allowing for Skewness and Kurtosis

We now introduce a relatively simple model that is capable of making up for some of
the obvious mispricing in the BSM model. We again have one day returns defined as

Rt+1 = ln(St+1)− ln(St)

and T̃-period returns as

Rt+1:t+T̃ = ln(St+T̃)− ln(St)

The mean and variance of the daily returns are again defined as E (Rt+1)= µ−
1
2σ

2

and E
(

Rt+1−µ+
1
2σ

2
)2
= σ 2. We previously defined skewness by ζ 1. We now

explicitly define skewness of the one-day return as

ζ 11 =

E
(

Rt+1−µ+
1
2σ

2
)3

σ 3

Skewness is informative about the degree of asymmetry of the distribution. A negative
skewness arises from large negative returns being observed more frequently than large
positive returns. Negative skewness is a stylized fact of equity index returns, as we saw
in Chapter 1. Kurtosis of the one-day return is now defined as

ζ 21 =

E
(

Rt+1−µ+
1
2σ

2
)4

σ 4
− 3

which is sometimes referred to as excess kurtosis due to the subtraction by 3. Kurtosis
tells us about the degree of tail fatness in the distribution of returns. If large (positive
or negative) returns are more likely to occur in the data than in the normal distribution,
then the kurtosis is positive. Asset returns typically have positive kurtosis.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 15-ch10-217-250-9780123744487 2011/10/28 17:20 Page 236 #18

236 Further Topics in Risk Management

Assuming that returns are independent over time, the skewness at horizon T̃ can be
written as a simple function of the daily skewness,

ζ 1T̃ = ζ 11/
√

T̃

and correspondingly for kurtosis

ζ 2T̃ = ζ 21/T̃

Notice that both skewness and kurtosis will converge to zero as the return horizon, T̃,
and thus the maturity of the option increases. This corresponds well with the implied
volatility in Figure 10.2, which displayed a more pronounced smirk pattern for short-
term as opposed to long-term options.

We now define the standardized return at the T̃-day horizon as

wT̃ =

Rt+1:t+T̃ − T̃
(
µ− 1

2σ
2
)

√
T̃σ

so that

Rt+1:t+T̃ =

(
µ−

1

2
σ 2
)

T̃ + σ
√

T̃wT̃

and assume that the standardized returns follow the distribution given by the Gram-
Charlier expansion, which is written as

f
(
wT̃

)
= φ

(
wT̃

)
− ζ 1T̃

1

3!
D3φ

(
wT̃

)
+ ζ 2T̃

1

4!
D4φ

(
wT̃

)
where 3!= 3 · 2 · 1= 6, φ

(
wT̃

)
is the standard normal density, and D j is its jth deriva-

tive. We have

D1φ(z)=−zφ(z)

D2φ(z)= (z2
− 1)φ(z)

D3φ(z)=−(z3
− 3z)φ(z)

D4φ(z)= (z4
− 6z2

+ 3)φ(z)

The Gram-Charlier density function f
(
wT̃

)
is an expansion around the normal den-

sity function, φ(wT̃), allowing for a nonzero skewness, ζ 1T̃ , and kurtosis ζ 2T̃ . The
Gram-Charlier expansion can approximate a wide range of densities with nonzero
higher moments, and it collapses to the standard normal density when skewness and
kurtosis are both zero. We notice the similarities with the Cornish-Fisher expansion
for Value-at-Risk in Chapter 6, which is a similar expansion, but for the inverse cumu-
lative density function instead of the density function itself.
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To price European options, we can again write the generic risk-neutral call pricing
formula as

c= e−rf T̃E∗t
[
Max

{
St+T̃ −X,0

}]
Thus, we must solve

c= e−rf T̃

∞∫
lnX/St

(
St exp(x∗)−X

)
f
(
x∗
)

dx∗

Earlier we relied on x∗ following the normal distribution with mean rf −
1
2σ

2 and
variance σ 2 per day. But we now instead define the standardized risk-neutral return at
horizon T̃ as

w∗
T̃
=

(
x∗−

(
rf −

1
2σ

2
)

T̃
)

√
T̃σ

and assume it follows the Gram-Charlier (GC) distribution.
In this case, the call option price can be derived as being approximately equal to

cGC ≈ St8(d)−Xe−rf T̃8
(

d−
√

T̃σ
)

+ Stφ (d)
√

T̃σ

[
ζ 1T̃

3!

(
2
√

T̃σ − d
)
−
ζ 2T̃

4!

(
1− d2

+ 3d
√

T̃σ − 3T̃σ 2
)]

= St8(d)−Xe−rf T̃8
(

d−
√

T̃σ
)

+ Stφ (d)σ

[
ζ 11

3!

(
2
√

T̃σ − d
)
−
ζ 21/

√
T̃

4!

(
1− d2

+ 3d
√

T̃σ − 3T̃σ 2
)]

where we have substituted in for skewness using ζ 1T̃ = ζ 11/
√

T̃ and for kurtosis using
ζ 2T̃ = ζ 21/T̃.We will refer to this as the GC option pricing model. The approximation
comes from setting the terms involving σ 3 and σ 4 to zero, which also enables us to
use the definition of d from the BSM model. Using this approximation, the GC model
is just the simple BSM model plus additional terms that vanish if there is neither skew-
ness (ζ 11 = 0) nor kurtosis (ζ 21 = 0) in the data. The GC formula can be extended to
allow for a cash flow q in the same manner as the BSM formula shown earlier.

5.1 Model Implementation

This GC model has three unknown parameters: σ ,ζ 11, and ζ 21. They can be estimated
as before using a numerical optimizer minimizing the mean squared error

MSEGC = min
σ ,ζ 11,ζ 21

{
1

n

n∑
i=1

(
cmkt

i − cGC(St,rf ,Xi, T̃i;σ ,ζ 11,ζ 21)
)2
}
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We can calculate the implied BSM volatilities from the GC model prices by

σ iv
GC = c−1

BSM

(
St,rf ,X, T̃,cGC

)
where c−1

BSM (∗) is the inverse of the BSM model with respect to volatility. But we can
also rely on the following approximate formula for daily implied BSM volatility:

σ iv
GC = c−1

BSM

(
St,rf ,X, T̃,cGC

)
≈ σ

[
1−

ζ 11/
√

T̃

3!
d−

ζ 21/T̃

4!

(
1− d2

)]

Notice this is just volatility times an additional term, which equals one if there is
no skewness or kurtosis. Figure 10.3 plots two implied volatility curves for options
with 10 days to maturity. One has a skewness of −3 and a kurtosis of 7 and shows the
smirk, and the other has no skewness but a kurtosis of 8 and shows a smile.

The main advantages of the GC option pricing framework are that it allows for
deviations from normality, that it provides closed-form solutions for option prices,
and, most important, it is able to capture the systematic patterns in implied volatility
found in observed option data. For example, allowing for negative skewness implies
that the GC option price will be higher than the BSM price for in-the-money calls,
thus removing the tendency for BSM to underprice in-the-money calls, which we saw
in Figure 10.2.

Figure 10.3 Implied BSM volatility from Gram-Charlier model prices.
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Notes: We plot the implied BSM volatility for options with 10 days to maturity using the
Gram-Charlier model. The red line has a skewness of −3 and a kurtosis of 7. The blue line
has a skewness of 0 and a kurtosis of 8.
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6 Allowing for Dynamic Volatility

While the GC model is capable of capturing implied volatility smiles and smirks at a
given point in time, it assumes that volatility is constant over time and is thus incon-
sistent with the empirical observations we made earlier. Put differently, the GC model
is able to capture the strike price structure but not the maturity structure in observed
options prices. In Chapters 4 and 5 we saw that variance varies over time in a pre-
dictable fashion: High-variance days tend to be followed by high-variance days and
vice versa, which we modeled using GARCH and other types of models. When returns

are independent, the standard deviation of returns at the T̃-day horizon is simply
√

T̃
times the daily volatility, whereas the GARCH model implies that the term struc-
ture of variance depends on the variance today and does not follow the simple square
root rule.

We now consider option pricing allowing for the underlying asset returns to fol-
low a GARCH process. The GARCH option pricing model assumes that the expected
return on the underlying asset is equal to the risk-free rate, rf , plus a premium for
volatility risk, λ, as well as a normalization term. The observed daily return is then
equal to the expected return plus a noise term. The noise term is conditionally nor-
mally distributed with mean zero and variance following a GARCH(1,1) process with
leverage as in Chapter 4. By letting the past return feed into variance in a magni-
tude depending on the sign of the return, the leverage effect creates an asymmetry in
the distribution of returns. This asymmetry is important for capturing the skewness
implied in observed option prices.

Specifically, we can write the return process as

Rt+1 ≡ ln(St+1)− ln(St)= rf + λσ t+1−
1

2
σ 2

t+1+ σ t+1zt+1

with zt+1 ∼ N(0,1), and σ 2
t+1 = ω+α (σ tzt− θσ t)

2
+βσ 2

t

Notice that the expected value and variance of tomorrow’s return conditional on all
the information available at time t are

Et [Rt+1]= rf + λσ t+1−
1

2
σ 2

t+1

Vt [Rt+1]= σ 2
t+1

For a generic normally distributed variable x∼ N(µ,σ 2), we have that
E [exp(x)]= exp

(
µ+ σ 2/2

)
and therefore we get

Et [St+1/St]= Et

[
exp

(
rf + λσ t+1−

1

2
σ 2

t+1+ σ t+1zt+1

)]
= exp

(
rf + λσ t+1−

1

2
σ 2

t+1

)
Et [exp(σ t+1zt+1)]
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= exp

(
rf + λσ t+1−

1

2
σ 2

t+1

)
exp

(
1

2
σ 2

t+1

)
= exp

(
rf + λσ t+1

)
where we have used σ t+1zt+1 ∼ N(0,σ 2

t+1). This expected return equation highlights
the role of λ as the price of volatility risk.

We can again solve for the option price using the risk-neutral expectation as in

c= exp(−rf T̃)E∗t
[
Max

{
St+T̃ −X,0

}]
Under risk neutrality, we must have that

E∗t [St+1/St]= exp
(
rf
)

V∗t [Rt+1]= σ 2
t+1

so that the expected rate of return on the risky asset equals the risk-free rate and the
conditional variance under risk neutrality is the same as the one under the original
process. Consider the following process:

Rt+1 ≡ ln(St+1)− ln(St)= rf −
1

2
σ 2

t+1+ σ t+1z∗t+1

with z∗t+1 ∼ N(0,1), and σ 2
t+1 = ω+α

(
σ tz
∗
t − λσ t− θσ t

)2
+βσ 2

t

In this case, we can check that the conditional mean equals

E∗t [St+1/St]= E∗t

[
exp

(
rf −

1

2
σ 2

t+1+ σ t+1z∗t+1

)]
= exp

(
rf −

1

2
σ 2

t+1

)
E∗t
[
exp

(
σ t+1z∗t+1

)]
= exp

(
rf −

1

2
σ 2

t+1

)
exp

(
1

2
σ 2

t+1

)
= exp

(
rf
)

which satisfies the first condition. Furthermore, the conditional variance under the
risk-neutral process equals

V∗t [Rt+1]= E∗t
[
ω+α

(
σ tz
∗
t − λσ t− θσ t

)2
+βσ 2

t

]
= Et

[
ω+α

(
Rt− rf +

1

2
σ 2

t+1− λσ t− θσ t

)2

+βσ 2
t

]
= Et

[
ω+α (σ tzt− θσ t)

2
+βσ 2

t

]
= σ 2

t+1
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where the last equality comes from tomorrow’s variance being known at the end of
today in the GARCH model. The conclusion is that the conditions for a risk-neutral
process are met.

An advantage of the GARCH option pricing approach introduced here is its flexi-
bility: The previous analysis could easily be redone for any of the GARCH variance
models introduced in Chapter 4. More important, it is able to fit observed option prices
quite well.

6.1 Model Implementation

While we have found a way to price the European option under risk neutrality, unfor-
tunately, we do not have a closed-form solution available. Instead, we have to use
simulation to calculate the price

c= exp(−rf T̃)E∗t
[
Max

{
St+T̃ −X,0

}]
The simulation can be done as follows: First notice that we can get rid of a parameter
by writing

σ 2
t+1 = ω+α

(
σ tz
∗
t − λσ t− θσ t

)2
+βσ 2

t

= ω+α
(
σ tz
∗
t − λ

∗σ t
)2
+βσ 2

t , with λ∗ ≡ λ+ θ

Now, for a given conditional variance σ 2
t+1, and parameters ω,α,β,λ∗, we can

use Monte Carlo simulation as in Chapter 8 to create future hypothetical paths of
the asset returns. Parameter estimation will be discussed subsequently. Graphically,
we can illustrate the simulation of hypothetical daily returns from day t+ 1 to the
maturity on day t+ T̃ as

ž∗1,1→ Ř∗1,t+1→ σ̌
2
1,t+2 ž∗1,2→ Ř∗1,t+2→ σ̌

2
1,t+3 . . . ž∗

1,T̃
→ Ř∗

1,t+T̃

↗ ž∗2,1→ Ř∗2,t+1→ σ̌
2
2,t+2 ž∗2,2→ Ř∗2,t+2→ σ̌

2
2,t+3 . . . ž∗

2,T̃
→ Ř∗

2,t+T̃
σ 2

t+1 −→ . . . . . . . . . . . .

↘ . . . . . . . . . . . .

ž∗MC,1→ Ř∗MC,t+1→ σ̌
2
MC,t+2 ž∗MC,2→ Ř∗MC,t+2→ σ̌

2
MC,t+3 . . . ž∗

MC,T̃
→ Ř∗

MC,t+T̃

where the ž∗i,js are obtained from a N(0,1) random number generator and where MC
is the number of simulated return paths. We need to calculate the expectation term
E∗t [∗] in the option pricing formula using the risk-neutral process, thus, we calculate
the simulated risk-neutral return in period t+ j for simulation path i as

Ř∗i,t+j = rf −
1

2
σ̌

2
i,t+j+ σ̌ i,t+jž

∗
i,j

and the variance is updated by

σ̌
2
i,t+j+1 = ω+α

(
σ̌ i,t+jž

∗
i,j− λ

∗σ̌ i,t+j

)2
+βσ̌

2
i,t+j
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As in Chapter 8, the simulation paths in the first period all start out from the same
σ 2

t+1; therefore, we have

Ř∗i,t+1 = rf −
1

2
σ 2

t+1+ σ t+1ž∗i,1

σ 2
i,t+2 = ω+α

(
σ t+1ž∗i,1− λ

∗σ t+1
)2
+βσ 2

t+1

for all i.
Once we have simulated, say, 5000 paths (MC = 5000) each day until the maturity

date T̃ , we can calculate the hypothetical risk-neutral asset prices at maturity as

Š∗
i,t+T̃
= St exp

 T̃∑
j=1

Ř∗i,t+j

 , i= 1,2, . . . ,MC

and the option price is calculated taking the average over the future hypothetical pay-
offs and discounting them to the present as in

cGH = exp(−rf T̃)E∗t
[
Max

{
St+T̃ −X,0

}]
≈ exp(−rf T̃)

1

MC

MC∑
i=1

Max
{

Š∗
i,t+T̃
−X,0

}
where GH denotes GARCH.

Thus, we are using simulation to calculate the average future payoff, which is then
used as an estimate of the expected value, E∗t [∗] . As the number of Monte Carlo
replications gets infinitely large, the average will converge to the expectation. In prac-
tice, around 5000 replications suffice to get a reasonably precise estimate. The web
site accompanying this book contains a spreadsheet with a Monte Carlo simulation
calculating GARCH option prices.

In theory, we could, of course, estimate all the parameters in the GARCH model
using the maximum likelihood method from Chapter 4 on the underlying asset returns.
But to obtain a better fit of the option prices, we can instead minimize the option
pricing errors directly. Treating the initial variance σ 2

t+1 as a parameter to be estimated,
we can estimate the GARCH option pricing model on a daily sample of options by
numerically minimizing the mean squared error

MSEGH = min
σ 2

t+1,ω,α,β,λ
∗

{
1

n

n∑
i=1

(
cmkt

i − cGH(St,rf ,Xi, T̃i;σ
2
t+1,ω,α,β,λ

∗)
)2
}

Alternatively, an objective function based on implied volatility can be used. Notice
that for every new parameter vector the numerical optimizer tries, the GARCH options
must all be repriced using the MC simulation technique, thus the estimation can be
quite time consuming.
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6.2 A Closed-Form GARCH Option Pricing Model

A significant drawback of the GARCH option pricing framework outlined here is
clearly that it does not provide us with a closed-form solution for the option price,
which must instead be calculated through simulation. Although the simulation tech-
nique is straightforward, it does take computing time and introduces an additional
source of error arising from the approximation of the simulated average to the expected
value.

Fortunately, if we are willing to accept a particular type of GARCH process, then
a closed-form pricing formula exists. We will refer to this as the closed-form GARCH
or CFG model. Assume that returns are generated by the process

Rt+1 ≡ ln(St+1)− ln(St)= rf + λσ
2
t+1+ σ t+1zt+1

with zt+1 ∼ N(0,1), and σ 2
t+1 = ω+α (zt− θσ t)

2
+βσ 2

t

Notice that the risk premium is now multiplied by the conditional variance not stan-
dard deviation, and that zt enters in the variance innovation term without being scaled
by σ t. Variance persistence in this model can be derived as αθ2

+β and the uncondi-
tional variance as (ω+α)/(1−αθ2

−β).

The risk-neutral version of this process is

Rt+1 ≡ ln(St+1)− ln(St)= rf −
1

2
σ 2

t+1+ σ t+1z∗t+1

with z∗t+1 ∼ N(0,1), and σ 2
t+1 = ω+α

(
z∗t − θ

∗σ t
)2
+βσ 2

t

To verify that the risky assets earn the risk-free rate under the risk-neutral measure,
we check again that

E∗t [St+1/St]= E∗t

[
exp

(
rf −

1

2
σ 2

t+1+ σ t+1z∗t+1

)]
= exp

(
rf −

1

2
σ 2

t+1

)
E∗t
[
exp

(
σ t+1z∗t+1

)]
= exp

(
rf −

1

2
σ 2

t+1

)
exp

(
1

2
σ 2

t+1

)
= exp

(
rf
)

and the variance can be verified as before as well.
Under this special GARCH process for returns, the European option price can be

calculated as

cCFG = e−rf T̃E∗t
[
Max

(
St+T̃ −X,0

)]
= StP1−Xe−rf T̃P2

where the formulas for P1 and P2 are given in the appendix. Notice that the structure
of the option pricing formula is identical to that of the BSM model. As in the BSM
model, P2 is the risk-neutral probability of exercise, and P1 is the delta of the option.
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7 Implied Volatility Function (IVF) Models

The option pricing methods surveyed so far in this chapter can be derived from
well-defined assumptions about the underlying dynamics of the economy. The next
approach to European option pricing we consider is instead completely static and ad
hoc but it turns out to offer reasonably good fit to observed option prices, and we
therefore give a brief discussion of it here. The idea behind the approach is that the
implied volatility smile changes only slowly over time. If we can therefore estimate a
functional form on the smile today, then that functional form may work reasonably in
pricing options in the near future as well.

The implied volatility smiles and smirks mentioned earlier suggest that option
prices may be well captured by the following four-step approach:

1. Calculate the implied BSM volatilities for all the observed option prices on a given
day as

σ iv
i = c−1

BSM

(
St,rf ,Xi, T̃i,c

mkt
i

)
for i= 1,2, . . . , n

2. Regress the implied volatilities on a second-order polynomial in moneyness and
maturity. That is, use ordinary least squares (OLS) to estimate the a parameters in
the regression

σ iv
i = a0+ a1 (St/Xi)+ a2 (St/Xi)

2
+ a3

(
T̃i/365

)
+ a4

(
T̃i/365

)2
+ a5 (St/Xi)

(
T̃i/365

)
+ ei

where ei is an error term and where we have rescaled maturity to be in years rather
than days. The rescaling is done to make the different a coefficients have roughly
the same order of magnitude. This will yield the implied volatility surface as a
function of moneyness and maturity. Other functional forms could of course be
used.

3. Compute the fitted values of implied volatility from the regression

σ̂
iv
(St/Xi, T̃i; â)= â0+ â1 (St/Xi)+ â2 (St/Xi)

2
+ â3

(
T̃i/365

)
+ â4

(
T̃i/365

)2
+ â5 (St/Xi)

(
T̃i/365

)
4. Calculate model option prices using the fitted volatilities and the BSM option pric-

ing formula, as in

cIVF = c(St,rf ,Xi, T̃i;Max(σ̂ iv
(S/Xi, T̃i/365; â),0.0001))

where the Max(•) function ensures that the volatility used in the option pricing
formula is positive.

Notice that this option pricing approach requires only a sequence of simple calcu-
lations and it is thus easily implemented.
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While this four-step linear estimation approach is standard, we can typically
obtain much better model option prices if the following modified estimation
approach is taken. We can use a numerical optimization technique to solve for
a= {a0,a1,a2,a3,a4,a5} by minimizing the mean squared error

MSEMIVF =min
a

{
1

n

n∑
i=1

(
cmkt

i − c(St,rf ,Xi, T̃i;Max(σ iv(S/Xi, T̃i/365;a),0.01))
)2
}

The downside of this method is clearly that a numerical solution technique rather than
simple OLS is needed to find the parameters. We refer to this approach as the modified
implied volatility function (MIVF) technique.

8 Summary

This chapter has surveyed some key models for pricing European options. First, we
introduced the simple but powerful binomial tree approach to option pricing. Then
we discussed the famous Black-Scholes-Merton (BSM) model. The key assumption
underlying the BSM model is that the underlying asset return dynamics are captured
by the normal distribution with constant volatility. While the BSM model provides
crucial insight into the pricing of derivative securities, the underlying assumptions are
clearly violated by observed asset returns. We therefore next considered a general-
ization of the BSM model that was derived from the Gram-Charlier (GC) expansion
around the normal distribution. The GC distribution allows for skewness and kurtosis
and it therefore offers a more accurate description of observed returns than does the
normal distribution. However, the GC model still assumes that volatility is constant
over time, which we argued in earlier chapters was unrealistic. Next, we therefore
presented two types of GARCH option pricing models. The first type allowed for a
wide range of variance specifications, but the option price had to be calculated using
Monte Carlo simulation or another numerical technique since no closed-form formula
existed. The second type relied on a particular GARCH specification but in return
provided a closed-form solution for the option price. Finally, we introduced the ad
hoc implied volatility function (IVF) approach, which in essence consists of a second-
order polynomial approximation of the implied volatility smile.

Appendix: The CFG Option Pricing Formula

The probabilities P1 and P2 in the closed-form GARCH (CFG) formula are derived by
first solving for the conditional moment generating function. The conditional, time-t,
moment generating function of the log asset prices as time t+ T̃ is

ft,t+T̃ (ϕ)= Et
[
exp

(
ϕ ln

(
St+T̃

))]
= Et

[
Sϕ

t+T̃

]
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In the CFG model, this function takes a log-linear form (omitting the time subscripts
on f (ϕ))

f (ϕ)= Sϕt • exp
(

A
(
t; t+ T̃,ϕ

)
+B

(
t; t+ T̃,ϕ

)
σ 2

t+1

)
where

A
(
t; t+ T̃,ϕ

)
= A

(
t+ 1; t+ T̃,ϕ

)
+ϕrf +B

(
t+ 1; t+ T̃,ϕ

)
ω

−
1

2
ln
(
1− 2αB

(
t+ 1; t+ T̃,ϕ

))
and

B
(
t; t+ T̃,ϕ

)
= ϕ (λ+ θ)−

1

2
θ2
+βB

(
t+ 1; t+ T̃,ϕ

)
+

1
2 (ϕ− θ)

2

1− 2αB
(
t+ 1; t+ T̃,ϕ

)
These functions can be solved by solving backward one period at a time from the

maturity date using the terminal conditions

A
(
t+ T̃; t+ T̃,ϕ

)
= 0 and B

(
t+ T̃; t+ T̃,ϕ

)
= 0

A fundamental result in probability theory establishes the following relationship
between the characteristic function f (iϕ) and the probability density function p(x):

∞∫
A

p(x)dx=
1

2
+

1

π

∞∫
0

Re

[
exp(−iϕA) f (iϕ)

iϕ

]
dϕ

where the Re(•) function takes the real value of the argument.
Using these results, we can calculate the conditional expected payoff as

Et
[
Max

(
St+T̃ −X,0

)]
= Et

[
Max

(
exp

(
ln
(
St+T̃

))
−X,0

)]
=

∞∫
ln(X)

exp(x)p(x)dx−X

∞∫
ln(X)

p(x)dx

= f (1)

1

2
+

1

π

∞∫
0

Re

[
X−iϕ f (iϕ+ 1)

iϕf (1)

]
dϕ


−X

1

2
+

1

π

∞∫
0

Re

[
X−iϕ f (iϕ)

iϕ

]
dϕ
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To price the call option, we use the risk-neutral distribution to get

cCFG = e−rf T̃E∗t
[
Max

(
St+T̃ −X,0

)]
= St

1

2
+

1

π

∞∫
0

Re

[
X−iϕ f ∗ (iϕ+ 1)

iϕf ∗ (1)

]
dϕ


−Xe−rf T̃

1

2
+

1

π

∞∫
0

Re

[
X−iϕ f ∗ (iϕ)

iϕ

]
dϕ


≡ StP1−Xe−rT̃P2

where we have used the fact that f ∗ (1)= E∗t
[
St+T̃

]
= erf T̃St. Note that under the risk-

neutral distribution, λ is set to − 1
2 , and θ is replaced by θ∗. Finally, we note that the

previous integrals must be solved numerically.

Further Resources

This chapter has focused on option pricing in discrete time in order to remain consis-
tent with the previous chapters. There are many excellent textbooks on options. The
binomial tree model in this chapter follows Hull (2011) who also provides a proof that
the binomial model converges to the BSM model when the number of steps in the tree
goes to infinity.

The classic papers on the BSM model are Black and Scholes (1973) and Merton
(1973). The discrete time derivations in this chapter were introduced in Rubenstein
(1976) and Brennan (1979). Merton (1976) introduced a continuous time diffusion
model with jumps allowing for kurtosis in the distribution of returns. See Andersen
and Andreasen (2000) for extensions to Merton’s 1976 model.

For recent surveys on empirical option valuation, see Bates (2003), Garcia et al.
(2010), and Christoffersen et al. (2010a).

The GC model is derived in Backus et al. (1997). The general GARCH option
pricing framework is introduced in Duan (1995). Duan and Simonato (1998) discuss
Monte Carlo simulation techniques for the GARCH model and Duan et al. (1999)
contains an analytical approximation to the GARCH model price. Ritchken and Trevor
(1999) suggest a trinomial tree method for calculating the GARCH option price.

Duan (1999) and Christoffersen et al. (2010b) consider extensions to the GARCH
option pricing model allowing for conditionally nonnormal returns. The closed-form
GARCH option pricing model is derived in Heston and Nandi (2000) and extended in
Christoffersen et al. (2006).

Christoffersen and Jacobs (2004a) compared the empirical performance of various
GARCH variance specifications for option pricing and found that the simple variance
specification including a leverage effect as applied in this chapter works very well
compared with the BSM model.
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Hsieh and Ritchken (2005) compared the GARCH (GH) and the closed-form
GARCH (CFG) models and found that the GH model performs the best in terms of
out-of-sample option valuation. See Christoffersen et al. (2008) and Christoffersen
et al. (2010a) for option valuation using the GARCH component models described in
Chapter 4.

GARCH option valuation models with jumps in the innovations have been
developed by Christoffersen et al. (2011) and Ornthanalai (2011).

Hull and White (1987) and Heston (1993) derived continuous time option pricing
models with time-varying volatility. Bakshi et al. (1997) contains an empirical
comparison of Heston’s model with more general models and finds that allowing for
time-varying volatility is key in fitting observed option prices. Lewis (2000) discusses
the implementation of option valuation models with time-varying volatility.

The IVF model is described in Dumas et al. (1998) and the modified IVF model
(MIVF) is examined in Christoffersen and Jacobs (2004b), who find that the MIVF
model performs very well empirically compared with the simple BSM model.
Berkowitz (2010) provides a theoretical justification for the MIVF approach. Bams
et al. (2009) discuss the choice of objective function in option model calibration.
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Empirical Exercises

Open the Chapter10Data.xlsx file from the web site. The file contains European call options on
the S&P 500 from January 6, 2010.

1. Calculate the BSM price for each option using a standard deviation of 0.01 per day. Using
Solver, find the volatility that minimizes the mean squared pricing error using 0.01 as a
starting value. Keep the BSM prices that correspond to this optimal volatility and use these
prices below.

2. Scatter plot the BSM pricing errors (actual price less model price) against moneyness defined
as (S/X) for the different maturities.

http://ssrn.com/abstract=1101733
http://ssrn.com/abstract=1267432
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3. Calculate the implied BSM volatility (standard deviation) for each of the options. You can
use Excel’s Solver to do this. Scatter plot the implied volatilities against moneyness.

4. Fit the Gram-Charlier option price to the data. Estimate a model with skewness only. Use
nonlinear test squares (NLS).

5. Regress implied volatility on a constant, moneyness, the time-to-maturity divided by 365,
each variable squared, and their cross product. Calculate the fitted BSM volatility from the
regression for each option. Calculate the ad hoc IVF price for each option using the fitted
values for volatility.

6. Redo the IVF estimation using NLS to minimize the mean squared pricing error (MSE). Call
this MIVF. Use the IVF regression coefficients as starting values.

7. Calculate the square root of the mean squared pricing error from the IVF and MIVF models
and compare them to the square root of the MSE from the standard BSM model and the
Gram-Charlier model. Scatter plot the pricing errors from the MIVF model against money-
ness and compare them to the plots from exercise 2.

The answers to these exercises can be found in the Chapter10Results.xlsx file on the com-
panion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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1 Chapter Overview

In the previous chapter, we gave a brief overview of various models for pricing
options. In this chapter, we turn our attention to the key task of incorporating deriva-
tive securities into the portfolio risk model, which we developed in previous chapters.
Just as the nonlinear payoff function was the key feature from the perspective of option
pricing in the previous chapter, it is also driving the risk management discussion in this
chapter. The nonlinear payoff creates asymmetry in the portfolio return distribution,
even if the return on the underlying asset follows a symmetric distribution. Getting a
handle on this asymmetry is a key theme of this chapter.

The chapter is structured as follows:

l We define the delta of an option, which provides a linear approximation to the
nonlinear option price. We then present delta formulas from the various models
introduced in the previous chapter.

l We establish the delta-based approach to portfolio risk management. The idea
behind this approach is to linearize the option return and thereby make it fit into
the risk models discussed earlier in the book. The downside of this approach is that
it ignores the key asymmetry in option payoffs.

l We define the gamma of an option, which gives a second-order approximation of
the option price as a function of the underlying asset price.

l We use the gamma of an option to construct a quadratic model of the portfolio
return distribution. We discuss two implementations of the quadratic model: one
relies on the Cornish-Fisher approximation from Chapter 6, and the other relies on
the Monte Carlo simulation technique from Chapter 8.

l We will measure the risk of options using the full valuation method, which relies on
an accurate but computationally intensive version of the Monte Carlo simulation
technique from Chapter 8.

l We illustrate all the suggested methods in a simple example. We then discuss a
major pitfall in the use of the linear and quadratic approximations in another numer-
ical example. This pitfall, in turn, motivates the use of the full valuation model.

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00011-7
c© 2012 Elsevier, Inc. All rights reserved.
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2 The Option Delta

The delta of an option is defined as the partial derivative of the option price with
respect to the underlying asset price, St. For puts and calls, we define

δc
≡
∂c

∂St

δp
≡
∂p

∂St

Notice that the deltas are not observed in the market, but instead are based on the
assumed option pricing model.

Figure 11.1 illustrates the familiar tangent interpretation of a partial derivative. The
option price for a generic underlying asset price, S, is approximated by

c(S)≈ c(St)+ δ (S− St)

where St is the current price of the underlying asset. In Figure 11.1, St equals 100.
The delta of an option (in this case, a call option) can be viewed as providing a

linear approximation (around the current asset price) to the nonlinear option price,
where the approximation is reasonably good for asset prices close to the current price
but gets gradually worse for prices that deviate significantly from the current price,
as Figure 11.1 illustrates. To a risk manager, the poor approximation of delta to the
true option price for large underlying price changes is clearly unsettling. Risk man-
agement is all about large price changes, and we will therefore consider more accurate
approximations here.

Figure 11.1 Call option price and delta approximation.
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Notes: The call option price (red) and the delta approximation (blue) of the option are plotted
against the price of the underlying asset. The strike price is 100 and delta is calculated at an
asset price of 100.
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2.1 The Black-Scholes-Merton Model

Recall, from the previous chapter, the Black-Scholes-Merton (BSM) formula for a
European call option price

cBSM = St8(d)− exp(−rf T̃)X8(d− σ
√

T̃)

where 8(•) is the cumulative density of a standard normal variable, and

d =
ln(St/X)+ T̃

(
rf + σ

2/2
)

σ
√

T̃

Using basic calculus, we can take the partial derivative of the option price with respect
to the underlying asset price, St, as follows:

∂cBSM

∂St
≡ δc

BSM =8(d)

We refer to this as the delta of the option, and it has the interpretation that for small
changes in St the call option price will change by 8(d). Notice that as 8(•) is the
normal cumulative density function, which is between zero and one, we have

0< δc
BSM < 1

so that the call option price in the BSM model will change in the same direction as the
underlying asset price, but the change will be less than one-for-one.

For a European put option, we have the put-call parity stating that

St+ p= c+X exp(−rf T̃), or

p= c+X exp(−rf T̃)− St

so that we can easily derive

∂pBSM

∂St
≡ δ

p
BSM =

∂cBSM

∂St
− 1=8(d)− 1

Notice that we have

−1< δp
BSM < 0

so that the BSM put option price moves in the opposite direction of the underlying
asset, and again the option price will change by less (in absolute terms) than the under-
lying asset price.

In the case where a dividend or interest is paid on the underlying asset at a rate of
q per day, the deltas will be

δc
BSM = exp(−qT̃)8(d),

δ
p
BSM = exp(−qT̃)(8(d)− 1)
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where

d =
ln(St/X)+ T̃

(
rf − q+ σ 2/2

)
σ
√

T̃

The deltas of the European call and put options from the BSM model are shown in
Figure 11.2 for X = 100 and for St varying from 75 to 125. Notice that delta changes
most dramatically when the option is close to at-the-money—that is, when St ≈ X.
A risk management model that relies on a fixed initial delta is therefore likely to be
misleading when the portfolio contains a significant number of at-the-money options.

Figure 11.3 shows the delta of three call options with different strike prices
(X = 80,100, and 120, respectively) plotted against maturity, T̃ , ranging from 1 to 365

Figure 11.2 The delta of a call option (top) and a put option (bottom).
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Notes: The plot shows the delta of a call option (blue) and a put option (red) as a function of
the underlying asset price. The strike price is 100 for both options.

Figure 11.3 The delta of three call options.
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calendar days on the horizontal axis. The asset price St is held fixed at 100 throughout
the graph.

Notice when the maturity gets shorter (we move from right to left in the graph),
the deltas diverge: the delta from the in-the-money call option increases to 1, the delta
from the out-of-the-money option decreases to 0, and the delta from the at-the-money
option converges to 0.5. An in-the-money call option with short maturity is almost
certain to pay off St−X, which is why its price moves in tandem with the asset price
St and its delta is close to 1. An out-of-the-money option with short maturity is almost
certain to pay 0, so that its price is virtually constant and its delta is close to 0.

2.2 The Binomial Tree Model

Option deltas can also be computed using binomial trees. This is particularly important
for American put options for which early exercise may be optimal, which will impact
the current option price and also the option delta. Table 11.1 shows the binomial tree
example from Table 10.4 in Chapter 10. The black font again shows the American put
option price at each node. The green font now shows the option delta.

The delta at point A (that is at present) can be computed very easily in binomial
trees simply as

δBin =
PutB−PutC

SB− SC

Table 11.1 Delta of American put option

Market Variables
St = 1000 D
Annual rf = 0.05 1528.47
Contract Terms 0.00
X= 1100
T = 0.25 B

1236.31
Parameters −0.19
Annual Vol= 0.6 53.48
tree steps= 2
dt= 0.125 A E
u= 1.23631111 1000.00 1000.00
d= 0.808857893 −0.56
RNP= 0.461832245 180.25 100.00
Stock is black C
American put delta is green 808.86
American put price is red −1.00

291.14
F

654.25
445.75

Notes: The green font shows the delta of the American put option at points A, B, and C
in the tree.
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and a similar formula can be used for European puts as well as for call options of each
style. Note that delta was already used in Chapter 10 to identify the number of units in
the underlying asset we needed to buy to hedge the sale of one option. Delta changes
in each point of the tree, which shows that option positions require dynamic hedging
in order to remain risk free.

2.3 The Gram-Charlier Model

As the delta is a partial derivative of an option pricing model with respect to the
underlying asset price, it is fundamentally model dependent. The preceding deltas
were derived from the BSM model, but different option pricing models imply different
formulas for the deltas. We saw in the previous chapter that the BSM model sometimes
misprices traded options quite severely. We therefore want to consider using more
accurate option pricing models for calculating the options delta.

In the case of the Gram-Charlier option pricing model, we have

cGC ≈ St8(d)−Xe−rT̃8
(

d−
√

T̃σ
)

+ Stφ (d)σ

[
ζ 11

3!

(
2
√

T̃σ − d
)
−
ζ 21/

√
T̃

4!

(
1− d2

+ 3d
√

T̃σ − 3T̃σ 2
)]

and the partial derivative with respect to the asset price in this case is

δGC =
∂cGC

∂St
=8(d)−

ζ 11/
√

T̃

3!
φ (d)

(
1− d2

+ 3σ
√

T̃d− 2σ 2T̃
)

+
ζ 21/T̃

4!
φ (d)

[
3d
(

1− 2σ 2T̃
)
+ 4d2σ

√
T̃ − d3

− 4σ
√

T̃ + 3σ 3T̃3/2
]

which collapses to the BSM delta of 8(d) when skewness, ζ 11, and excess kurtosis,
ζ 21, are both zero. Again, we can easily calculate the put option delta from

δ
p
GC ≡

∂pGC

∂St
=
∂cGC

∂St
− 1

2.4 The GARCH Option Pricing Models

Calculating deltas from the general GARCH option pricing model, we are immediately
faced with the issue that the option price is not available in closed form but must be
simulated. We have in general

cGH = exp(−rf T̃)E∗t
[
Max

{
St+T̃ −X,0

}]
which we compute by simulation as

cGH ≈ exp(−rf T̃)
1

MC

MC∑
i=1

Max
{

Š∗
i,t+T̃
−X,0

}
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where Š∗
i,t+T̃

is the hypothetical GARCH asset price on option maturity date t+ T̃ for

Monte Carlo simulation path i, where the simulation is done under the risk-neutral
distribution.

The partial derivative of the GARCH option price with respect to the underlying
asset price can be shown to be

δc
GH = exp(−rf T̃)E∗t

[
St+T̃

St
1
(
St+T̃ ≥ X

)]
where the function 1(•) takes the value 1 if the argument is true and zero otherwise.

The GARCH delta must also be found by simulation as

δc
GH ≈ exp(−rf T̃)

1

MC

MC∑
i=1

Š∗
i,t+T̃

St
1
(

Š∗
i,t+T̃
≥ X

)
where Š∗

i,t+T̃
is again the simulated future risk-neutral asset price. The delta of the

European put option can still be derived from the put-call parity formula.
In the special case of the closed-form GARCH process, we have the European call

option pricing formula

cCFG = StP1−Xe−rf T̃P2

and the delta of the call option is

δc
CFG = P1

The formula for P1 is given in the appendix to the previous chapter.

3 Portfolio Risk Using Delta

Equipped with a formula for delta from our option pricing formula of choice, we are
now ready to adapt our portfolio distribution model from earlier chapters to include
portfolios of options.

Consider a portfolio consisting of just one (long) call option on a stock. The change
in the dollar value (or the dollar return) of the option portfolio, DVPF,t+1, is then just
the change in the value of the option

DVPF,t+1 ≡ ct+1− ct

Using the delta of the option, we have that for small changes in the underlying asset
price

δ ≈
ct+1− ct

St+1− St
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Defining geometric returns on the underlying stock as

rt+1 =
St+1− St

St
≈ ln(St+1/St)= Rt+1

and combining the previous three equations, we get the change in the option portfolio
value to be

DVPF,t+1 ≈ δ (St+1− St)≈ δStRt+1

The upshot of this formula is that we can write the change in the dollar value of the
option as a known value δt times the future return of the underlying asset, Rt+1, if we
rely on the delta approximation to the option pricing formula.

Notice that a portfolio consisting of an option on a stock corresponds to a stock
portfolio with δ shares. Similarly, we can think of holdings in the underlying asset
as having a delta of 1 per share of the underlying asset. Trivially, the derivative of a
stock price with respect to the stock price is 1. Thus, holding one share corresponds to
having δ = 1, and holding 100 shares corresponds to having δ = 100.

Similarly, a short position of 10 identical calls corresponds to setting δ =−10δc,
where δc is the delta of each call option. The delta of a short position in call options
is negative, and the delta of a short position in put options is positive as the delta of a
put option itself is negative.

The variance of the portfolio in the delta-based model is

σ 2
DV,t+1 ≈ δ

2S2
t σ

2
t+1

where σ 2
t+1 is the conditional variance of the return on the underlying stock.

Assuming conditional normality, the dollar Value-at-Risk (VaR) in this case is

$VaRp
t+1 =−σDV,t+18

−1
p ≈−abs(δ)Stσ t+18

−1
p

where the absolute value, abs(∗), comes from having taken the square root of the port-
folio change variance, σ 2

DV,t+1. Notice that since DVPF,t+1 is measured in dollars, we
are calculating dollar VaRs directly and not percentage VaRs as in previous chapters.
The percentage VaR can be calculated immediately from the dollar VaR by dividing it
by the current value of the portfolio.

In case we are holding a portfolio of several options on the same underlying asset,
we can simply add up the deltas. The delta of a portfolio of options on the same
underlying asset is just the weighted sum of the individual deltas as in

δ =
∑

j

mjδj

where the weight, mj, equals the number of the particular option contract j. A short
position in a particular type of options corresponds to a negative mj.
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In the general case where the portfolio consists of options on n underlying assets,
we have

DVPF,t+1 ≈

n∑
i=1

δiSi,tRi,t+1

In this delta-based model, the variance of the dollar change in the portfolio value is
again

σ 2
DV,t+1 ≈

n∑
i=1

n∑
j=1

abs
(
δi)abs(δj

)
Si,tSj,tσ ij,t+1

Under conditional normality, the dollar VaR of the portfolio is again just

$VaRp
t+1 =−σDV,t+18

−1
p

Thus, in this case, we can use the Gaussian risk management framework estab-
lished in Chapters 4 and 7 without modification. The linearization of the option prices
through the use of delta, together with the assumption of normality, makes the calcu-
lation of the VaR and other risk measures very easy.

Notice that if we allow for the standard deviations, σ i,t+1, to be time varying as
in GARCH, then the option deltas should ideally be calculated from the GARCH
model also. We recall that for horizons beyond one day, the GARCH returns are no
longer normal, in which case the return distribution must be simulated. We will dis-
cuss simulation-based approaches to option risk management later. When volatility is
assumed to be constant and returns are assumed to be normally distributed, we can
calculate the dollar VaR at horizon K by

$VaRp
t+1:t+K =−σDV

√
K8−1

p

where σDV is the daily portfolio volatility and where K is the risk management horizon
measured in trading days.

4 The Option Gamma

The linearization of the option price using the delta approach outlined here often does
not offer a sufficiently accurate description of the risk from the option. When the
underlying asset price makes a large upward move in a short time, the call option
price will increase by more than the delta approximation would suggest. Figure 11.1
illustrates this point. If the underlying price today is $100 and it moves to $115, then
the nonlinear option price increase is substantially larger than the linear increase in
the delta approximation. Risk managers, of course, care deeply about large moves
in asset prices and this shortcoming of the delta approximation is therefore a serious
issue. A possible solution to this problem is to apply a quadratic rather than just a
linear approximation to the option price. The quadratic approximation attempts to
accommodate part of the error made by the linear delta approximation.
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Figure 11.4 Call option price (blue) and the gamma approximation (red).
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Notes: The call option price and the gamma approximation are plotted against the price of the
underlying asset. The strike price is 100 and delta is calculated with an asset price of 100 as
well.

The Greek letter gamma, γ , is used to denote the rate of change of δ with respect
to the price of the underlying asset, that is,

γ ≡
∂δ

∂St
=
∂2c

∂S2
t

Figure 11.4 shows a call option price as a function of the underlying asset price.
The gamma approximation is shown along with the model option price. The model

option price is approximated by the second-order Taylor expansion

c(S)≈ c(St)+ δ (S− St)+
1

2
γ (S− St)

2

For a European call or put on an underlying asset paying a cash flow at the rate q,
and relying on the BSM model, the gamma can be derived as

γ c
= γ p

=
φ (d)exp

(
−qT̃

)
Stσ

√
T̃

, where

d =
ln(St/X)+ T̃

(
rf − q+ σ 2/2

)
σ
√

T̃

and where φ (•) as before is the probability density function for a standard normal
variable,

φ (d)≡
1
√

2π
exp

(
− d2/2

)
Figure 11.5 shows the gamma for an option using the BSM model with parameters

as in Figure 11.2 where we plotted the deltas.
When the option is close to at-the-money, the gamma is relatively large and when

the option is deep out-of-the-money or deep in-the-money the gamma is relatively
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Figure 11.5 The gamma of an option.
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Notes: The figure shows the gamma of an option with a strike price of 100 plotted against the
price of the underlying asset.

small. This is because the nonlinearity of the option price is highest when the option
is close to at-the-money. Deep in-the-money call option prices move virtually one-
for-one with the price of the underlying asset because the options will almost surely
be exercised. Deep out-of-the-money options will almost surely not be exercised, and
they are therefore virtually worthless regardless of changes in the underlying asset
price.

All this, in turn, implies that for European options, ignoring gamma is most crucial
for at-the-money options. For these options, the linear delta-based model can be highly
misleading.

Finally, we note that gamma can be computed using binomial trees as well.
Table 11.2 shows the gamma for the American put option from Table 11.1.

The formula used for gamma in the tree is simply

γ Bin =
δB− δC

0.5[(SD− SE)+ (SE − SF)]
=

δB− δC

0.5(SD− SF)

and it is thus based on the change in the delta from point B to C in the tree divided by
the average change in the stock price when going from points B and C.

5 Portfolio Risk Using Gamma

In the previous delta-based model, when considering a portfolio consisting of options
on one underlying asset, we have

DVPF,t+1 ≈ δStRt+1

where δ denotes the weighted sum of the deltas on all the individual options in the
portfolio.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 16-ch11-251-276-9780123744487 2011/10/29 19:18 Page 262 #12

262 Further Topics in Risk Management

Table 11.2 Gamma of American put option

Market Variables
St = 1000 D
Annual rf = 0.05 1528.47
Contract Terms 0.00
X= 1100
T = 0.25 B

1236.31
Parameters −0.19
Annual Vol= 0.6 53.48
tree steps= 2
dt= 0.125 A E
u= 1.23631111 1000.00 1000.00
d= 0.808857893 −0.56
RNP= 0.461832245 180.25 100.00
Stock is black 0.001855 C
American put delta is green 808.86
American put price is red −1.00
American put gamma is blue 291.14

F
654.25
445.75

Notes: The blue font shows the gamma of an American put option at point A computed
using the deltas at points B and C.

When incorporating the second derivative, gamma, we instead rely on the quadratic
approximation

DVPF,t+1 ≈ δStRt+1+
1

2
γ S2

t R2
t+1

where the portfolio δ and γ are calculated as

δ =
∑

j

mjδj

γ =
∑

j

mjγ j

where again mj denotes the number of option contract j in the portfolio.

5.1 The Cornish-Fisher Approximation

If we assume that the underlying asset return, Rt+1, is normally distributed with mean
zero and constant variance σ 2, and rely on the preceding quadratic approximation,
then the first three moments of the distribution of changes in the value of a portfolio
of options can be written as

µDV ≈
1

2
γ S2

t σ
2
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σ 2
DV ≈ δ

2S2
t σ

2
+

1

2
γ 2S4

t σ
4

ζ 1,DV ≈

9
2δ

2γ S4
t σ

4
+

15
8 γ

3S6
t σ

6
− 3

(
δ2S2

t σ
2
+

3
4γ

2S4
t σ

4
)
µDV + 2µ3

DV

σ 3
DV

For example, we can derive the expected value as

µDV ≡ E
[
DVPF,t+1

]
≈ E [δStRt+1]+E

[
1

2
γ S2

t R2
t+1

]
= δSt · 0+

1

2
γ S2

t σ
2
=

1

2
γ S2

t σ
2

The K-day horizon moments can be calculated by scaling σ by
√

K everywhere.
Notice that because the change in the portfolio value now depends on the squares of

the individual returns, the portfolio return is no longer normally distributed, even if the
underlying asset return is normally distributed. In particular, we notice that even if the
underlying return has mean zero, the portfolio mean is no longer zero. More important,
the variance formula changes and the portfolio skewness is no longer zero, even if the
underlying asset has no skewness. The asymmetry of the options payoff itself creates
asymmetry in the portfolio distribution. The linear-normal model presented earlier
fails to capture this skewness, but the quadratic model considered here captures the
skewness at least approximately. In this way, the quadratic model can offer a distinct
improvement over the linear model.

The approximate Value-at-Risk of the portfolio can be calculated using the Cornish-
Fisher approach discussed in Chapter 6. The Cornish-Fisher VaR allowing for skew-
ness is

$VaRP
t+1 =−µDV −

(
8−1

p +
1

6

((
8−1

p

)2
− 1

)
ζ 1,DV

)
σDV

Unfortunately, the analytical formulas for the moments of options portfolios with
many underlying assets are quite cumbersome, and they rely on the unrealistic assump-
tion of normality and constant variance. We will therefore now consider a much more
general but simulation-based technique that builds on the Monte Carlo method intro-
duced in Chapter 8. Later, we will illustrate the Cornish-Fisher quadratic VaR in a
numerical example.

5.2 The Simulation-Based Gamma Approximation

Consider again the simple case where the portfolio consists of options on only one
underlying asset and we are interested in the K-day $VaR. We have

DVPF,t+K ≈ δStRt+1:t+K +
1

2
γ S2

t R2
t+1:t+K
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Using the assumed model for the physical distribution of the underlying asset return,
we can simulate MC pseudo K-day returns on the underlying asset{

R̂K
h

}MC
h=1

and calculate the hypothetical changes in the portfolio value as

D̂V
K
PF,h ≈ δStR̂

K
h +

1

2
γ S2

t

(̂
RK

h

)2
from which we can calculate the Value-at-Risk as

$VaRp
t+1:t+K =−Percentile

{{
D̂V

K
PF,h

}MC

h=1
,100p

}
In the general case of options on n underlying assets, we have

DVPF,t+K ≈

n∑
i=1

δiSi,tRi,t+1:t+K +

n∑
i=1

1

2
γ iS

2
i,tR

2
i,t+1:t+K

where δi and γ i are the aggregate delta and gamma of the portfolio with respect to the
ith return.

If we in addition allow for derivatives that depend on several underlying assets,
then we write

DVPF,t+K ≈

n∑
i=1

δiSi,tRi,t+1:t+K +

n∑
i=1

n∑
j=1

1

2
γ ijSi,tSj,tRi,t+1:t+KRj,t+1:t+K

which includes the so-called cross-gammas, γ ij. For a call option, for example, we
have

γ c
ij ≡

∂2c

∂Si∂Sj
, for i 6= j

Cross-gammas are relevant for options with multiple sources of uncertainty. An option
written on the US dollar value of the Tokyo stock index is an example of such an
option.

We now simulate a vector of underlying returns from the multivariate distribution{
R̂K

i,h

}MC

h=1
, for i= 1,2, . . . , n

and we calculate D̂Vs by summing over the different assets using

D̂V
K
PF,h ≈

n∑
i=1

δiSi,tR̂
K
i,h+

n∑
i=1

n∑
j=1

1

2
γ ijSi,tSj,tR̂

K
i,hR̂K

j,h
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The great benefit of this approach is that we are aggregating all the options on one
particular asset into a delta and a gamma for that asset. Thus, if the portfolio consists
of a thousand different types of option contracts, but only written on 100 different
underlying assets, then the dimension of the approximated portfolio distribution is
only 100.

As these formulas suggest, we could, in principle, simulate the distribution of the
future asset returns at any horizon and calculate the portfolio Value-at-Risk for that
horizon. However, a key problem with the delta and the delta-gamma approaches is
that if we calculate the VaR for a horizon longer than one day, the delta and gamma
numbers may not be reliable approximations to the risk of the option position because
they are assumed to be constant through time when in reality they are not. We therefore
next consider an approach that is computationally intensive, but does not suffer from
the problems arising from approximating the options by delta and gamma.

6 Portfolio Risk Using Full Valuation

Linear and quadratic approximations to the nonlinearity arising from options can in
some cases give a highly misleading picture of the risk from options. Particularly, if
the portfolio contains options with different strike prices, then problems are likely to
arise. We will give an explicit example of this type of problem.

In such complex portfolios, we may be forced to calculate the risk measure using
what we will call full valuation. Full valuation consists of simulating future hypothet-
ical underlying asset prices and using the option pricing model to calculate the cor-
responding future hypothetical option prices. For each hypothetical future asset price,
every option written on that asset must be priced. While full valuation is precise, it is
unfortunately also computationally intensive. Full valuation can, in principle, be done
with any of the option pricing models discussed in Chapter 10.

6.1 The Single Underlying Asset Case

Consider first the simple case where our position consists of a short position in one
call option. The dollar return at horizon K can be written

DVPF,t+K =−1 ·
(

c(St+K,rf ,X, T̃ − τ ;σ)− cmkt
)

where cmkt is the current market price.
The τ is the risk horizon measured in calendar days because the option maturity, T̃,

is measured in calendar days. The risk management horizon in trading days is denoted
by K. For example, if we have a two-week $VaR horizon, then K is 10 and τ is 14.

We can think of full valuation as pretending that we have arrived on the risk man-
agement horizon date and want to price all the options in the portfolio. As we do not
know the price of the underlying asset K days into the future, we value the options for
a range of hypothetical future prices of the underlying. Assuming a particular phys-
ical distribution of the return on the underlying asset, and applying the Monte Carlo
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method discussed in Chapter 8, we can simulate future hypothetical returns on the
underlying asset{

R̂K
h

}MC

h=1

and calculate future hypothetical asset prices{
ŜK

h = St exp
(

R̂K
h

)}MC

h=1

We can now calculate the hypothetical changes in the portfolio value as

D̂V
K
PF,h =−1 ·

(
c(ŜK

h ,rf ,X, T̃ − τ ;q;σ)− cmkt
)
, for h= 1,2, . . . ,MC

The $VaR can now be calculated as in Chapter 8 using

$VaRp
t+1:t+K =−Percentile

{{
D̂V

K
PF,h

}MC

h=1
,100p

}

Thus, we sort the portfolio value changes in
{

D̂V
K
PF,h

}MC

h=1
in ascending order and

choose the $VaRp
t+1:t+K to be the number such that only p · 100% of the observations

are smaller than the $VaRp
t+1:t+K .

6.2 The General Case

More generally, consider again the portfolio of linear assets such as stocks. We have

DVPF,t+K =

n∑
i=1

w̃i
(
Si,t+K − Si,t

)
where w̃i is the number of asset i units held.

If we add, for example, call options to the portfolio, we would have

DVPF,t+K =

n∑
i=1

w̃i
(
Si,t+K − Si,t

)
+

n∑
i=1

∑
j

mi,j

(
c(Si,t+K,rf ,Xi,j, T̃i,j− τ ,qi,j;σ i)− cmkt

i,j

)
where mi,j is the number of options of type j on the underlying asset i.

The Value-at-Risk from full valuation can be calculated from simulation again.
Using the model for the returns distribution, we can simulate future returns and thus
future asset prices{

ŜK
i,h

}MC

h=1
, for i= 1,2, . . . , n
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and calculate the hypothetical changes in the portfolio value as

D̂V
K
PF,h =

n∑
i=1

w̃i
(̂
Si,h− Si,t

)
+

n∑
i=1

∑
j

mi,j

(
c(ŜK

i,h,rf ,Xi,j, T̃i,j− τ ;qi,j;σ i)− cmkt
i,j

)

From these simulated value changes, we can calculate the dollar Value-at-Risk as

$VaRp
t+1:t+K =−Percentile

{{
D̂V

K
PF,h

}MC

h=1
,100p

}
The full valuation approach has the benefit of being conceptually very simple;

furthermore it does not rely on approximations to the option price. It does, how-
ever, require much more computational effort as all the future hypothetical prices of
every option contract have to be calculated for every simulated future underlying asset
price. Considerations of computational speed therefore sometimes dictate the choice
between the more precise but slow full valuation method and the approximation meth-
ods, which are faster to implement.

7 A Simple Example

To illustrate the three approaches to option risk management, consider the following
example. On January 6, 2010, we want to compute the 10-day $VaR of a portfolio
consisting of a short position in one S&P 500 call option. The option has 43 calen-
dar days to maturity, and it has a strike price of $1135. The price of the option is
$26.54, and the underlying index is $1137.14. The expected flow of dividends per day
is 0.005697%, and the risk-free interest rate is 0.000682% per day. For simplicity, we
assume a constant standard deviation of 1.5% per calendar day (for option pricing and
delta calculation) or equivalently 0.015 ·

√
365/252= 0.0181 per trading day (for cal-

culating VaR in trading days). We will use the BSM model for calculating δ,γ as well
as the full valuation option prices. We thus have

St = 1137.14

X = 1135

T̃ = 43

rf = 0.000682%

q= 0.005697%

σ = 1.5% per calendar day

from which we can calculate the delta and gamma of the option as

d =
ln(St/X)+ T̃

(
rf − f − q+ σ 2/2

)
σ
√

T̃
= 0.046411
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δ = exp(−qT̃)8(d)= 0.517240

γ =
φ (d)e−qT̃

Stσ
√

T̃
= 0.003554

for the portfolio, which is short one option; we thus have

m · δ =−1 · 0.517240

m · γ =−1 · 0.003554

where the −1 comes from the position being short.
In the delta-based model, the dollar VaR is

$VaR0.01
t+1:t+10 =−abs(δ)Stσ

√
108−1

0.01

≈−abs(−1 · 0.517240) · 1137.14 · 0.0181 ·
√

10 · (−2.33)

≈ $77.92

where we now use volatility in trading days.
Using the quadratic model and relying on the Cornish-Fisher approximation to

the portfolio dollar return distribution, we calculate the first three moments for the
K-day change in portfolio values, when the underlying return follows the N(0,Kσ 2)

distribution. Setting K = 10, we get

µDV ≈
1

2
S2

t γKσ 2
=−7.488792

σ 2
DV ≈ S2

t δ
2Kσ 2

+
1

2
S4

t γ
2K2σ 4

= 1239.587604

ζ 1,DV ≈

9
2 S4

t δ
2γK2σ 4

+
15
8 S6

t γ
3K3σ 6

− 3
(

S2
t δ

2Kσ 2
+

3
4 S4

t γ
2K2σ 4

)
µDV + 2µ3

DV

σ 3
DV

=−1.237724

where we use volatility denoted in trading days since K is denoted in trading days.
The dollar VaR is then

$VaR.01
t+1:t+10 =−µDV −

(
8−1

p +
1

6

((
8−1

p

)2
− 1

)
ζ 1,DV

)
σDV = $121.44

which is much higher than the VaR from the linear model. The negative skewness
coming from the option γ and captured by ζ 1,DV increases the quadratic VaR in com-
parison with the linear VaR, which implicitly assumes a skewness of 0.

Using instead the simulated quadratic model, we generate 5000 10-trading day
returns, R̂h,h= 1,2, . . . , 5000 with a standard deviation of 0.0181 ·

√
10. Using the
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δ and γ calculated earlier, we find

$VaR0.01
t+1:t+10 =−Percentile

{{
δStR̂h+

1

2
γ S2

t · R̂
2
h

}MC

h=1
,1

}

=−Percentile

{{
(−1 · 0.517240) · 1137.14 · R̂h

+
1

2
(−1 · 0.003554) · 1137.142

· R̂2
h

}MC

h=1
,1

}
≈ $126.06

Notice again that due to the relatively high γ of this option, the quadratic VaR is more
than 50% higher than the linear VaR.

Finally, we can use the full valuation approach to find the most accurate VaR. Using
the simulated asset returns R̂h to calculate hypothetical future stock prices, Ŝh, we
calculate the simulated option portfolio value changes as

D̂VPF,h =−1 ·
(

c(Ŝh,rf ,X, T̃ − 14,q;σ)− 35.10
)
, for h= 1,2, . . . ,5000

where 14 is the number of calendar days in the 10-trading-day risk horizon. We then
calculate the full valuation VaR as

$VaR0.01
t+1:t+10 =−Percentile

{{
D̂VPF,h

}MC
h=1 ,1

}
≈ $144.83

In this example, the full valuation VaR is slightly higher than the quadratic VaR.
The quadratic VaR thus provides a pretty good approximation in this simple portfolio
of one option.

To gain further insight into the difference among the three VaRs, we plot the
entire distribution of the hypothetical future 10-day portfolio dollar returns under the
three models. Figure 11.6 shows a normal distribution with mean zero and variance
δ2S2

t 10σ 2
= 1121.91.

Figure 11.7 shows the histogram from the quadratic model using the 5000 simulated
portfolio returns.

Finally, Figure 11.8 shows the histogram of the 5000 simulated full valuation dollar
returns. Notice the stark differences between the delta-based method and the other
two. The linear model assumes a normal distribution where there is no skewness.
The quadratic model allows for skewness arising from the gamma of the option. The
portfolio dollar return distribution has a negative skewness of around −1.29.

Finally, the full valuation distribution is slightly more skewed at−1.42. The differ-
ence in skewness arises from the asymmetry of the distribution now being simulated
directly from the option returns rather than being approximated by the gamma of the
option.

Further details on all the calculations in this section can be found on the web site.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 16-ch11-251-276-9780123744487 2011/10/29 19:18 Page 270 #20

270 Further Topics in Risk Management

Figure 11.6 Histogram of portfolio value changes using the delta-based model.
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Notes: The plot shows the distribution of outcomes from 5,000 Monte Carlo replications of the
delta-based model for a simple portfolio of a single call option.

Figure 11.7 Histogram of portfolio value changes using the gamma-based model.
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Notes: The plot shows the distribution of outcomes from 5,000 Monte Carlo replications of the
gamma-based model for a simple portfolio of a single call option.

Figure 11.8 Histogram of portfolio value changes using full valuation.
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Notes: The plot shows the distribution of outcomes from 5,000 Monte Carlo replications of the
full valuation model for a simple portfolio of a single call option.
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8 Pitfall in the Delta and Gamma Approaches

While the previous example suggests that the quadratic approximation yields a good
approximation to the true option portfolio distribution, we now show a different exam-
ple, which illustrates that even the gamma approximation can sometimes be highly
misleading.

To illustrate the potential problem with the approximations, consider an option port-
folio that consists of three types of options all on the same asset, and that has a price
of St = 100, all with T̃ = 28 calendar days to maturity. The risk-free rate is 0.02/365
and the volatility is 0.015 per calendar day. We take a short position in 1 put with a
strike of 95, a short position in 1.5 calls with a strike of 95, and a long position in 2.5
calls with a strike of 105. Using the BSM model to calculate the delta and gamma of
the individual options, we get

Type of Option Put Call Call

Strike, Xj 95 95 105
Option Price 1.1698 6.3155 1.3806
Delta, δj –0.2403 0.7597 0.2892
Gamma, γ j 0.03919 0.03919 0.04307
Position, mj –1 –1.5 2.5

We are now interested in assessing the accuracy of the delta and gamma approx-
imation for the portfolio over a five trading day or equivalently seven calendar day
horizon. Rather than computing VaRs, we will take a closer look at the complete pay-
off profile of the portfolio for different future values of the underlying asset price,
St+5. We refer to the value of the portfolio today as VPFt and to the hypothetical
future value as VPFt+5 (St+5).

We first calculate the value of the portfolio today as

VPFt =−1 · 1.1698− 1.5 · 6.3155+ 2.5 · 1.3806

=−7.1916

The delta of the portfolio is similarly

δ =−1 · (−0.2403)− 1.5 · 0.7597+ 2.5 · 0.2892

=−0.1761

Now, the delta approximation to the portfolio value in five trading days is easily
calculated as

VPFt+5 (St+5)≈ VPFt+ δ (St+5− St)

=−7.1916− 0.1761(St+5− 100)

The gamma of the portfolio is

γ =−1 · 0.03919− 1.5 · 0.03919+ 2.5 · 0.04307

= 0.0096898
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and the gamma approximation to the portfolio value in five trading days is

VPFt+5 (St+5)= VPFt+ δ (St+5− St)+
1

2
γ (St+5− St)

2

=−7.1916− 0.1761 · (St+5− 100)+ 0.004845 · (St+5− 100)2

Finally, relying on full valuation, we must calculate the future hypothetical portfo-
lio values as

VPFt+5 (St+5)=−1 · pBSM(St+5,rf =0.02/365,X=95, T̃=28− 7;σ =0.015)

− 1.5 · cBSM(St+5,rf =0.02/365,X=95, T̃=28− 7;σ =0.015)

+ 2.5 · cBSM(St+5,rf =0.02/365,X=105, T̃=28− 7;σ =0.015)

where we subtract seven calendar days from the time to maturity corresponding to the
risk management horizon of five trading days.

Letting the hypothetical future underlying stock price vary from 85 to 115, the
three-option portfolio values are shown in Figure 11.9. Notice how the exact portfolio
value is akin to a third-order polynomial. The nonlinearity is arising from the fact that
we have two strike prices. Both approximations are fairly poor when the stock price
makes a large move, and the gamma-based model is even worse than the delta-based
approximation when the stock price drops. Further details on all the calculations in
this section can be found on the web site.

The important lesson of this three-option example is as follows: The different strike
prices and the different exposures to the underlying asset price around the different
strikes create higher order nonlinearities, which are not well captured by the simple

Figure 11.9 Future portfolio values for option portfolio.
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Notes: We plot the portfolio value five days in the future for the three-option portfolio using the
delta, gamma, and full valuation method plotted against the future price of the underlying asset.
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linear and quadratic approximations. In realistic option portfolios consisting of thou-
sands of contracts, there may be no alternative to using the full valuation method.

9 Summary

This chapter has presented three methods for incorporating options into the risk man-
agement model.

First, the delta-based approach consists of a complete linearization of the nonlinear-
ity in the options. This crude approximation essentially allows us to use the methods
in the previous chapters without modification. We just have to use the option’s delta
when calculating the portfolio weight of the option.

Second, we considered the quadratic, gamma-based approach, which attempts to
capture the nonlinearity of the option while still mapping the option returns into the
underlying asset returns. In general, we have to rely on simulation to calculate the
portfolio distribution using the gamma approach, but we only simulate the underlying
returns and not the option prices.

The third approach is referred to as full valuation. It avoids approximating the
option price, but it involves much more computational work. We simulate returns on
the underlying asset and then use an option pricing model to value each option in the
portfolio for each of the future hypothetical underlying asset prices.

In a simple example of a portfolio consisting of just one short call option, we
showed how a relatively large gamma would cause the delta-based VaR to differ sub-
stantially from the gamma and full valuation VaRs.

In another example involving a portfolio of three options with different strike prices
and with large variations in the delta across the strike prices, we saw how the gamma
and delta approaches were both quite misleading with respect to the future payoff
profile of the options portfolio.

The main lesson from the chapter is that for nontrivial options portfolios and for
risk management horizons beyond just a few days, the full valuation approach may be
the only reliable choice.

Further Resources

The delta, gamma, and other risk measures are introduced and discussed in detail in
Hull (2011). Backus et al. (1997) give the formula for delta in the Gram-Charlier
model. Duan (1995) provided the delta in the GARCH option pricing model. Garcia
and Renault (1998) discussed further the calculation of delta in the GARCH option
pricing model. Heston and Nandi (2000) provided the formula for delta in the closed-
form GARCH option pricing model.

Risk measurement in options portfolios has also been studied in Alexander et al.
(2006), Sorwar and Dowd (2010), and Simonato (2011).

The sample portfolio used to illustrate the pitfalls in the use of the delta and gamma
approximations is taken from Britten-Jones and Schaefer (1999), which also contains
the analytical VaR formulas for the gamma approach assuming normality.
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The important issue of accuracy versus computation speed in the full valuation
versus delta and gamma approaches is analyzed in Pritsker (1997).

In this and the previous chapter, we have focused attention on European options.
American options and many types of exotic options can be priced using binomial
trees as we discussed in the last chapter. Deltas and gammas can be calculated from
the tree approach as well as we have seen in this chapter. Hull (2011) contains a
thorough introduction to binomial trees as an approximation to the normal distri-
bution with constant variance. Ritchken and Trevor (1999) price American options
under GARCH using a time-varying trinomial tree. Duan and Simonato (2001) priced
American options under GARCH using instead a Markov chain simulation approach.
Longstaff and Schwartz (2001) established a convenient least squares Monte Carlo
method for pricing American and certain exotic options. See also Stentoft (2008) and
Weber and Prokopczuk (2011) for methods to value American options in a GARCH
framework.

Derman (1999), Derman and Kani (1994), and Rubinstein (1994) suggested bino-
mial trees, which allow for implied volatility smiles as in the IVF approach in the
previous chapter.

Whether one relies on the delta, gamma, or full valuation approach, an option pric-
ing model is needed to measure the risk of the option position. Because all models are
inevitably approximations, they introduce an extra source of risk referred to as model
risk. Analysis of the various aspects of model risk can be found in Gibson (2000).
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Empirical Exercises

Open the Chapter11Data.xlsx file from the web site. The file contains European call options on
the S&P 500 from January 6, 2010.

1. Assume a volatility of 0.015 per calendar day for option pricing and a volatility of 0.015 ·
√

365/252= 0.0181 per trading day for return volatility. Calculate the delta and gamma of
a short position of one option. Do this for every option in the sample. Calculate the delta-
based portfolio variance for each option and the 10-trading-day (that is, 14-calendar-day)
1% delta-based dollar VaR for each option.

2. Assume a portfolio that consists of a short position of one in each of the option contracts.
Calculate the 10-day, 1% dollar VaRs using the delta-based and the gamma-based models.
Assume a normal distribution with the variance as in exercise 1. Use MC = 5,000 simulated
returns for the 10-trading-day return. Compare the simulated quadratic VaR with the one
using the Cornish-Fisher expansion formula.

3. Assume a short position of one option contract with 43 days to maturity and a strike price
of 1135. Using the preceding 5,000 random normal numbers, calculate the changes in the
10-day portfolio value according to the delta-based, the gamma-based, and the full valuation
approach. Calculate the 10-day, 1% dollar VaRs using the simulated data from the three
approaches. Make histograms of the distributions of the changes in the portfolio value for
these three approaches using the simulated data. Calculate the Cornish-Fisher VaR as well.

4. Replicate Figure 11.9.

The answers to these exercises can be found in the Chapter11Results.xlsx file on the com-
panion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://ssrn.com/abstract=1706409
http://www.elsevierdirect.com/companions/9780123744487
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12 Credit Risk Management

1 Chapter Overview

Credit risk can be defined as the risk of loss due to a counterparty’s failure to honor
an obligation in part or in full. Credit risk can take several forms. For banks credit
risk arises fundamentally through its lending activities. Nonbank corporations that
provide short-term credit to their debtors face credit risk as well. But credit risk can be
important not only for banks and other credit providers; in certain cases it is important
for investors as well.

Investors who hold a portfolio of corporate bonds or distressed equities need to get
a handle on the default probability of the assets in their portfolio. Default risk, which
is a key element of credit risk, introduces an important source of nonnormality into
the portfolio in this case.

Credit risk can also arise in the form of counterparty default in a derivatives trans-
action. Figure 12.1 illustrates the counterparty risk exposure of a derivative contract.
The horizontal axis shows the value of a hypothetical derivative contract in the absence
of counterparty default risk. The derivative contract can have positive or negative
value to us depending on the value of the asset underlying the derivative contract.
The vertical axis shows our exposure to default of the derivative counterparty. When
the derivative contract has positive value for us then counterparty risk is present. If the
counterparty defaults then we might lose the entire value of the derivative and so the
slope of the exposure is +1 to the right of zero in Figure 12.1. When the derivative
contract has negative value to us then the default of our counterparty will have no
effect on us; we will owe the same amount regardless. The counterparty risk is zero in
this case.

It is clear from Figure 12.1 that counterparty default risk has an option-like structure.
Note that unlike in Chapters 10 and 11, Figure 12.1 has loss on the vertical axis instead
of gain. Counterparty default risk can therefore be viewed as having sold a call option.
Figure 12.1 ignores the fact that part of the value of the derivative position may be
recovered in case of counterparty default. Partial recovery will be discussed later.

The chapter is structured as follows:

l Section 2 provides a few stylized facts on corporate defaults.

l Section 3 develops a model for understanding the effect on corporate debt and
equity values of corporate default. Not surprisingly, default risk will have an

Elements of Financial Risk Management. DOI: 10.1016/B978-0-12-374448-7.00012-9
c© 2012 Elsevier, Inc. All rights reserved.
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Figure 12.1 Exposure to counterparty default risk.
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Notes: The figure shows the counterparty default risk exposure of a contract that can have
positive or negative value without default risk. Default risk is only present when the contract
has positive value.

important effect on how corporate debt (think a corporate bond) is priced, but
default risk will also impact the equity price. The model will help us understand
which factors drive corporate default risk.

l Section 4 builds on the single-firm model from Section 3 to develop a portfolio
model of default risk. The model and its extensions provide a framework for com-
puting credit Value-at-Risk.

l Section 5 discusses a range of further issues in credit risk including recovery rates,
measuring credit quality through ratings, and measuring default risk using credit
default swaps.

2 A Brief History of Corporate Defaults

Credit rating agencies such as Moody’s and Standard & Poor’s maintain databases of
corporate defaults through time. In Moody’s definition corporate default is triggered
by one of three events: (1) a missed or delayed interest or principal payment, (2) a
bankruptcy filing, or (3) a distressed exchange where old debt is exchanged for new
debt that represents a smaller obligation for the borrower.

Table 12.1 shows some of the largest defaults in recent history. In terms of nominal
size, the Lehman default in September 2008 clearly dominates. It is also interesting
to note the apparent industry concentration of large defaults. The defaults in financial
services companies is of course particularly concerning from the point of view of
counterparty risk in derivatives transactions.

Figure 12.2 shows the global default rate for a one-year horizon plotted from 1983
through 2010 as compiled by Moody’s. The figure includes only firms that are judged
by Moody’s to be low credit quality (also know as speculative grade) prior to default.
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Table 12.1 Largest Moody’s-rated defaults

Default Volume
Company ($ mill) Year Industry Country

Lehman Brothers $120,483 2008 Financials United States
Worldcom, Inc. $33,608 2002 Telecom/Media United States
GMAC LLC $29,821 2008 Financials United States
Kaupthing Bank Hf $20,063 2008 Financials Iceland
Washington Mutual, Inc. $19,346 2008 Financials United States
Glitnir Banki Hf $18,773 2008 Financials Iceland
NTL Communications $16,429 2002 Telecom/Media United Kingdom
Adelphia Communications $16,256 2002 Telecom/Media United States
Enron Corp. $13,852 2001 Energy United States
Tribune Economy $12,674 2008 Telecom/Media United States

Notes: The table shows the largest defaults (by default volume) of the firms rated by Moody’s during the 1920 through
2008 period. The data is from Moody’s (2011).

Figure 12.2 Annual average corporate default rates for speculative grade firms, 1983–2010.
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Notes: The figure shows the annual default rates for firms rated speculative grade by Moody’s.
The data is from Moody’s (2011).

The overall default rate, which includes firms of high credit quality (also known as
investment grade), is of course lower.

Figure 12.2 shows that the default rate is not constant over time—it is quite variable
and seems highly persistent. The default rate alternates between periods of low default
rates and periods with large spikes as happened for example during the recent financial
crisis in 2007 to 2009.

The average corporate default rate for speculative grade (to be defined later) firms
was 2.78% per year during the entire 1920–2010 period for which Moody’s has data.
For investment grade firms the average was just 0.15% per year.
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Figure 12.3 Average cumulative global default rates.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
e
fa

u
lt 

ra
te

s

Horizon in years

Investment grade
Speculative grade

All firms

Notes: The figure shows the cumulative (over the horizon in years) average global default rates
for investment grade, speculative grade, and all firms. The rates are calculated using data from
1920 to 2010. The data is from Moody’s (2011).

Figure 12.3 shows the cumulative default rates over a 1- through 20-year horizon
plotted for investment grade, speculative grade, and all firms.

For example, the five-year cumulative default rate for all firms is 7.2%, which
means historically there was a 7.2% probability of a firm defaulting during a five-
year period. Over a 20-year horizon there is an 8.4% probability of an investment
grade firm to default but a 41.4% probability of a speculative grade firm to default.
The overall default rate is close to 18% for a 20-year horizon. The cumulative default
rates are computed using data from 1920 through 2010.

These empirical default rates are not only of historical interest—they can also serve
as useful estimates of the parameters in the credit portfolio risk models we study later.

3 Modeling Corporate Default

This section introduces the Merton model of corporate default, which provides impor-
tant insights into the valuation of equity and debt when the probability of default is
nontrivial. The model also helps us understand which factors affect the default proba-
bility.

Consider the situation where we are exposed to the risk that a particular firm
defaults. This risk could arise from the fact that we own stock in the firm, or it could
be that we have lent the firm cash, or it could be because the firm is a counterparty in
a derivative transaction with us. We would like to use observed stock price on the firm
to assess the probability of the firm defaulting.

Assume that the balance sheet of the company in question is of a particularly simple
form. The firm is financed with debt and equity and all the debt expires at time t+T .
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The face value of the debt is D and it is fixed. The future asset value of the firm, At+T ,
is uncertain.

3.1 Equity Is a Call Option on the Assets of the Firm

At time t+T when the company’s debt comes due the firm will continue to operate if
At+T > D but the firm’s debt holders will declare the firm bankrupt if At+T < D and
the firm will go into default. The stock holders of the firm are the residual claimants
on the firm and to the stock holders the firm is therefore worth

Et+T =max {At+T −D,0}

when the debt comes due. As we saw in Chapter 10 this is exactly the payoff function
of a call option with strike D that matures on day t+T .

Figure 12.4 shows the value of firm equity Et+T as a function of the asset value
At+T at maturity of the debt when the face value of debt D is $50.

The equity holder of a company can therefore be viewed as holding a call option
on the asset value of the firm. It is important to note that in the case of stock options in
Chapter 10 the stock price was the risky variable. In the present model of default, the
asset value of the firm is the risky variable but the risky equity value can be derived as
an option on the risky asset value.

The BSM formula in Chapter 10 can be used to value the equity in the firm in
the Merton model. Assuming that asset volatility, σA, and the risk-free rate, rf , are
constant, and assuming that the log asset value is normally distributed we get the
current value of the equity to be

Et = At8(d)−Dexp
(
−rf T

)
8
(

d− σA
√

T
)

Figure 12.4 Equity value as function of asset value when face value of debt is $50.
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Notes: The figure plots the equity value of a firm as a function of its asset value at the time of
the maturity of the firm’s debt. The firm has outstanding debt with a face value of $50.
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where

d =
ln(At/D)+

(
rf + σ

2
A/2

)
T

σA
√

T

Note that the risk-free rate, rf , is not the rate earned on the company’s debt; it is instead
the rate earned on risk-free debt that can be obtained from the price of a government
bond.

Recall from Chapters 10 and 11 that investors who are long options are long volatil-
ity. The Merton model therefore provides the additional insight that equity holders are
long asset volatility. The option value is particularly large when the option is at-the-
money; that is, when the asset value is close to the face value of debt. In this case if the
manager holds equity he or she has an incentive to increase the asset value volatility
(perhaps by taking on more risky projects) so as to increase the option value of equity.
This action is not in the interest of the debt holders as we shall see now.

3.2 Corporate Debt Is a Put Option Sold

The simple accounting identity states that the asset value must equal the sum of debt
and equity at any point in time and so we have

At+T = Dt+T +Et+T

= Dt+T +max {At+T −D,0}

where we have used the option payoff on equity described earlier. We use Dt+T to
denote the market value of the debt at time t+T . Solving for the value of company
debt, we get

Dt+T = At+T −max {At+T −D,0}

Figure 12.5 shows the payoff to the debt holder of the firm as a function of the asset
value At+T when the face value of debt D is $50.

Comparing Figure 12.5 with the option payoffs in Chapter 10 we see that the debt
holders look as if they have sold a put option although the out-of-the-money payoff
has been lifted from 0 to $50 on the vertical axis corresponding to the face value of
debt in this example.

Figure 12.5 suggests that we can rewrite the debt holder payoff as

Dt+T = At+T −max {At+T −D,0}

= D−max {D−At+T ,0}

which shows that the holder of company debt can be viewed as being long a risk-free
(think government) bond with face value D and short a put option on the asset value of
the company, At+T , with a strike value of D. We can therefore use the model to value
corporate debt; for example, corporate bonds.
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Figure 12.5 Market value of debt as a function of asset value when face value of debt is $50.
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Notes: The figure plots the market value of debt of a firm as a function of its asset value at the
time of the maturity of the debt. The firm has outstanding debt with a face value of $50.

Using the put option formula from Chapter 10 the value today of the corporate debt
with face value D is

Dt = e−rf TD−
[
e−rf TD8

(
σA
√

T − d
)
−At8(−d)

]
= e−rf TD8

(
d− σA

√
T
)
−At8(−d)

where d is again defined by

d =
ln(At/D)+

(
rf + σ

2
A/2

)
T

σA
√

T

The debt holder is short a put option and so is short asset volatility. If the manager
takes actions that increase the asset volatility of the firm, then the debt holders suffer
because the put option becomes more valuable.

3.3 Implementing the Model

Recall from Chapter 10 that the stock return volatility needed to be estimated for the
BSM model to be implemented. In order to implement the Merton model we need
values for σA and At, which are not directly observable. In practice, if the stock of the
firm is publicly traded then we do observe the number of shares outstanding and we
also observe the stock price, and we therefore do observe Et,

Et = StNS

where NS is the number of shares outstanding. From the call option relationship earlier
we know that Et is related to σA and At via the equation

Et = At8(d)−Dexp
(
−rf T

)
8
(

d− σA
√

T
)
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This gives us one equation in two unknowns. We need another equation. The preceding
equation for Et implies a dynamic for the stock price that can be used to derive the
following relationship between the equity and asset volatilities:

σEt =8(d)σAAt

where σ is the stock price volatility as in Chapters 10 and 11. The stock price volatil-
ity can be estimated from historical returns or implied from stock option prices. We
therefore now have two equations in two unknowns, At and σA. The two equations are
nonlinear and so must be solved numerically using, for example, Solver in Excel.

Note that a crucially powerful feature of the Merton model is that we can use it to
price corporate debt on firms even without observing the asset value as long as the
stock price is available.

3.4 The Risk-Neutral Probability of Default

The risk-neutral probability of default in the Merton model corresponds in Chapter 10
to the probability that the put option is exercised. It is simply

Pr(At+T < D)= 1−8
(

d− σA
√

T
)
=8

(
σA
√

T − d
)

It is important to note that this probability of default is constructed from the risk-
neutral distribution (where assets grow at the risk-free rate rf ) of asset values and so it
may well be different from the actual (unobserved) physical probability. The physical
default probability could be derived in the model but would require an estimate of the
physical growth rate of firm assets.

Default risk is also sometimes measured in terms of distance to default, which is
defined as

dd = d− σA
√

T =
ln(At/D)+

(
rf − σ

2
A/2

)
T

σA
√

T

The interpretation of dd is that it is the number of standard deviations the asset value
must move down for the firm to default. As expected, the distance to default is increas-
ing in the asset value and decreasing in the face value of debt. The distance to default
is also decreasing in the asset volatility. Note that the probability of default is

Pr(At+T < D)=8(−dd)

The probability of default is therefore increasing in asset volatility.

4 Portfolio Credit Risk

The Merton model gives powerful intuition about corporate default and debt pricing
and it enables us to link the debt value to equity price and volatility, which in the case
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of public companies can be observed or estimated. While much can be learned from
the Merton model, we have several motivations for going further.

l First, we are interested in studying the portfolio implications of credit risk. Default
is a highly nonlinear event and furthermore default is correlated across firms and
so credit risk is likely to impose limits on the benefits to diversification.

l Second, certain credit derivatives, such as collateralized debt obligations (CDOs),
depend on the correlation of defaults that we therefore need to model.

l Third, for privately held companies we may not have the information necessary to
implement the Merton model.

l Fourth, even if we have the information needed, for a portfolio of many loans, the
implementation of Merton’s model for each loan would be cumbersome.

In order to keep things relatively simple we will assume a single factor model
similar to the market index model discussed in Chapter 7. For simplicity, we will also
assume the normal distribution acknowledging that for risk management the use of the
normal distribution is questionable at best.

We will assume a multivariate version of Merton’s model in which the asset value
of firm i is log normally distributed

ln
(
Ai,t+T

)
= lnAi,t+ rf T − 1

2σ
2
A,iT + σA,i

√
Tzi,t+T

where zi,t+T is a standard normal variable. As before, the probability of default for
firm i is

Pr
(
Ai,t+T < Di

)
= Pr

(
ln
(
Ai,t+T

)
< ln(Di)

)
=8(−ddi)

where

ddi =

ln
(
Ai,t/Di

)
+

(
rf − σ

2
A,i/2

)
T

σA,i
√

T

We will assume further that the unconditional probability of default on any one
loan is PD. This implies that the distance to default is now

Pr
(
Ai,t+T < Di

)
= PD⇐⇒

ddi =−8
−1 (PD)

for all firms. A firm defaults when the asset value shock zi is less than −ddi or
equivalently less than 8−1 (PD).

We will assume that the horizon of interest, T , is one year so that T = 1 and T
is therefore left out of the formulas in this section. For ease of notation we will also
suppress the time subscripts, t, in the following.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 17-ch12-277-298-9780123744487 2011/10/28 17:32 Page 286 #10

286 Further Topics in Risk Management

4.1 Factor Structure

The relationship between asset values across firms will be crucial for measuring port-
folio credit risk. Assume that the correlation between any firm i and any other firm j is
ρ, which does not depend on i nor j. This equi-correlation assumption implies a factor
structure on the n asset values. We have

zi =
√
ρF+

√
1− ρ z̃i

where the common (unobserved) factor F and the idiosyncratic z̃i are independent
standard normal variables. Note that the zis will be correlated with each other with
coefficient ρ because they are all correlated with the common factor F with coeffi-
cient ρ.

Using the factor structure we can solve for z̃i in terms of zi and F as

z̃i =
zi−
√
ρF

√
1− ρ

From this we know that a firm defaults when zi <8
−1 (PD) or equivalently when z̃i

is less than

8−1 (PD)−
√
ρF

√
1− ρ

The probability of firm i defaulting conditional on the common factor F is therefore

Pr[Firm i default|F]=8

(
8−1 (PD)−

√
ρF

√
1− ρ

)

Note that because of the assumptions we have made this probability is the same for all
firms.

4.2 The Portfolio Loss Rate Distribution

Define the gross loss (before recovery) when firm i defaults to be Li. Assuming that all
loans are of equal size, relative loan size will not matter, and we can simply assume
that

Li =

{
1, when firm i defaults

0, otherwise

The average size of the loans will be included in the following model.
The credit portfolio loss rate is defined as the average of the individual losses via

L=
1

n

n∑
i=1

Li

Note that L takes a value between zero and one.
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The factor structure assumed earlier implies that conditional on F the Li variables
are independent. This allows the distribution of the portfolio loss rate to be derived.
It is only possible to derive the exact distribution when assuming that the number of
firms, n, is infinite. The distribution is therefore only likely to be accurate in portfolios
of many relatively small loans.

As the number of loans goes to infinity we can derive the limiting CDF of the loss
rate L to be

FL (x;PD,ρ)= Pr[L< x]=8

(√
1− ρ8−1 (x)−8−1 (PD)

√
ρ

)

where8−1 (•) is the standard normal inverse CDF as in previous chapters. The portfo-
lio loss rate distribution thus appears to have similarities with the normal distribution
but the presence of the 8−1 (x) term makes the distribution highly nonnormal. This
distribution is sometimes known as the Vasicek distribution, from Oldrich Vasicek
who derived it.

The corresponding PDF of the portfolio loss rate is

fL (x;PD,ρ)=

√
1− ρ

ρ
exp

(
−

1

2ρ

(√
1− ρ8−1 (x)−8−1 (PD)

)2
+

1

2

(
8−1 (x)

)2
)

The mean of the distribution is PD and the variance is

σ 2
L =8ρ

(
8−1 (PD) ,8−1 (PD)

)
−PD2

where8ρ (•) is the CDF of the bivariate normal distribution we used in Chapters 7–9.
Figure 12.6 shows the PDF of the loan loss rate when ρ = 0.10 and PD= 0.02.

Figure 12.6 Portfolio loss rate distribution for PD= 0.02 and ρ = 0.1.
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Notes: We plot the probability density function of the portfolio loss rate when the probability
of default is 0.02 and the asset value correlation is 0.1.
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Figure 12.6 clearly illustrates the nonnormality of the credit portfolio loss rate dis-
tribution. The loss distribution has large positive skewness that risk-averse investors
will dislike. Recall from previous chapters that investors dislike negative skewness
in the return distribution—equivalently they dislike positive skewness in the loss
distribution.

The credit portfolio distribution in Figure 12.6 is not only important for credit risk
measurement but it can also be used to value credit derivatives with multiple under-
lying assets such as collateralized debt obligations (CDOs), which were popular until
the recent financial crisis.

4.3 Value-at-Risk on Portfolio Loss Rate

The VaR for the portfolio loss rate can be computed by inverting the CDF of the
portfolio loss rate defined as FL (x) earlier. Because we are now modeling losses and
not returns, we are looking for a loss VaR with probability (1− p), which corresponds
to a return VaR with probability p used in previous chapters.

We need to solve for VaR1−p in

8

(√
1− ρ8−1

(
VaR1−p

)
−8−1 (PD)

√
ρ

)
= 1− p

which yields the following VaR formula:

VaR1−p
=8

(√
ρ8−1 (1− p)+8−1 (PD)

√
1− ρ

)

Figure 12.7 shows the VaR0.99 as a function of ρ for various values of PD. Recall
from the definitions of Li and L that the loan loss rate can be at most 1 and so the VaR
is restricted to be between 0 and 1 in this model.

Not surprisingly, Figure 12.7 shows that the VaR is higher when the default prob-
ability PD is higher. The effects of asset value correlation on VaR are more intrigu-
ing. Generally, an increasing correlation implies loss of diversification and so does an
increasing VaR, but when PD is low (0.5%) and the correlation is high, then a further
increase in correlation actually decreases the VaR slightly. The effect of correlation on
the distribution is clearly nonlinear.

4.4 Granularity Adjustment

The model may appear to be restrictive because we have assumed that the n loans are
of equal size. But it is possible to show that the limiting loss rate distribution is the
same even when the loans are not of the same same size as long as the portfolio is not
dominated by a few very large loans.

The limiting distribution, which assumes that n is infinite, can of course only be
an approximation in any real-life applications where n is finite. It is possible to derive
finite-sample refinements to the limiting distribution based on so-called granularity



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 17-ch12-277-298-9780123744487 2011/10/28 17:32 Page 289 #13

Credit Risk Management 289

Figure 12.7 Loss rate VaR as a function of correlation with various default probabilities.
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Notes: We plot the portfolio loss rate VaR against the asset value correlation for four different
levels of unconditional default probabilities.

adjustments. Granularity adjustments for the VaR can be derived as well. For the
particular model earlier, the granularity adjustment for the VaR is

GA(1− p)=
1

2


√

1−ρ
ρ
8−1 (1− p)−8−1

(
VaR1−p

)
φ
(
8−1

(
VaR1−p

)) VaR1−p
(

1−VaR1−p
)

+ 2VaR1−p
− 1


The granularity adjusted VaR can now be computed as

GAVaR1−p
= VaR1−p

+
1

n
GA(1− p)

where

VaR1−p
=8

(√
ρ8−1 (1− p)+8−1 (PD)

√
1− ρ

)

as before. Note that as n goes to infinity the granularity adjustment term 1
n GA(1− p)

goes to zero.
Figure 12.8 shows the granularity adjustment GA(1− p) corresponding to the VaRs

in Figure 12.7.
It is clear from Figure 12.8 that the granularity adjustment is positive so that if we

use the VaR that assumes infinitely many loans then we will tend to underestimate
the true VaR. Figure 12.8 shows that the granularity adjustment is the largest when ρ
is the smallest. The figure also shows that the adjustment is largest when the default
probability, PD, is the largest.
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Figure 12.8 Granularity adjustment to the loss rate VaR as a function of correlation.
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Notes: The figure shows the granularity adjustment, GA, as a function of the asset value
correlation. Four different unconditional default probability levels are shown. The loss rate
VaR has a coverage of 99%. The GA has not been divided by n.

5 Other Aspects of Credit Risk

5.1 Recovery Rates

In the case of default part of the face value is typically recovered by the creditors.
When assessing credit risk it is therefore important to have an estimate of the expected
recovery rate. Moody’s defines recovery using the market prices of the debt 30 days
after the date of default. The recovery rate is then computed as the ratio of the post-
default market price to the face value of the debt.

Figure 12.9 shows the average (issuer-weighted) recovery rates for investment
grade, speculative grade, and all defaults. The figure is constructed for senior-
unsecured debt only. The two-year recovery rate for speculative grade firms is 36.8%.
This number shows the average recovery rate on speculative grade issues that default
at some time within a two-year period. The defaults used in Figure 12.9 are from the
1982 to 2010 period.

Figure 12.9 shows that the average recovery rate is around 40% for senior unse-
cured debt. Sometimes the loss given default (LGD) is reported instead of the recovery
rate (RR). They are related via the simple identity LGD= 1−RR.

If we are willing to assume a constant proportional default rate across loans then
we can compute the credit portfolio $VaR taking into account recovery rates using

$VaR1−p
= DVPF ·LGD ·VaR1−p

= DVPF · (1−RR) ·VaR1−p

where RR denotes the recovery rate and DVPF denotes the dollar value of the portfolio
as in Chapter 11. The VaR1−p is the VaR from the portfolio loss rate defined earlier.
The granularity adjusted dollar VaR can similarly be computed as

$GAVaR1−p
= DVPF · (1−RR) ·GAVaR1−p
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Figure 12.9 Average recovery rates for senior unsecured bonds.
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Notes: The figure shows the average recovery rates on senior unsecured debt for investment
grade, speculative grade, and all firms. The recovery rates are computed for firms that
defaulted within one through five years. The rates are estimated by Moody’s on data from 1982
through 2010.

Figure 12.10 Recovery rates versus default rates. Annual data, 1982–2010.
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Notes: We scatter plot the average annual recovery rate against the average default rate on all
bonds rated by Moody’s during the 1982 to 2010 period. The line shows the best regression fit
of y (the recovery rate) on x (the default rate).

Figure 12.2 showed that the default rate varied strongly with time. This has not been
built into our static factor model for portfolio credit risk but it could be by allowing
for the factor F to change over time.

We may also wonder if the recovery rate over time is correlated with default rate.
Figure 12.10 shows that it is negatively correlated in the data. The higher the default
rate the lower the recovery rate.

Stochastic recovery and its correlation with default present additional sources of
credit risk that have not been included in our simple model but that could be built in. In
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more complicated models, the VaR can be computed only via Monte Carlo simulation
techniques such as those developed in Chapter 8.

5.2 Credit Quality Dynamics

The credit quality of a company typically declines well before any eventual default.
It is important to capture this change in credit quality because the lower the quality the
higher the chance of subsequent default.

One way to quantify the change in credit quality is by using the credit ratings pro-
vided by agencies such as Standard & Poor’s and Moody’s. The following list shows
the ratings scale used by Moody’s for long-term debt ordered from highest to lowest
credit quality.

Investment Grades

l Aaa: Judged to be of the highest quality, with minimal credit risk.

l Aa: Judged to be of high quality and are subject to very low credit risk.

l A: Considered upper-medium grade and are subject to low credit risk.

l Baa: Subject to moderate credit risk. They are considered medium grade and as
such may possess certain speculative characteristics.

Speculative Grades

l Ba: Judged to have speculative elements and are subject to substantial credit risk.

l B: Considered speculative and are subject to high credit risk.

l Caa: Judged to be of poor standing and are subject to very high credit risk.

l Ca: Highly speculative and are likely in, or very near, default, with some prospect
of recovery of principal and interest.

l C: The lowest rated class of bonds and are typically in default, with little prospect
for recovery of principal or interest.

Table 12.2 shows a matrix of one-year transition rates between Moody’s ratings.
The number in each cell corresponds to the probability that a company will transition
from the row rating to the column rating in a year. For example, the probability of a
Baa rated firm getting downgraded to Ba is 4.112%.

The transition probabilities are estimated from the actual ratings changes during
each year in the 1970–2010 period. The Ca C category combines the companies rated
Ca and C. The second-to-last column, which is labeled WR, denotes companies for
which the rating was withdrawn. More interestingly, the right-most column shows
the probability of a firm with a particular row rating defaulting within a year. Notice
that the default rates are monotonically increasing as the credit ratings worsen. The
probability of an Aaa rated firm defaulting is virtually zero whereas the probability of
a Ca or C rated firm defaulting within a year is 35.451%.
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Table 12.2 Average one-year rating transition rates, 1970–2010

From/To Aaa Aa A Baa Ba B Caa Ca C WR Default

Aaa 87.395% 8.626% 0.602% 0.010% 0.027% 0.002% 0.002% 0.000% 3.336% 0.000%
Aa 0.971% 85.616% 7.966% 0.359% 0.045% 0.018% 0.008% 0.001% 4.996% 0.020%
A 0.062% 2.689% 86.763% 5.271% 0.488% 0.109% 0.032% 0.004% 4.528% 0.054%
Baa 0.043% 0.184% 4.525% 84.517% 4.112% 0.775% 0.173% 0.019% 5.475% 0.176%
Ba 0.008% 0.056% 0.370% 5.644% 75.759% 7.239% 0.533% 0.080% 9.208% 1.104%
B 0.010% 0.034% 0.126% 0.338% 4.762% 73.524% 5.767% 0.665% 10.544% 4.230%
Caa 0.000% 0.021% 0.021% 0.142% 0.463% 8.263% 60.088% 4.104% 12.176% 14.721%
Ca C 0.000% 0.000% 0.000% 0.000% 0.324% 2.374% 8.880% 36.270% 16.701% 35.451%

Notes: The table shows Moody’s credit rating transition rates estimated on annual data from 1970 through 2010. Each row represents last year’s rating and each column represents this
year’s rating. Ca C combines two rating categories. WR refers to withdrawn rating. Data is from Moody’s (2011).



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 17-ch12-277-298-9780123744487 2011/10/28 17:32 Page 294 #18

294 Further Topics in Risk Management

Note also that for all the rating categories, the highest probability is to remain
within the same category within the year. Ratings are thus persistent over time. The
lowest rated firms have the least persistent rating. Many of them default or their ratings
are withdrawn.

The rating transition matrices can be used in Monte Carlo simulations to gener-
ate a distribution of ratings outcomes for a credit risk portfolio. This can in turn be
used along with ratings-based bond prices to compute the credit VaR of the portfolio.
JP Morgan’s CreditMetrics system for credit risk management is based on such an
approach.

The credit risk portfolio model developed in Section 4 can also be extended to
allow for debt value declines due to a deterioration of credit quality.

5.3 Credit Default Swaps

As discussed earlier, the price of corporate debt such as bonds is highly affected by
the probability of default of the corporation issuing the debt. However, corporate bond
prices are also affected by the prevailing risk-free interest rate as the Merton model
showed us. Furthermore, in reality, corporate bonds are often relatively illiquid and
so command a premium for illiquidity and illiquidity risk. Observed corporate bond
prices therefore do not give a clean view of default risk. Fortunately, derivative con-
tracts known as credit default swaps (CDS) that allow investors to trade default risk
directly have appeared. CDS contracts give a pure market-based view of the default
probability and its market price.

In a CDS contract the default protection buyer pays fixed quarterly cash payments
(usually quoted in basis points per year) to the default protection seller. In return, in
the event that the underlying corporation defaults, the protection seller will pay the
protection buyer an amount equal to the par value of the underlying corporate bond
minus the recovered value.

CDS contracts are typically quoted in spreads or premiums. A premium or spread
of 200 basis points means that the protection buyer has to pay the protection seller
2% of the underlying face value of debt each year if a new CDS contract is entered
into. Although the payments are made quarterly, the spreads are quoted in annual
terms.

CDS contracts have become very popular because they allow the protection buyer
to hedge default risk. They of course also allow investors to take speculative views on
default risk as well as to arbitrage relative mispricings between corporate equity and
bond prices.

Paralleling the developments in equity markets, CDS index contracts have devel-
oped as well. They allow investors to trade a basket of default risks using one liquid
index contract rather than many illiquid firm-specific contracts.

Figure 12.11 shows the time series of CDS premia for two of the most prominent
indices, namely the CDX NA (North American) and iTraxx EU (Europe). The CDX
NA and iTraxx EU indexes each contain 125 underlying firms.

The data in Figure 12.11 are for five-year CDS contracts and the spreads are
observed daily from March 20, 2007 through September 30, 2010. The financial
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Figure 12.11 CDS index premia. CDX North America and iTraxx Europe.
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Notes: The figure shows the daily CDS premia on the CDX North America and iTraxx Europe
indices. The series are recorded from March 20, 2007 through September 30, 2010.

crisis is painfully evident in Figure 12.11. Perhaps remarkably, unlike CDOs, trad-
ing in CDSs remained strong throughout the crisis and CDS contracts have become an
important tool for managing credit risk exposures.

6 Summary

Credit risk is of fundamental interest to lenders but it is also of interest to investors
who face counterparty default risk or investors who hold portfolios with corporate
bonds or distressed equities.

This chapter has provided some important stylized facts on corporate default and
recovery rates. We also developed a theoretical framework for understanding default
based on Merton’s seminal model. Merton’s model studies one firm in isolation but it
can be generalized to a portfolio of firms using Vasicek’s factor model structure. The
factor model can be used to compute VaR in credit portfolios. The chapter also briefly
discussed credit default swaps, which are the financial instruments most closely linked
with default risk.

Further Resources

This chapter has presented only some of the basic ideas and models in credit risk
analysis. Hull (2008) discusses in detail credit risk management in banks. See Lando
(2004) for a thorough treatment of credit risk models.

Merton (1974) developed the single-firm model in Section 3 and Vasicek (2002)
developed the factor model in Section 4. The default and recovery data throughout the
chapter is from Moody’s (2009, 2011).
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Many researchers have developed extensions to the basic Merton model. Chapter 2
in Lando (2004) provides an excellent overview that includes Mason and Bhattacharya
(1981) and Zhou (2001), who allow for jumps in the asset value. Hull et al. (2004)
show that Merton’s model can be extended so as to allow for the smirks in option-
implied equity volatility that we saw in Chapter 10.

This chapter did not cover the so-called Z-scores from Altman (1968), who pro-
vides an important empirical approach to default prediction using financial ratios in a
discriminant analysis.

The static and normal one-factor portfolio credit risk model in Section 4 can also
be extended in several ways. Gagliardini and Gourieroux (2011a, b) survey alterna-
tives that include adding factors, allowing for nonnormality, and allowing for dynamic
factors to capture default dynamics. The granularity adjustments have been studied in
Gordy (2003), Gordy and Lutkebohmert (2007), and Gourieroux and Monfort (2010),
and are based on the sensitivity analysis of VaR in Gourieroux et al. (2000).

Gordy (2003) studies credit risk models from a regulatory perspective. Basel Com-
mittee on Banking Supervision (2001, 2003) contains the regulatory framework for
ratings-based capital requirements.

Gordy (2000) provides a useful comparison of the two main credit portfolio risk
models developed in industry, namely CreditRisk+ from Credit Suisse (1997) and
CreditMetrics from JP Morgan (1997).

Jacobs and Li (2008) investigate corporate bond prices allowing for dynamic
volatility of the form we studied in Chapter 4. The empirical relationship between
asset correlation and default has been investigated by Lopez (2004). Karoui (2007)
develops a model that allows for stochastic recovery rates. Christoffersen et al. (2009)
study empirically the dynamic dependence of default.
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Empirical Exercises

Open the Chapter12Data.xlsx file from the web site.

1. Use the AR(1) model from Chapter 3 to model the default rate in Figure 12.2. What does
the AR(1) model reveal regarding the persistence of the default rate? Can you fit the default
rate closely? What is the fit (in terms of R2) of the AR(1) model?

2. Consider a company with assets worth $100 and a face value of debt of $80. The log return
on government debt is 3%. If the company debt expires in two years and the asset volatility
is 80% per year, then what is the current market value of equity and debt?

3. Assume that a company has 100,000 shares outstanding and that the stock is trading at $8
with a stock price volatility of 50% per year. The company has $500,000 in debt (face value)
that matures in six months. The risk-free rate is 3%. Solve for the asset value and the asset
volatility of the firm. What is the distance to default and the probability of default? What is
the market value of the debt?

http://ssrn.com/abstract=896026
www.moodys.com
www.moodys.com
http://www.msci.com/resources/technical_documentation/CMTD1.pdf
http://www.msci.com/resources/technical_documentation/CMTD1.pdf
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4. Assume a portfolio with 100 small loans. The average default rate is 3% per year and the
asset correlation of the firms underlying the loans is 5%. The recovery rate is 40%. Compute
the $VaR and the $GAVaR for the portfolio.

5. Replicate Figure 12.6. How does the loss rate distribution change when the correlation
changes?

The answers to these exercises can be found in the Chapter12Results.xlsx file on the com-
panion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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13 Backtesting and Stress Testing

1 Chapter Overview

The first 12 chapters have covered various methods for constructing risk management
models. Along the way we also considered several diagnostic checks. For example,
in Chapter 1 we looked at the autocorrelations of returns to see if the assumption of a
constant mean was valid. In Chapters 4 and 5 we looked at the autocorrelation function
of returns squared divided by the time-varying variance to assess if we had modeled
the variance dynamics properly. We also ran variance regressions to assess the fore-
casting performance of the suggested GARCH models. In Chapter 6, we studied the
so-called QQ plots to see if the distribution we assumed for standardized returns cap-
tured the extreme observations in the sample. We also looked at the reaction of various
risk models to an extreme event such as the 1987 stock market crash. In Chapter 9 we
looked at Threshold Correlations. Finally, in Chapter 10 we illustrated option pricing
model misspecification in terms of implied volatility smiles and smirks.

The objective in this chapter is to consider the ex ante risk measure forecasts from
the model and compare them with the ex post realized portfolio return. The risk mea-
sure forecast could take the form of a Value-at-Risk (VaR), an Expected Shortfall (ES),
the shape of the entire return distribution, or perhaps the shape of the left tail of the
distribution only. We want to be able to backtest any of these risk measures of interest.
The backtest procedures developed in this chapter can be seen as a final diagnostic
check on the aggregate risk model, thus complementing the various specific diagnos-
tics covered in previous chapters. The discussion on backtesting is followed up by a
section on stress testing at the end of the chapter. The material in the chapter will be
covered as follows:

l We take a brief look at the performance of some real-life VaRs from six large (and
anonymous) commercial banks. The clustering of VaR violations in these real-life
VaRs provides sobering food for thought.

l We establish procedures for backtesting VaRs. We start by introducing a simple
unconditional test for the average probability of a VaR violation. We then test the
independence of the VaR violations. Finally, we combine the unconditional test and
the independence test in a test of correct conditional VaR coverage.

l We consider using explanatory variables to backtest the VaR. This is done in a
regression-based framework.
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l We establish backtesting procedures for the Expected Shortfall measure.

l We broaden the focus to include the entire shape of the distribution of returns. The
distributional forecasts can be backtested as well, and we suggest ways to do so.
Risk managers typically care most about having a good forecast of the left tail of the
distribution, and we therefore modify the distribution test to focus on backtesting
the left tail of the distribution only.

l We define stress testing and give a critical survey of the way it is often imple-
mented. Based on this critique we suggest a coherent framework for stress testing.

Before we get into the technical details of backtesting VaRs and other risk measures,
it is instructive to take a look at the performance of some real-life VaRs. Figure 13.1
shows the exceedances (measured in return standard deviations) of the VaR in six large
(and anonymous) U.S. commercial banks during the January 1998 to March 2001
period. Whenever the realized portfolio return is worse than the VaR, the difference
between the two is shown. Whenever the return is better, zero is shown. The difference

Figure 13.1 Value-at-Risk exceedences from six major commercial banks.
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Notes: The figure shows the VaR exceedences on the days where the loss was larger than the
VaR. Each panel corresponds to a large U.S. commercial bank. The figure is reprinted from
Berkowitz and O’Brien (2002).
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is divided by the standard deviation of the portfolio across the period. The return is
daily, and the VaR is reported for a 1% coverage rate. To be exact, we plot the time
series of

Min
{

RPF,t+1−

(
−VaR.01

t+1

)
,0
}
/σPF,t+1

Bank 4 has no violations at all, and in general the banks have fewer violations
than expected. Thus, the banks on average report a VaR that is higher than it should
be. This could either be due to the banks deliberately wanting to be cautious or the
VaR systems being biased. Another culprit is that the returns reported by the banks
contain nontrading-related profits, which increase the average return without substan-
tially increasing portfolio risk.

More important, notice the clustering of VaR violations. The violations for each
of Banks 1, 2, 3, 5, and 6 fall within a very short time span and often on adjacent
days. This clustering of VaR violations is a serious sign of risk model misspecification.
These banks are most likely relying on a technique such as Historical Simulation (HS),
which is very slow at updating the VaR when market volatility increases. This issue
was discussed in the context of the 1987 stock market crash in Chapter 2.

Notice also how the VaR violations tend to be clustered across banks. Many viola-
tions appear to be related to the Russia default and Long Term Capital Management
bailout in the fall of 1998. The clustering of violations across banks is important from a
regulator perspective because it raises the possibility of a countrywide banking crisis.

Motivated by this sobering evidence of misspecification in existing commercial
bank VaRs, we now introduce a set of statistical techniques for backtesting risk man-
agement models.

2 Backtesting VaRs

Recall that a VaRp
t+1 measure promises that the actual return will only be worse than

the VaRp
t+1 forecast p · 100% of the time. If we observe a time series of past ex ante

VaR forecasts and past ex post returns, we can define the “hit sequence” of VaR viola-
tions as

It+1 =

{
1, if RPF,t+1 <−VaRp

t+1

0, if RPF,t+1 ≥−VaRp
t+1

The hit sequence returns a 1 on day t+ 1 if the loss on that day was larger than the
VaR number predicted in advance for that day. If the VaR was not violated, then the
hit sequence returns a 0. When backtesting the risk model, we construct a sequence
{It+1}

T
t=1 across T days indicating when the past violations occurred.

2.1 The Null Hypothesis

If we are using the perfect VaR model, then given all the information available to us
at the time the VaR forecast is made, we should not be able to predict whether the VaR
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will be violated. Our forecast of the probability of a VaR violation should be simply
p every day. If we could predict the VaR violations, then that information could be
used to construct a better risk model. In other words, the hit sequence of violations
should be completely unpredictable and therefore distributed independently over time
as a Bernoulli variable that takes the value 1 with probability p and the value 0 with
probability (1− p). We write

H0 : It+1 ∼ i.i.d. Bernoulli(p)

If p is 1/2, then the i.i.d. Bernoulli distribution describes the distribution of getting a
“head” when tossing a fair coin. The Bernoulli distribution function is written

f (It+1;p)= (1− p)1− It+1 pIt+1

When backtesting risk models, p will not be 1/2 but instead on the order of 0.01
or 0.05 depending on the coverage rate of the VaR. The hit sequence from a correctly
specified risk model should thus look like a sequence of random tosses of a coin, which
comes up heads 1% or 5% of the time depending on the VaR coverage rate.

2.2 Unconditional Coverage Testing

We first want to test if the fraction of violations obtained for a particular risk model,
call it π, is significantly different from the promised fraction, p. We call this the
unconditional coverage hypothesis. To test it, we write the likelihood of an i.i.d.
Bernoulli(π) hit sequence

L (π)=
T∏

t=1

(1−π)1−It+1π It+1 = (1−π)T0 πT1

where T0 and T1 are the number of 0s and 1s in the sample. We can easily estimate π
from π̂ = T1/T; that is, the observed fraction of violations in the sequence. Plugging
the maximum likelihood (ML) estimates back into the likelihood function gives the
optimized likelihood as

L
(
π̂
)
= (1−T1/T)

T0 (T1/T)
T1

Under the unconditional coverage null hypothesis that π=p, where p is the known
VaR coverage rate, we have the likelihood

L (p)=
T∏

t=1

(1− p)1− It+1 pIt+1 = (1− p)T0 pT1

We can check the unconditional coverage hypothesis using a likelihood ratio test

LRuc =−2ln
[
L (p)/L

(
π̂
)]
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Asymptotically, that is, as the number of observations, T, goes to infinity, the test
will be distributed as a χ2 with one degree of freedom. Substituting in the likelihood
functions, we write

LRuc =−2ln
[
(1− p)T0 pT1/

{
(1−T1/T)

T0 (T1/T)
T1
}]
∼ χ2

1

The larger the LRuc value is the more unlikely the null hypothesis is to be true. Choos-
ing a significance level of say 10% for the test, we will have a critical value of 2.7055
from the χ2

1 distribution. If the LRuc test value is larger than 2.7055, then we reject
the VaR model at the 10% level. Alternatively, we can calculate the P-value associated
with our test statistic. The P-value is defined as the probability of getting a sample that
conforms even less to the null hypothesis than the sample we actually got given that
the null hypothesis is true. In this case, the P-value is calculated as

P-value≡ 1−Fχ2
1
(LRuc)

where Fχ2
1
(•) denotes the cumulative density function of a χ2 variable with one

degree of freedom. If the P-value is below the desired significance level, then we reject
the null hypothesis. If we, for example, obtain a test value of 3.5, then the associated
P-value is

P-value= 1−Fχ2
1
(3.5)= 1− 0.9386= 0.0614

If we have a significance level of 10%, then we would reject the null hypothesis, but if
our significance level is only 5%, then we would not reject the null that the risk model
is correct on average.

The choice of significance level comes down to an assessment of the costs of mak-
ing two types of mistakes: We could reject a correct model (Type I error) or we could
fail to reject (that is, accept) an incorrect model (Type II error). Increasing the sig-
nificance level implies larger Type I errors but smaller Type II errors and vice versa.
In academic work, a significance level of 1%, 5%, or 10% is typically used. In risk
management, the Type II errors may be very costly so that a significance level of 10%
may be appropriate.

Often, we do not have a large number of observations available for backtesting,
and we certainly will typically not have a large number of violations, T1, which are
the informative observations. It is therefore often better to rely on Monte Carlo simu-
lated P-values rather than those from the χ2 distribution. The simulated P-values for
a particular test value can be calculated by first generating 999 samples of random
i.i.d. Bernoulli(p) variables, where the sample size equals the actual sample at hand.
Given these artificial samples we can calculate 999 simulated test statistics, call them{
L̃Ruc(i)

}999
i=1 . The simulated P-value is then calculated as the share of simulated LRuc

values that are larger than the actually obtained LRuc test value. We can write

P-value=
1

1000

{
1+

999∑
i=1

1
(
L̃Ruc(i) > LRuc

)}

where 1(•) takes on the value of one if the argument is true and zero otherwise.
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To calculate the tests in the first place, we need samples where VaR violations actu-
ally occurred; that is, we need some ones in the hit sequence. If we, for example,
discard simulated samples with zero or one violations before proceeding with the test
calculation, then we are in effect conditioning the test on having observed at least two
violations.

2.3 Independence Testing

Imagine all the VaR violations or “hits” in a sample happening around the same time,
which was the case in Figure 13.1. Would you then be happy with a VaR with correct
average (or unconditional) coverage? The answer is clearly no. For example, if the
5% VaR gave exactly 5% violations but all of these violations came during a three-
week period, then the risk of bankruptcy would be much higher than if the violations
came scattered randomly through time. We therefore would very much like to reject
VaR models that imply violations that are clustered in time. Such clustering can easily
happen in a VaR constructed from the Historical Simulation method in Chapter 2, if
the underlying portfolio return has a clustered variance, which is common in asset
returns and which we studied in Chapter 4.

If the VaR violations are clustered, then the risk manager can essentially predict that
if today is a violation, then tomorrow is more than p · 100% likely to be a violation
as well. This is clearly not satisfactory. In such a situation, the risk manager should
increase the VaR in order to lower the conditional probability of a violation to the
promised p.

Our task is to establish a test that will be able to reject a VaR with clustered viola-
tions. To this end, assume the hit sequence is dependent over time and that it can be
described as a so-called first-order Markov sequence with transition probability matrix

51 =

[
1−π01 π01
1−π11 π11

]
These transition probabilities simply mean that conditional on today being a nonvi-
olation (that is, It = 0), then the probability of tomorrow being a violation (that is,
It+1 = 1) is π01. The probability of tomorrow being a violation given today is also a
violation is defined by

π11 = Pr(It+1 = 1|It = 1)

Similarly, the probability of tomorrow being a violation given today is not a violation
is defined by

π01 = Pr(It+1 = 1|It = 0)

The first-order Markov property refers to the assumption that only today’s outcome
matters for tomorrow’s outcome—that the exact sequence of past hits does not matter,
only the value of It matters. As only two outcomes are possible (zero and one), the two
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probabilities π01 and π11 describe the entire process. The probability of a nonviolation
following a nonviolation is 1−π01, and the probability of a nonviolation following a
violation is 1−π11.

If we observe a sample of T observations, then we can write the likelihood function
of the first-order Markov process as

L (51)= (1−π01)
T00 π

T01
01 (1−π11)

T10 π
T11
11

where Tij, i, j= 0,1 is the number of observations with a j following an i. Taking first
derivatives with respect to π01 and π11 and setting these derivatives to zero, we can
solve for the maximum likelihood estimates

π̂01 =
T01

T00+T01

π̂11 =
T11

T10+T11

Using then the fact that the probabilities have to sum to one, we have

π̂00 = 1− π̂01

π̂10 = 1− π̂11

which gives the matrix of estimated transition probabilities

5̂1 ≡

[
π̂00 π̂01
π̂10 π̂11

]
=

[
1− π̂01 π̂01
1− π̂11 π̂11

]
=

 T00
T00+T01

T01
T00+T01

T10
T10+T11

T11
T10+T11


Allowing for dependence in the hit sequence corresponds to allowing π01 to be dif-

ferent from π11. We are typically worried about positive dependence, which amounts
to the probability of a violation following a violation (π11) being larger than the prob-
ability of a violation following a nonviolation (π01). If, on the other hand, the hits are
independent over time, then the probability of a violation tomorrow does not depend
on today being a violation or not, and we write π01 = π11 = π. Under independence,
the transition matrix is thus

5̂=

[
1− π̂ π̂

1− π̂ π̂

]
We can test the independence hypothesis that π01 = π11 using a likelihood ratio

test

LRind =−2ln
[
L
(
5̂
)
/L
(
5̂1

)]
∼ χ2

1

where L
(
5̂
)

is the likelihood under the alternative hypothesis from the LRuc test.
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In large samples, the distribution of the LRind test statistic is also χ2 with one
degree of freedom. But we can calculate the P-value using simulation as we did before.
We again generate 999 artificial samples of i.i.d. Bernoulli variables, calculate 999
artificial test statistics, and find the share of simulated test values that are larger than
the actual test value.

As a practical matter, when implementing the LRind tests we may incur samples
where T11 = 0. In this case, we simply calculate the likelihood function as

L
(
5̂1

)
=
(
1− π̂01

)T00 π̂
T01
01

2.4 Conditional Coverage Testing

Ultimately, we care about simultaneously testing if the VaR violations are independent
and the average number of violations is correct. We can test jointly for independence
and correct coverage using the conditional coverage test

LRcc =−2ln
[
L (p)/L

(
5̂1

)]
∼ χ2

2

which corresponds to testing that π01 = π11 = p.
Notice that the LRcc test takes the likelihood from the null hypothesis in the LRuc

test and combines it with the likelihood from the alternative hypothesis in the LRind

test. Therefore,

LRcc =−2ln
[
L (p)/L

(
5̂1

)]
=−2ln

[{
L (p)/L

(
5̂
)}{

L
(
π̂
)
/L
(
5̂1

)}]
=−2ln

[
L (p)/L

(
5̂
)]
− 2ln

[
L
(
5̂
)
/L
(
5̂1

)]
= LRuc+LRind

so that the joint test of conditional coverage can be calculated by simply summing
the two individual tests for unconditional coverage and independence. As before, the
P-value can be calculated from simulation.

2.5 Testing for Higher-Order Dependence

In Chapter 1 we used the autocorrelation function (ACF) to assess the dependence
over time in returns and squared returns. We can of course use the ACF to assess
dependence in the VaR hit sequence as well. Plotting the hit-sequence autocorrelations
against their lag order will show if the risk model gives rise to autocorrelated hits,
which it should not.
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As in Chapter 3, the statistical significance of a set of autocorrelations can be for-
mally tested using the Ljung-Box statistic. It tests the null hypothesis that the autocor-
relation for lags 1 through m are all jointly zero via

LB(m)= T(T + 2)
m∑
τ=1

ρ̂2
τ

T − τ
∼ χ2

m

where ρ̂τ is the autocorrelation of the VaR hit sequence for lag order τ . The chi-
squared distribution with m degrees of freedom is denoted by χ2

m. We reject the null
hypothesis that the hit autocorrelations for lags 1 through m are jointly zero when the
LB(m) test value is larger than the critical value in the chi-squared distribution with m
degrees of freedom.

3 Increasing the Information Set

The preceding tests are quick and easy to implement. But because they only use infor-
mation on past VaR violations, they might not have much power to detect misspecified
risk models. To increase the testing power, we consider using the information in past
market variables, such as interest rate spreads or volatility measures. The basic idea
is to test the model using information that may explain when violations occur. The
advantage of increasing the information set is not only to increase the power of the
tests but also to help us understand the areas in which the risk model is misspecified.
This understanding is key in improving the risk models further.

If we define the vector of variables available to the risk manager at time t as Xt,
then the null hypothesis of a correct risk model can be written as

H0 : Pr(It+1 = 1|Xt)= p⇔ E [It+1|Xt]= p

The first hypothesis says that the conditional probability of getting a VaR violation
on day t+ 1 should be independent of any variable observed at time t, and it should
simply be equal to the promised VaR coverage rate, p. This hypothesis is equivalent
to the conditional expectation of a VaR violation being equal to p. The reason for the
equivalence is that It+1 can only take on one of two values: 0 and 1. Thus, we can
write the conditional expectation as

E [It+1|Xt]= 1 ·Pr(It+1 = 1|Xt)+ 0 ·Pr(It+1 = 0|Xt)= Pr(It+1 = 1|Xt)

Thinking of the null hypothesis in terms of a conditional expectation immediately
leads us to consider a regression-based approach, because regressions are essentially
conditional mean functions.
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3.1 A Regression Approach

Consider regressing the hit sequence on the vector of known variables, Xt. In a simple
linear regression, we would have

It+1 = b0+ b′1Xt+ et+1

where the error term et+1 is assumed to be independent of the regressor, Xt.

The hypothesis that E [It+1|Xt]= p is then equivalent to

E
[
b0+ b′1Xt+ et+1|Xt

]
= p

As Xt is known, taking expectations yields

b0+ b′1Xt = p

which can only be true if b0 = p and b1 is a vector of zeros. In this linear regression
framework, the null hypothesis of a correct risk model would therefore correspond to
the hypothesis

H0 : b0 = p,b1 = 0

which can be tested using a standard F-test (see the econometrics textbooks referenced
at the end of Chapter 3). The P-value from the test can be calculated using simulated
samples as described earlier.

There is, of course, no particular reason why the explanatory variables should enter
the conditional expectation in a linear fashion. But nonlinear functional forms could
be tested as well.

4 Backtesting Expected Shortfall

In Chapter 2, we argued that the Value-at-Risk had certain drawbacks as a risk mea-
sure, and we defined Expected Shortfall (ES),

ESp
t+1 =−Et

[
RPF,t+1|RPF,t+1 <−VaRp

t+1

]
as a viable alternative. We now want to think about how to backtest the ES risk
measure.

Consider again a vector of variables, Xt, which are known to the risk manager and
which may help explain potential portfolio losses beyond what is explained by the risk
model. The ES risk measure promises that whenever we violate the VaR, the expected
value of the violation will be equal to ESp

t+1. We can therefore test the ES measure
by checking if the vector Xt has any ability to explain the deviation of the observed
shortfall or loss, −RPF,t+1, from the Expected Shortfall on the days where the VaR
was violated. Mathematically, we can write

−RPF,t+1−ESp
t+1 = b0+ b′1Xt+ et+1, for t+ 1 where RPF,t+1 <−VaRp

t+1
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where t+ 1 now refers only to days where the VaR was violated. The observations
where the VaR was not violated are simply removed from the sample. The error term
et+1 is again assumed to be independent of the regressor, Xt.

To test the null hypothesis that the risk model from which the ES forecasts were
made uses all information optimally (b1 = 0), and that it is not biased (b0 = 0), we
can jointly test that b0 = b1 = 0.

Notice that now the magnitude of the violation shows up on the left-hand side of
the regression. But notice that we can still only use information in the tail to backtest.
The ES measure does not reveal any particular properties about the remainder of the
distribution, and therefore, we only use the observations where the losses were larger
than the VaR.

5 Backtesting the Entire Distribution

Rather than focusing on particular risk measures from the return distribution such as
the Value-at-Risk or the Expected Shortfall, we could instead decide to backtest the
entire return distribution from the risk model. This would have the benefit of poten-
tially increasing further the power to reject bad risk models. Notice, however, that we
are again changing the object of interest: If only the VaR is reported, for example, from
Historical Simulation, then we cannot test the distribution.

Consider a risk model that at the end of each day produces a cumulative distribu-
tion forecast for next day’s return, call it Ft(•). Then at the end of every day, after
having observed the actual portfolio return, we can calculate the risk model’s proba-
bility of observing a return below the actual. We will denote this so-called transform
probability by p̃t+1 :

p̃t+1 ≡ Ft
(
RPF,t+1

)
If we are using the correct risk model to forecast the return distribution, then we

should not be able to forecast the risk model’s probability of falling below the actual
return. In other words, the time series of observed probabilities p̃t+1 should be dis-
tributed independently over time as a Uniform(0,1) variable. We therefore want to
consider tests of the null hypothesis

H0 : p̃t+1 ∼ i.i.d. Uniform(0,1)

The Uniform(0,1) distribution function is flat on the interval 0 to 1 and zero every-
where else. As the p̃t+1 variable is a probability, it must lie in the zero to one interval.
A visual diagnostic on the distribution would be to simply construct a histogram and
check to see if it looks reasonably flat. If systematic deviations from a flat line appear
in the histogram, then we would conclude that the distribution from the risk model is
misspecified.

For example, if the true portfolio return data follows a fat-tailed Student’s t(d) dis-
tribution, but the risk manager uses a normal distribution model, then we will see too
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Figure 13.2 Histogram of the transform probability.
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Notes: We plot the histogram of the transform probability when the returns follow an i.i.d.
Student’s t(d) distribution with d = 6, but they are forecasted by an i.i.d. normal distribution.

many p̃t+1s close to zero and one, too many around 0.5, and too few elsewhere. This
would just be another way of saying that the observed returns data have more observa-
tions in the tails and around zero than the normal distribution allows for. Figure 13.2
shows the histogram of a p̃t+1 sequence, obtained from taking Ft

(
RPF,t+1

)
to be nor-

mally distributed with zero mean and variance d/(d− 2), when it should have been
Student’s t(d), with d = 6. Thus, we use the correct mean and variance to forecast the
returns, but the shape of our density forecast is incorrect.

The histogram check is of course not a proper statistical test, and it does not test the
time variation in p̃t+1. If we can predict p̃t+1 using information available on day t,
then p̃t+1 is not i.i.d., and the conditional distribution forecast, Ft

(
RPF,t+1

)
, is there-

fore not correctly specified either. We want to consider proper statistical tests here.
Unfortunately, testing the i.i.d. uniform distribution hypothesis is cumbersome due

to the restricted support of the uniform distribution. We therefore transform the i.i.d.
Uniform p̃t+1 to an i.i.d. standard normal variable z̃t+1 using the inverse cumulative
distribution function, 8−1. We write

H0 : p̃t+1 ∼ i.i.d. Uniform(0,1)⇔

H0 : z̃t+1 =8
−1 (p̃t+1)=8

−1 (Ft
(
RPF,t+1

))
∼ i.i.d. N (0,1)

We are now left with a test of a variable conforming to the standard normal distri-
bution, which can easily be implemented.

We proceed by specifying a model that we can use to test against the null hypoth-
esis. Assume again, for example, that we think a variable Xt may help forecast z̃t+1.

Then we can assume the alternative hypothesis

z̃t+1 = b0+ b′1Xt+ σ zt+1, with zt+1 ∼ i.i.d. N(0,1)
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Then the log-likelihood of a sample of T observations of z̃t+1 under the alternative
hypothesis is

lnL
(

b0,b1,σ
2
)
=−

T

2
ln(2π)−

T

2
ln
(
σ 2
)
−

T∑
t=1

((
z̃t+1− b0− b′1Xt

)2
2σ 2

)

where we have conditioned on an initial observation.
The parameter estimates b̂0, b̂1, σ̂

2 can be obtained from maximum likelihood or,
in this simple case, from linear regression. We can then write a likelihood ratio test of
correct risk model distribution as

LR=−2
(

lnL (0,0,1)− lnL
(̂

b0, b̂1, σ̂
2
))
∼ χ2

nb+2

where the degrees of freedom in the χ2 distribution will depend on the number of
parameters, nb, in the vector b1. If we do not have much of an idea about how to
choose Xt, then lags of z̃t+1 itself would be obvious choices.

5.1 Backtesting Only the Left Tail of the Distribution

In risk management, we often only really care about forecasting the left tail of the
distribution correctly. Testing the entire distribution as we did earlier may lead us to
reject risk models that capture the left tail of the distribution well, but not the rest of
the distribution. Instead, we should construct a test that directly focuses on assessing
the risk model’s ability to capture the left tail of the distribution, which contains the
largest losses.

Consider restricting attention to the tail of the distribution to the left of the
VaRp

t+1—that is, to the 100 · p% largest losses.
If we want to test that the p̃t+1 observations from, for example, the 10% largest

losses are themselves uniform, then we can construct a rescaled p̃t+1 variable as

p̃∗t+1 =

{
10p̃t+1, if p̃t+1 < 0.10

Else not defined

Then we can write the null hypothesis that the risk model provides the correct tail
distribution as

H0 : p̃∗t+1 ∼ i.i.d. Uniform(0,1)

or equivalently

H0 : z̃∗t+1 =8
−1 (p̃∗t+1

)
∼ i.i.d. N (0,1)

Figure 13.3 shows the histogram of p̃∗t+1 corresponding to the 10% smallest returns.
The data again follow a Student’s t(d) distribution with d = 6 but the density forecast
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Figure 13.3 Histogram of the transform probability from the 10% largest losses.
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Notes: We plot the histogram of the transform probability of the 10% largest losses when the
returns follow an i.i.d. Student’s t(d) distribution with d = 6, but they are forecasted by an i.i.d.
normal distribution.

model assumes the normal distribution. We have simply zoomed in on the leftmost
10% of the histogram from Figure 13.2. The systematic deviation from a flat histogram
is again obvious.

To do formal statistical testing, we can again construct an alternative hypothesis as
in

z̃∗t+1 = b0+ b′1Xt+ σ zt+1, with zt+1 ∼ i.i.d. N(0,1)

for t+ 1 such that RPF,t+1 <−VaRp
t+1. We can then calculate a likelihood ratio test

LR=−2
(

ln L (0,0,1)− lnL
(

b̂0, b̂1, σ̂
2
))
∼ χ2

nb+2

where nb again is the number of elements in the parameter vector b1.

6 Stress Testing

Due to the practical constraints from managing large portfolios, risk managers often
work with relatively short data samples. This can be a serious issue if the historical
data available do not adequately reflect the potential risks going forward. The available
data may, for example, lack extreme events such as an equity market crash, which
occurs very infrequently.

To make up for the inadequacies of the available data, it can be useful to artificially
generate extreme scenarios of the main factors driving the portfolio returns (see the
exposure mapping discussion in Chapter 7) and then assess the resulting output from
the risk model. This is referred to as stress testing, since we are stressing the model
by exposing it to data different from the data used when specifying and estimating the
model.
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At first pass, the idea of stress testing may seem vague and ad hoc. Two key issues
appear to be (1) how should we interpret the output of the risk model from the stress
scenarios, and (2) how should we create the scenarios in the first place? We deal with
each of these issues in turn.

6.1 Combining Distributions for Coherent Stress Testing

Standard implementation of stress testing amounts to defining a set of scenarios, run-
ning them through the risk model using the current portfolio weights, and if a scenario
results in an extreme loss, then the portfolio manager may decide to rebalance the
portfolio. Notice how this is very different from deciding to rebalance the portfolio
based on an undesirably high VaR or Expected Shortfall (ES). VaR and ES are proper
probabilistic statements: What is the loss such that I will lose more only 1% of the time
(VaR)? Or what is the expected loss when I exceed my VaR (ES)? Standard stress test-
ing does not tell the portfolio manager anything about the probability of the scenario
happening, and it is therefore not at all clear what the portfolio rebalancing decision
should be. The portfolio manager may end up overreacting to an extreme scenario that
occurs with very low probability, and underreact to a less extreme scenario that occurs
much more frequently. Unless a probability of occurring is assigned to each scenario,
then the portfolio manager really has no idea how to react.

On the other hand, once scenario probabilities are assigned, then stress testing can
be very useful. To be explicit, consider a simple example of one stress scenario, which
we define as a probability distribution fstress (•) of the vector of factor returns. We
simulate a vector of risk factor returns from the risk model, calling it f (•) , and we also
simulate from the scenario distribution, fstress (•). If we assign a probability α of a draw
from the scenario distribution occurring, then we can combine the two distributions
as in

fcomb(•)=

{
f (•), with probability (1−α)
fstress(•), with probability α

Data from the combined distribution is generated by drawing a random variable Ui

from a Uniform(0,1) distribution. If Ui is smaller than α, then we draw a return from
fstress (•); otherwise we draw it from f (•) . The combined distribution can easily be
generalized to multiple scenarios, each of which has its own preassigned probability
of occurring.

Notice that by simulating from the combined distribution, we are effectively cre-
ating a new data set that reflects our available historical data as well our view of the
deficiencies of it. The deficiencies are rectified by including data from the stress sce-
narios in the new combined data set.

Once we have simulated data from the combined data set, we can calculate the VaR
or ES risk measure on the combined data using the previous risk model. If the risk
measure is viewed to be inappropriately high then the portfolio can be rebalanced.
Notice that now the rebalancing is done taking into account both the magnitude of the
stress scenarios and their probability of occurring.
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Assigning the probability, α, also allows the risk manager to backtest the VaR sys-
tem using the combined probability distribution fcomb (•). Any of these tests can be
used to test the risk model using the data drawn from fcomb (•) . If the risk model, for
example, has too many VaR violations on the combined data, or if the VaR violations
come in clusters, then the risk manager should consider respecifying the risk model.
Ultimately, the risk manager can use the combined data set to specify and estimate the
risk model.

6.2 Choosing Scenarios

Having decided to do stress testing, a key challenge to the risk manager is to create rel-
evant scenarios. The scenarios of interest will typically vary with the type of portfolio
under management and with the factor returns applied. The exact choice of scenarios
will therefore be situation specific, but in general, certain types of scenarios should be
considered. The risk manager ought to do the following:

l Simulate shocks that are more likely to occur than the historical database suggests.
For example, the available database may contain a few high variance days, but if
in general the recent historical period was unusually calm, then the high variance
days can simply be replicated in the stress scenario.

l Simulate shocks that have never occurred but could. Our available sample may not
contain any stock market crashes, but one could occur.

l Simulate shocks reflecting the possibility that current statistical patterns could
break down. Our available data may contain a relatively low persistence in vari-
ance, whereas longer samples suggest that variance is highly persistent. Ignoring
the potential persistence in variance could lead to a clustering of large losses going
forward.

l Simulate shocks that reflect structural breaks that could occur. A prime example in
this category would be the sudden float of the previously fixed Thai baht currency
in the summer of 1997.

Even if we have identified a set of scenario types, pinpointing the specific scenar-
ios is still difficult. But the long and colorful history of financial crises may serve as a
source of inspiration. Examples could include crises set off by political events or natu-
ral disasters. For example, the 1995 Nikkei crisis was set off by the Kobe earthquake,
and the 1979 oil crisis was rooted in political upheaval. Other crises such as the 1997
Thai baht float and subsequent depreciation mentioned earlier could be the culmina-
tion of pressures such as a continuing real appreciation building over time resulting in
a loss of international competitiveness.

The effects of market crises can also be very different. They can result in relatively
brief market corrections, as was the case after the October 1987 stock market crash,
or they can have longer lasting effects, such as the Great Depression in the 1930s.
Figure 13.4 depicts the 15 largest daily declines in the Dow Jones Industrial Average
during the past 100 years.
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Figure 13.4 The fifteen largest one-day percentage declines on the Dow.
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Notes: We plot the 15 largest one-day percentage declines in the Dow Jones Industrial Average
using data from 1915 through 2010.

Figure 13.4 clearly shows that the October 19, 1987, decline was very large even
on a historical scale. We see that the second dip arriving a week later on October 26,
1987 was large by historical standards as well: It was the tenth-largest daily drop. The
2008–2009 financial crisis shows up in Figure 13.4 with three daily drops in the top 15.
None of them are in the top 10 however. October–November 1929, which triggered the
Great Depression, has four daily drops in the top 10—three of them in the top 5. This
bunching in time of historically large daily market drops is quite striking. It strongly
suggests that extremely large market drops do not occur randomly but are instead
driven by market volatility being extraordinarily high. Carefully modeling volatility
dynamics as we did in Chapters 4 and 5 is therefore crucial.

6.3 Stress Testing the Term Structure of Risk

Figure 13.5 shows nine episodes of prolonged market downturn—or bear markets—
which we define as at least a 30% decline lasting for at least 50 days. Figure 13.5 shows
that the bear market following the 1987 market crash was relatively modest compared
to previous episodes. The 2008–2009 bear market during the recent financial crises
was relatively large at 50%.

Figure 13.5 suggests that stress testing scenarios should include both rapid cor-
rections, such as the 1987 episode, as well as prolonged downturns that prevailed in
2008–2009.

The Filtered Historical Simulation (or bootstrapping) method developed in Chapter
8 to construct the term structure of risk can be used to stress test the term structure of
risk as well. Rather than feeding randomly drawn shocks through the model over time
we can feed a path of historical shocks from a stress scenario through the model. The
stress scenario can for example be the string of daily shocks observed from September
2008 through March 2009. The outcome of this simulation will show how a stressed
market scenario will affect the portfolio under consideration.
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Figure 13.5 Bear market episodes in the Dow Jones index.
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Notes: We plot the cumulative market decline in nine bear markets defined as cumulative
declines of at least 30% lasting at least 50 days. We use daily data from 1915 through 2010 on
the Dow Jones Industrial Average.

7 Summary

The backtesting of a risk model can be seen as a final step in model building proce-
dure, and it therefore represents the final chapter in this book. The clustering in time
of VaR violations as seen in actual commercial bank risk models can pose a serious
threat to the financial health of the institution. In this chapter, we therefore devel-
oped backtesting procedures capable of capturing such clustering. Backtesting tools
were introduced for various risk measures including VaR, Expected Shortfall (ES), the
entire return density, and the left tail of the density.

The more information is provided in the risk measure, the higher statistical power
we will have to reject a misspecified risk model. The popular VaR risk measure does
not, unfortunately, convey a lot of information about the portfolio risk. It tells us a
return threshold, which we will only exceed with a certain probability, but it does not
tell us about the magnitude of violations that we should expect. The lack of informa-
tion in the VaR makes it harder to backtest. All we can test is that the VaR violations fall
randomly in time and in the proportion matching the promised coverage rate. Purely
from a backtesting perspective, other risk measures such as ES and the distribution
shape are therefore preferred.

Backtesting ought to be supplemented by stress testing, and we have outlined a
framework for doing so. Standard stress testing procedures do not specify the proba-
bility with which the scenario under analysis will occur. The failure to specify a prob-
ability renders the interpretation of stress testing scenarios very difficult. It is not clear
how we should react to a large VaR from an extreme scenario unless the likelihood
of the scenario occurring is assessed. While it is, of course, difficult to pinpoint the
likelihood of extreme events, doing so enables the risk manager to construct a pseudo
data set that combines the actual data with the stress scenarios. This combined data set
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can be used to backtest the model. Stress testing and backtesting are then done in an
integrated fashion.

Further Resources

The VaR exceedances from the six U.S. commercial banks in Figure 13.1 are taken
from Berkowitz and O’Brien (2002). See also Berkowitz et al. (2011) and O’Brien
and Berkowitz (2006). Deng et al. (2008) and Perignon and Smith (2010) present
empirical evidence on VaRs from an international set of banks.

The VaR backtests of unconditional coverage, independence, and conditional cov-
erage are developed in Christoffersen (1998). Kupiec (1995) and Hendricks (1996)
restrict attention to unconditional testing. The regression-based approach is used in
Christoffersen and Diebold (2000). Christoffersen and Pelletier (2004) and Candelon
et al. (2011) construct tests based on the duration of time between VaR hits. Campbell
(2007) surveys the available backtesting procedures.

Christoffersen and Pelletier (2004) discuss the details in implementing the Monte
Carlo simulated P-values, which were originally derived by Dufour (2006).

Christoffersen et al. (2001), Giacomini and Komunjer (2005), and Perignon and
Smith (2008) develop tests for comparing different VaR models. Andreou and Ghy-
sels (2006) consider ways of detecting structural breaks in the return process for the
purpose of financial risk management. For a regulatory perspective on backtesting,
see Lopez (1999) and Kerkhof and Melenberg (2004). Lopez and Saidenberg (2000)
focus on credit risk models. Zumbach (2006) considers different horizons.

Engle and Manganelli (2004), Escanciano and Olmo (2010, 2011), and Gaglianone
et al. (2011) suggest quantile-regression approaches and allow for parameter estima-
tion error.

Procedures for backtesting the Expected Shortfall risk measures can be found in
McNeil and Frey (2000) and Angelidis and Degiannakis (2007).

Graphical tools for assessing the quality of density forecasts are suggested in
Diebold et al. (1998). Crnkovic and Drachman (1996), Berkowitz (2001), and Bon-
temps and Meddahi (2005) establish formal statistical density evaluation tests, and
Berkowitz (2001), in addition, suggested focusing attention to backtesting the left tail
of the density. See also the survey in Tay and Wallis (2007) and Corradi and Swanson
(2006).

The coherent framework for stress testing is spelled out in Berkowitz (2000). See
also Kupiec (1998), Longin (2000), and Alexander and Sheedy (2008). Rebonato
(2010) takes a Bayesian approach and devotes an entire book to the topic of stress
testing.

The May 1998 issue of the World Economic Outlook, published by the International
Monetary Fund (see www.imf.org), contains a useful discussion of financial crises
during the past quarter of a century. Kindleberger and Aliber (2000) take an even
longer historical view.

www.imf.org
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Empirical Exercises

Open the Chapter13Data.xlsx file from the web site.

1. Compute the daily variance of the returns on the S&P 500 using the RiskMetrics approach.
2. Compute the 1% and 5% 1-day Value-at-Risk for each day using RiskMetrics and Historical

Simulation with 500 observations.
3. For the 1% and 5% value at risk, calculate the indicator “hit” sequence for both RiskMetrics

and Historical Simulation models. The hit sequence takes on the value 1 if the return is
below the (negative of the) VaR and 0 otherwise.

4. Calculate the LRuc, LRind, and LRcc tests on the hit sequence from the RiskMetrics and
Historical Simulation models. (Excel hint: Use the CHIINV function.) Can you reject the
VaR model using a 10% significance level?

5. Using the RiskMetrics variances calculated in exercise 1, compute the uniform transform
variable. Plot the histogram of the uniform variable. Does it look flat?

6. Transform the uniform variable to a normal variable using the inverse cumulative density
function (CDF) of the normal distribution. Plot the histogram of the normal variable. What

www.IMF.org
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is the mean, standard deviation, skewness, and kurtosis? Does the variable appear to be
normally distributed?

7. Take all the values of the uniform variable that are less than or equal to 0.1. Multiply each
number by 10. Plot the histogram of this new uniform variable. Does it look flat? Why
should it?

8. Transform the new uniform variable to a normal variable using the inverse CDF of the
normal distribution. Plot the histogram of the normal variable. What is the mean, standard
deviation, skewness, and kurtosis? Does the variable appear to be normally distributed?

The answers to these exercises can be found in the Chapter13Results.xlsx file on the com-
panion site.

For more information see the companion site at
http://www.elsevierdirect.com/companions/9780123744487

http://www.elsevierdirect.com/companions/9780123744487
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A
ACF, see Autocorrelation function
All RV estimator, 103–105, 166
American option pricing, using binomial tree,

228–229
AR models, see Autoregressive models
ARIMA model, 57
ARMA models, see Autoregressive moving

average models
Asset prices, 58
Asset returns

definitions, 7–8
generic model of, 11–12
stylized facts of, 9–11

Asset value, factor structure, 286
Asymmetric correlation model, 165
Asymmetric t copula, 210
Asymmetric t distribution, 133–135, 133f ,

135f
ES for, 144–145
estimation of d1 and d2, 134–136
QQ plot, 137, 137f
VaR and ES calculation, 136

Autocorrelation function (ACF), 49, 96f , 306
Autocorrelations

diagnostic check on, 83–84
of squared returns, 69

Autoregressive (AR) models, 49–53
ACF for, 54
autocorrelation functions for, 51f , 52

Autoregressive moving average (ARMA)
models, 55–56

Average linear correlation, 194
Average RV estimator, 105–106, 116, 166

B
Backtesting

distribution, 309–312
ES, 308
VaR, 298

conditional coverage testing, 306
for higher-order dependence, 306–307
independence testing, 304–306
null hypothesis, 301–302
unconditional coverage testing, 302–304

Bankruptcy costs, 4
Bartlett standard error bands, 83
Bernoulli distribution function, 302
Beta mapping, 156
Binomial tree model, 255
Bivariate distribution, 42–43, 194
Bivariate normal copula, 207f
Bivariate normal distribution, 197, 197f
Bivariate quasi maximum likelihood

estimation, 163–164
Black-Scholes-Merton (BSM), 231

model, 253
Black-Scholes pricing model, 232
Business risk, 7

C
Call option

delta of, 254f
price, 252f

Capital cost, 5
Capital structure, 5
CDF, see Cumulative density functions
CDOs, see Collateralized debt obligations
CDS, see Credit default swaps
CF, see Cornish-Fisher
chi-squared distribution, 82
Coherent stress testing, 313
Cointegration, 60
Collateralized debt obligations (CDOs), 289
Compensation packages, 5
Component GARCH model

and GARCH (1,1), 78
and GARCH (2,2), 80, 86, 88

Composite likelihood estimation, 164–165
Conditional covariance matrix, 183
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Conditional coverage testing, 306
Conditional probability distributions, 43–44
Contour probability plots, 211f
Copula modeling, 203

ES, 210
normal copula, 205–207
Sklars theorem, 203–204
t copula, 207–209
VaR, 210

Cornish-Fisher (CF) approximation, 262–263
Cornish-Fisher ES, 145
Cornish-Fisher to VaR, 126–128
Corporate debt, 282–283
Corporate default, 279f

definition of, 278
history of, 278
modeling, 280

implementation of, 283–284
Correlation matrix, 199, 201
Counterparty default risk, exposure to, 277,

278f
Covariance

exponentially smoother, 158f
portfolio variance and, 154–159
range-based, 167–168
realized, 166–167
rolling, 157f

Covariance matrix, 156
Credit default swaps (CDS), 7, 295–296,

296f
Credit portfolio distribution, 289
Credit portfolio loss rate, 287
Credit quality dynamics, 293–295
Credit risk, 7, 277

aspects of, 291–292
definition of, 277
portfolio, 285–288

Cross-correlations, 61
Cross-gammas, 264
Cumulative density functions (CDF), 203

D
Daily asset log return, 68
Daily covariance estimation

from intraday data, 165–168
DCC model, see Dynamic conditional

correlation model
Default risk, 277, 284

counterparty, 277

Delta approximation, 252f , 271–272
Delta-based model, 270f
Dickey-Fuller bias, 57
Dickey-Fuller tests, 58
Dividend flows, 230
Dynamic conditional correlation (DCC)

model, 159
asymmetric, 165
exponential smoother correlation model,

160–161, 161f
mean-reverting correlation model, 162f ,

161–163
QMLE method, 163–164

Dynamic long-term variance, 78
Dynamic variance model, 123
Dynamic volatility, 239

model implementation, 241–242

E
Equity, 281–282
Equity index volatility modeling, 82
ES, see Expected shortfall
European call option, 220
EVT, see Extreme value theory
Expected shortfall (ES), 33, 36, 126–127, 136

backtesting, 308
CF, 145
EVT, 146–147
for asymmetric t distributiions, 144–145
for symmetric t distributiions, 144–145
vs. VaR, 34, 35

Explanatory variables, 80–81
Exponential GARCH (EGARCH) model, 77
Exponential smoother correlation model,

160–161, 161f
Extreme value theory (EVT), 137

distribution of, 138
ES, 146–147
QQ plot from, 140–142, 141f
threshold, u, 140
VaR and ES calculation, 141–142

F
FHS, see Filtered historical simulation
Filtered historical simulation (FHS),

124–126, 179–181
with dynamic correlations, 188–189
multivariate, 185–186

Financial time series analysis, goal of, 39
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Firm
risk management and, 4

evidence on practices, 5
performance improvement, 5–6

First-order Markov sequence, 304
Foreign exchange, 230
Full valuation method, 270f
Future portfolio values, 272f
Futures options, 230

G
Gamma approximation, 260, 271–272
Gamma-based model, 270f
GARCH, see Generalized autoregressive

conditional heteroskedasticity
Generalized autoregressive conditional

heteroskedasticity (GARCH)
conditional covariances, 156–159
shocks, 195, 196f

histogram of, 121, 122f
Generalized autoregressive conditional

heteroskedasticity model
advantage of, 71
estimation, 74

of extended models, 82
explanatory variables, 80–81
FHS, 124–126, 182
general dynamics, 78–80
generalizing low frequency variance

dynamics, 81–82
leverage effect, 76–77
maximum likelihood estimation, 129–132
NIF, 77–78
option pricing, 239, 243
and QMLE, 75
QQ plot, 132–133, 132f
and RV, 102–103
Student’s t distribution, 128
variance

forecast evaluation, 115–116
model, 70–73
parameters, 76f

Generalized autoregressive conditional
heteroskedasticity-X model, 102–103

range-based proxy volatility, 114
Generalized Pareto Distribution (GPD), 138
GJR-GARCH model, 77
GPD, see Generalized Pareto Distribution
Gram-Charlier (GC) density, function of, 236

Gram-Charlier distribution, 237
Gram-Charlier model, 255

prices, 238f
Gram-Charlier option pricing, advantages of,

238
Granularity adjustment, 289, 291f

H
Heterogeneous autoregressions (HAR)

model, 99–101, 101f
forecasting volatility using range, 113

Higher-order GARCH models, 78
Hill estimator, 139
Historical Simulation (HS), 23

definition of, 22
evidence from 2008–2009 financial crisis,

28–30
model, drawbacks, 23
pros and cons of, 22–24
VaR

breaching, probability, 31–32
model, 31

see also Weighted historical simulation
HS, see Historical simulation
Hurwitz bias, 57
HYGARCH model, 80

long-memory, 88–89

I
Idiosyncratic risk, 155
Implied volatility, 80, 233–234
Implied volatility function (IVF), 219,

244–245
Independence testing, 304–306
Information set, increasing, 307–308
Integrated risk management, 212–213

K
Kurtosis, 235–237

model implementation, 237–238
Kurtosis function, asymmetric t distribution,

134, 135f

L
Left tail distribution, backtesting, 311–312
Leverage effect, 76–77
LGD, see Loss given default
Likelihood ratio (LR) test, 302

variance model comparisions, 82–83
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Linear model, 45–46
data plots, importance of, 46–48

LINEST, 46
Liquidity risk, 6
Ljung-Box statistic, 307
Log returns, 8, 154
Log-likelihood GARCH model, 82
Long run variance factor, 87
Long-memory model, HYGARCH, 88–89
Long-run variance, 78

average, 71
equation, 87

Loss given default (LGD), 291
Low frequency variance dynamics,

generalizing, 81–82

M
MA models, see Moving Average models
Mappings, portfolio variance, 155–156
Market risk, 6
Maximum likelihood estimation (MLE),

129–132, 209
example, 75
quasi, 75
standard, 73–74

MCS, see Monte Carlo simulation
Mean squared error (MSE), 84–86
Mean-reverting correlation model, 161–163,

162f
Merton model, 282, 283, 285

of corporate default, 280
feature of, 284

MIVF technique, see Modified implied
volatility function technique

MLE, see Maximum likelihood estimation
Modified Bessel function, 201
Modified implied volatility function (MIVF)

technique, 245
Modigliani-Miller theorem, 4
Monte Carlo random numbers, 196
Monte Carlo simulation (MCS), 176–179,

178f , 179f , 210, 242, 303
with dynamic correlations, 186–188
multivariate, 185
path, 177

Moving Average (MA) models, 53–55
Moving-average-insquares model, 88
Multivariate distributions, 195

asymmetric t distribution, 200–202

standard normal distribution, 196–198
standardized t distribution, 198–200

Multivariate time series analysis, 58
Multivariate time series models, 58–62

N
Negative skewness, 235
New impact functions (NIF), 77–78, 79f
NGARCH (nonlinear GARCH) model, 77,

83f
FHS, 181, 182, 183f
with leverage, 77, 78

NIF, see New impact functions
Normal copula, 205–207
Null hypothesis, 301–302

O
OLS estimation, see Ordinary least square

estimation
Operational risk, 7
Option delta, 252
Option gamma, 259–261
Option portfolio, 272f
Option pricing

implied volatility, 233–234
model implementation, 233
under normal distribution, 230–233
using binomial trees, 222

current option value, 225–227
Option Pay-Off computation, 223–225
for stock price, 222, 223

Ordinary least square (OLS) estimation, 46,
57, 84

P
PACF, see Partial autocorrelation function
Parameter estimation, 75
Partial autocorrelation function (PACF), 53
PDF, see Probability density function
Portfolio credit risk, 285–287
Portfolio loss rate

distribution, 286–289, 288f
on VaR, 289, 290f

Portfolio returns, from asset returns to, 12
Portfolio risk

using delta, 257–259
using full valuation, 265

single underlying asset case, 265–266



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Christoffersen 19-ind-321-328-9780123744487 2011/10/28 17:40 Page 325 #5

Index 325

Portfolio variance, and covariance,
154–159

Positive autocorrelation, 107
Price data errors, 110
Probability density function (PDF), 203
Probability distributions, 40

bivariate, 42–43
conditional, 43–44
univariate, 40–42

Probability moments, 44–45

Q
QLIKE loss function, 85, 86
QMLE method, see Quasi maximum

likelihood estimation (QMLE)
method

Quantile-quantile (QQ) plot, 121
asymmetric t distribution, 137, 137f
from EVT, 140–142, 141f
standardized t distribution, 132–133,

132f
visualizing nonnormality using, 123–124

Quasi maximum likelihood estimation
(QMLE) method, 75, 82, 130,
163–164

R
Random walk model, 56–57
Range-based covariance, using no-arbitrage

conditions, 167–168
Range-based variance, vs. RV, 113–115
Range-based volatility modeling, 113f ,

110–115
Range-GARCH model, 114
Realized GARCH model, 103, 114
Realized variance (RV)

ACF, 95, 96f
data issues, 107–110
definition of, 94
estimator

All RV, 103–105
with autocovariance adjustments,

106–107
average RV, 105–106
Sparse RV, 103–105
using tick-by-tick data, 109

forecast of, 97–98
GARCH model and, 102–103
HAR model, 99–102, 101f

histogtram of, 95, 97
log normal property of, 96
logarithm of, 95, 97, 98
range-based variance versus, 115
S&P 500, 94, 95f
simple ARMA models of, 98–99
square root of, 96

Recovery rates (RR), 291–292, 292f
vs. default rates, 292f

Regression
approach, 308
volatility forecast evaluation, 84

Risk managers, volatility forecast error, 85
Risk measurement tool, 32
Risk neutral valuation, 227–228
Risk term structure

with constant correlations, 182–185
with dynamic correlations, 186–189
in univariate models, 174–175

Risk-neutral distribution, 230
Risk-neutral probability of default, 284
Risk-neutral valuation, 230
RiskMetrics, 14, 23, 26, 158, 174
RiskMetrics variance model, 69, 70, 88

calculations for, 72
and GARCH model, 71–73

Robustness, 86
RV, see Realized variance

S
Sensible loss function, 85
Short-term variance forecasting, 78
Simple exponential smoother model, 157
Simple variance forecasting, 68–70
Simulation-based gamma approximation,

263–265
Skewness, 235–237

model implementation, 237–238
Skewness function, asymmetric t distribution,

134, 135f
Sklars theorem, 203–204
Sparse RV estimator, 105
Speculative grade, 278
Spline-GARCH models, 81
Spurious causality, 62
Spurious mean-reversion, 57–58
Spurious regression phenomenon, 59–60
Squared returns, 69f

autocorrelation of, 83f , 84
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Standard likelihood estimation, 73–74
Standardized t distribution, 128–129

estimation of d, 130–131
maximum likelihood estimation, 129–130
QQ plot, 132–133, 132f
VaR and ES calculation, 131

State-of-the art techniques, 4
Stress testing

choosing scenarios, 314–315
combining distributions for, 313
structure of risk, 315

Student’s t distribution, 128, 145
asymmetric t distribution, 133

Symmetric t copula, 209f , 210
Symmetric t distributiions, ES for,

144–145
Systematic risk, 155–156

T
t copula, 207–209
Tail-index parameter ξ , 138

estimating, 139–140
TailVaR, see Expected Shortfall
Taxes, 4
Technical trading analysis, 58
Three call options, delta of, 254f
Threshold correlations, 194–195, 195f , 196f

from asymmetric t distribution, 201f
Tick-by-tick data, 109
Time series regression, 59
Time-varying covariance matrix, 156
Transition probability matrix, 304–305

U
Unconditional coverage testing, 302–304
Unit roots test, 58
Units roots model, 56–57
Univariate models, risk term structure in,

174–175
Univariate probability distributions, 40–42
Univariate time series models, 48

AR models, 49–53

autocorrelation, 48–49
MA models, 53–55

V
Value-at-Risk (VaR), 17, 122, 220, 258

backtesting, 300–307
CF approximation to, 126–128
exceedances, 300f
with extreme coverage rates, 32
from normal distribution, 15f
on portfolio loss rate, 289, 290f
returns, 17
risk measure of, 12–16
vs. Expected Shortfall, 34, 35

VaR see Value-at-Risk
VAR model, see Vector autoregressions

model
Variance, 69

forecast, 68, 72, 73f
long memory in, 80
long-run average, 71
of proxy, 84

Variance dynamics, 75, 77
Variance index (VIX), 80
Variance model, GARCH, 70–73, 115–116
Variance-covariance matrix, 202
Vector autoregressions (VAR) model, 61–62
Volatility forecast errors, 85
Volatility forecast evaluation, using

regression, 84
Volatility forecast loss function, 84–85, 85f ,

86
Volatility model

forecasting, using range, 113–115
range-based proxies for, 111–112, 112f ,

113f
Volatility signature plots, 105

W
Weighted Historical Simulation (WHS),

24–25
implementation of, 24
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