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Preface

The theory of probability metrics is a branch of probability theory.
It finds application in different theoretical and applied fields such
as probability theory, queuing theory, insurance risk theory, and fi-
nance. The theory of probability metrics looks for answers to the fol-
lowing basic question: How can one measure the difference between
random quantities? In finance, for example, we assume a stochastic
model for asset return distributions and, in order to estimate the risk
of a portfolio of assets, we sample from the fitted distribution. Then,
we use the generated simulations to calculate portfolio risk. In this
context, there are two issues arising on two different levels. First, the
assumed stochastic model should be “close” to the empirical data.
In this sense, we say that we need a realistic model in the first place.
Second, since the risk estimate is essentially computed from random
scenarios, we have to be aware of the variability of the estimator and
how it depends on the assumed asset return distributions.

Although based on universal principles and ideas, the field of
probability metrics is very specialized. Most of the literature is
highly technical and is accessible mostly to specialists in probability
theory. As far as applications are concerned, apart from our book
Advanced Stochastic Models, Risk Assessment, and Portfolio Optimiza-
tion: Ideal Risk, Uncertainty, and Performance Measures (John Wiley &
Sons, 2008), we are unaware of other literature describing applica-
tions in finance.

xiii



PREFACE

This book has two goals. The first goal is to describe applications
in finance and extend them where possible. The second goal is to
present the theory of probability metrics in a more accessible form
which would be appropriate for non-specialists in the field. Topics
requiring more mathematical rigor and detail are included in tech-
nical appendices to chapters.

The book is organized in the following way. Chapter 1 provides
a conceptual description of the method of probability metrics and
reviews direct and indirect applications in the field of finance. Chap-
ter 2 provides an introduction to the theory of probability metrics.
The classical theory describing investor choice under uncertainty
is provided in Chapter 3. Chapter 4 discusses the classification of
probability distances to primary, simple, and compound types. The
information in Chapter 2 is a prerequisite. Chapters 5, 6, and 7 are
devoted to risk and uncertainty measures and discuss in detail AVaR
and the Monte Carlo method for AVaR estimation. Chapter 6 is a pre-
requisite to Chapter 7. Finally, Chapter 8 considers the problem of
quantifying stochastic dominance relations and takes advantage of
the terms introduced in Chapter 3.

Svetlozar T. Rachev
Stoyan V. Stoyanov

Frank J. Fabozzi
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Chapter 1

Introduction

In this chapter, we provide a conceptual description of the method
of probability metrics and discuss direct and indirect applications in
the field of finance, which are described in more detail throughout
the book.

1.1 Probability Metrics

The development of the theory of probability metrics started with the
investigation of problems related to limit theorems in probability
theory. Limit theorems occupy a very important place in probability
theory, statistics, and all their applications. A well-known example
is the celebrated central limit theorem (CLT) but there are many other
limit theorems, such as the generalized CLT, the max-stable CLT,
functional limit theorems, etc. In general, the applicability of the
limit theorems stems from the fact that the limit law can be regarded
as an approximation to the stochastic model under consideration
and, therefore, can be accepted as an approximate substitute. The
central question arising is how large an error we make by adopt-
ing the approximate model and this question can be investigated by

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
© 2011 Svetlozar T. Rachev, Stoyan V. Stoyanov and Frank J. Fabozzi
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CHAPTER 1 INTRODUCTION

studying the distance between the limit law and the stochastic model.
It turns out that this distance is not influenced by the particular prob-
lem. Rather, it can be studied by a theory based on some universal
principles.

Generally, the theory of probability metrics studies the prob-
lem of measuring distances between random quantities. On one
hand, it provides the fundamental principles for building probability
metrics – the means of measuring such distances. On the other, it
studies the relationships between various classes of probability met-
rics. Another realm of study concerns problems which require a
particular metric while the basic results can be obtained in terms
of other metrics. In such cases, the metrics relationship is of primary
importance.

Certainly, the problem of measuring distances is not limited to
random quantities only. In its basic form, it originated in different
fields of mathematics. Nevertheless, the theory of probability metrics
was developed due to the need of metrics with specific properties.
Their choice is very often dictated by the stochastic model under
consideration and to a large extent determines the success of the
investigation. Rachev (1991) provides more details on the methods
of the theory of probability metrics and its numerous applications in
both theoretical and more practical problems.

1.2 Applications in Finance

There are no limitations in the theory of probability metrics con-
cerning the nature of the random quantities. This makes its methods
fundamental and appealing. Actually, in the general case, it is more
appropriate to refer to the random quantities as random elements.
They can be random variables, random vectors, random functions
or random elements in general spaces. For instance, in the context
of financial applications, we can study the distance between two
random stocks prices, or between vectors of financial variables that
are used to construct portfolios, or between yield curves which are
much more complicated objects. The methods of the theory remain

2



1.2 APPLICATIONS IN FINANCE

the same, irrespective of the nature of the random elements. This
represents the most direct application of the theory of probability
metrics in finance: that is, it provides a method for measuring how
different two random elements are. We explain the axiomatic con-
struction of probability metrics and provide financial interpretations
in Chapter 2.

Financial economics, like any other science relying on statistical
methods, considers statistical information about the objects it studies
on several levels. In some theories in the area of finance, conclusions
are drawn only on the basis of certain characteristics of the corre-
sponding distributions. For example, an investor would oftentimes
use a risk-reward ratio to rank investment opportunities. Essentially,
this reduces to computing the measure of reward (e.g., the expected
return) and the measure of risk (e.g., value-at-risk, conditional value-
at-risk, standard deviation). Both the measure of reward and the
measure of risk represent two characteristics of the corresponding
distributions. In effect, the final decision is made on the basis of these
two characteristics which, from the investor’s perspective, aggregate
the information available in the distribution functions.

The theory describing investor choice under uncertainty, the
fundamentals of which we discuss in Chapter 3, uses a different
approach. Various criteria were developed for first-, second-, and
higher-order stochastic dominance based on the distributions them-
selves. As a consequence, investment opportunities are compared
directly through their distribution functions, which is a superior
approach from the standpoint of the utilized information.

As another example, consider the problem of building a diver-
sified portfolio. The investor would be interested not only in the
marginal distribution characteristics (i.e., the characteristics of the
assets on a stand-alone basis), but also in how the assets depend
on each another. This requires an additional piece of information
which cannot be recovered from the distribution functions of the
asset returns. The notion of stochastic dependence can be described
by considering the joint behavior of assets returns.

The theory of probability metrics offers a systematic approach
towards such a hierarchy of ways to utilize statistical information.

3



CHAPTER 1 INTRODUCTION

It distinguishes between primary, simple, and compound types of
distances which are defined on the space of characteristics, the space
of distribution functions, and the space of joint distributions, respec-
tively. Therefore, depending on the particular problem, one can
choose the appropriate distance type and this represents another
direct application of the theory of probability metrics in the field of
finance. This classification of probability distances is explained in
Chapter 4.

Besides direct applications, there are also a number of indirect
ones. For instance, one of the most important problems in risk esti-
mation is formulating a realistic hypothesis for the asset return
distributions. This is largely an empirical question because no argu-
ments exist that can be used to derive a model from some general
principles. Therefore, we have to hypothesize a model that best
describes a number of empirically confirmed phenomena about
asset returns: (1) volatility clustering, (2) autoregressive behavior,
(3) short- and long-range dependence, and (4) fat-tailed behavior of
the building blocks of the time-series model which varies depend-
ing on the frequency (e.g., intra-day, daily, monthly). The theory of
probability metrics can be used to suggest a solution to (4). The
fact that the degree of heavy-tailedness varies with the frequency
may be related to the process of aggregation of higher-frequency
returns to obtain lower frequency returns. Generally, the residuals
from higher-frequency return models tend to have heavier tails and
this observation together with a result known as a pre-limit theorem
can be used to derive a suggestion for the overall shape of the return
distribution. Furthermore, the probability distance used in the pre-
limit theorem indicates that the derived shape is most relevant for
the body of the distribution. As a result, through the theory of prob-
ability metrics we can obtain an approach to construct reasonable
models for asset return distributions. We discuss in more detail limit
and pre-limit theorems in Chapter 7.

Another central topic in finance is quantification of risk and
uncertainty. The two notions are related but are not synonymous.
Functionals quantifying risk are called risk measures and function-
als quantifying uncertainty are called deviation measures or dispersion

4



1.2 APPLICATIONS IN FINANCE

measures. Axiomatic constructions are suggested in the literature for
all of them. It turns out that the axioms defining measures of uncer-
tainty can be linked to the axioms defining probability distances,
however, with one important modification. The axiom of symmetry,
which every distance function should satisfy, appears unnecessarily
restrictive. Therefore, we can derive the class of deviation measures
from the axiomatic construction of asymmetric probability distances
which are also called probability quasi-distances. The topic is discussed
in detail in Chapter 5.

As far as risk measures are concerned, we consider in detail
advantages and disadvantages of value-at-risk, average value-at-
risk (AVaR), and spectral risk measures in Chapter 5 and Chapter 6.
Since Monte Carlo-based techniques are quite common among prac-
titioners, we discuss in Chapter 7 Monte Carlo-based estimation of
AVaR and the problem of stochastic stability in particular. The dis-
cussion is practical, based on simulation studies, and is inspired by
the classical application of the theory of probability metrics in esti-
mating the stochastic stability of probabilistic models. We apply the
CLT and the Generalized CLT to derive the asymptotic distribution
of the AVaR estimator under different distributional hypotheses and
we discuss approaches to improve its stochastic stability.

We mentioned that adopting stochastic dominance rules for
prospect selection rather than rules based on certain characteris-
tics leads to a more efficient use of the information contained in the
corresponding distribution functions. Stochastic dominance rules,
however, are of the type “X dominates Y” or “X does not dominate
Y”: that is, the conclusion is qualitative. As a consequence, computa-
tional problems are hard to solve in this setting. A way to overcome
this difficulty is to transform the nature of the relationship from
qualitative to quantitative. We describe how this can be achieved
in Chapter 8, which is the last chapter in the book. Our approach is
fundamental and is based on asymmetric probability semidistances,
which are also called probability quasi-semidistances.

The link with probability metrics theory allows a classification of
stochastic dominance relations in general. They can be primary, sim-
ple, or compound but also, depending on the underlying structure,

5



CHAPTER 1 INTRODUCTION

they may or may not be generated by classes of investors, which
is a typical characterization in the classical theory of choice under
uncertainty. This is also a topic discussed in Chapter 8.

References

Rachev, S. T. (1991), Probability Metrics and the Stability of Stochastic Models,
Wiley, New York.
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Chapter 2

Probability Distances and
Metrics

The goals of this chapter are the following:

• To provide examples of metrics in probability theory and inter-
pretations from a financial economics perspective.

• To introduce formally the notions of a probability metric and a
probability distance.

• To consider the general setting of random variables defined on
a given probability space (�,A,Pr) taking values in a separa-
ble metric space U, allowing a unified treatment of problems
involving one-dimensional random variables, random vectors or
stochastic processes, for example.

• To consider the alternative setting of probability distances on the
space of probability measures P2 defined on the �-algebras of
Borel subsets ofU2 = U ×U whereU is a separable metric space.

• To examine the equivalence of the notion of a probability distance
on the space of probability measures P2 and on the space of joint
distributions LX2 generated by pairs of random variables (X,Y)
taking values in a separable metric space U.

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
© 2011 Svetlozar T. Rachev, Stoyan V. Stoyanov and Frank J. Fabozzi
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CHAPTER 2 PROBABILITY DISTANCES AND METRICS

Notation introduced in this chapter:

Notation Description

EN The engineer’s metric
X
p The space of real-valued r.v. with E|X|p < ∞

ρ The uniform (Kolmogorov) metric
X = X(R) The space of real-valued r.v.s
L The Lévy metric
κ The Kantorovich metric
θp The Lp-metric between distribution functions
K, K∗ The Ky Fan metrics
Lp The Lp-metric between r.v.s
MOMp The metric between p-th moments
(S, �) Metric space with a metric �
R
n The n-dimensional vector space
r(C1, C2) The Hausdorff metric (semimetric between

sets)
s(F,G) The Skorokhod metric
K = K� Parameter of a distance space
H The class of Orlicz’s functions
�H The Birnbaum–Orlicz distance
Kr The Kruglov distance
(U, d) Separable metric space with metric d
s.m.s. Separable metric space
Uk The k-fold Cartesian product of U
Bk = Bk(U) The Borel �-algebra on Uk

Pk = Pk(U) The space of probability laws on Bk
T˛,ˇ,...,�P The marginal of P ∈ Pk on the coordinates ˛,

ˇ, . . ., �
PrX The distribution of X
� A probability semidistance
X := X(U) The set of U-valued random variables
LX2 := LX2(U) The space of PrX,Y , X,Y ∈ X(U)
u.m. Universally measurable
u.m.s.m.s. Universally measurable separable metric

space

8



2.2 SOME EXAMPLES OF PROBABILITY METRICS

Important terms introduced in this chapter:

Term Concise explanation

(semi)metric function A special function satisfying properties
making it uniquely positioned for
computing distances

(semi)metric space A space equipped with a (semi)metric
function for measuring distances between
space elements

probability (semi)metric A (semi)metric function designed to measure
distances between random elements

2.1 Introduction

Generally speaking, a functional which measures the distance
between random quantities is called a probability metric. These ran-
dom quantities can be of a very general nature. For instance, they
can be random variables, such as the daily returns of equities, the
daily change of an exchange rate, etc., or stochastic processes, such
as a price evolution in a given period, or much more complex objects,
such as the daily movement of the shape of the yield curve.

In this chapter, we provide examples of probability metrics and
interpretations from the perspective of financial economics, limit-
ing the discussion to one-dimensional random variables. Then we
proceed with the axiomatic definition of probability metrics. In the
appendix, we provide a more technical discussion of the axiomatic
construction in a much more general context.

2.2 Some Examples of Probability Metrics

Below is a list of various metrics commonly found in probability and
statistics. In this section, we limit the discussion to one-dimensional
variables only.

9



CHAPTER 2 PROBABILITY DISTANCES AND METRICS

2.2.1 Engineer’s metric

The engineer’s metric is

EN(X,Y) := |E(X) − E(Y)| X,Y ∈ X1 (2.2.1)

where Xp is the space of all real-valued random variables (r.v.s) with
E|X|p < ∞. In the case of the engineer’s metric, we measure the dis-
tance between the random variables X and Y only in terms of the
deviation of their means. For example, ifX andY describe the return
on two common stocks, then the engineer’s metric computes the
distance between their expected returns.

2.2.2 Uniform (or Kolmogorov) metric

The uniform (or Kolmogorov) metric is

ρ(X,Y) := sup{|FX(x) − FY(x)| : x ∈ R} X,Y ∈ X = X(R) (2.2.2)

where FX is the distribution function (d.f.) ofX,R = (−∞,+∞), and
X is the space of all real-valued r.v.s.

Figure 2.1 illustrates the Kolmogorov metric. The c.d.f.s of two
random variables are plotted on the top plot and the bottom plot
shows the absolute difference between them, |FX(x) − FY(x)|, as a
function of x. The Kolmogorov metric is equal to the largest abso-
lute difference between the two c.d.f.s. A arrow shows where it is
attained.

If the random variables X and Y describe the return distribution
of the common stocks of two corporations, then the Kolmogorov
metric has the following interpretation. The distribution function
FX(x) is by definition the probability that X loses more than a level
x, FX(x) = P(X ≤ x). Similarly, FY(x) is the probability that Y loses
more than x. Therefore, the Kolmogorov distance ρ(X,Y) is the max-
imum deviation between the two probabilities that can be attained

10



2.2 SOME EXAMPLES OF PROBABILITY METRICS
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Figure 2.1: Illustration of the Kolmogorov metric. The bottom plot shows
the absolute difference between the two c.d.f.s plotted on the top plot. The
arrow indicates where the largest absolute difference is attained.

by varying the loss level x. If ρ(X,Y) = 0, then the probabilities that
X and Y lose more than a loss level x coincide for all loss levels.

Usually, the loss level x, for which the maximum deviation is
attained, is close to the mean of the return distribution, i.e. the mean
return. Thus, the Kolmogorov metric is completely insensitive to the
tails of the distribution which describe the probabilities of extreme
events – extreme returns or extreme losses.

2.2.3 Lévy metric

The Lévy metric is

L(X,Y) := inf {ε > 0 : FX(x − ε) − ε ≤ FY(x) ≤ FX(x + ε)

+ε ∀x ∈ R}. (2.2.3)

The Lévy metric is difficult to calculate in practice. Figure 2.2
contains an illustration. The Lévy metric has important theoretic

11
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Figure 2.2: Illustration of the Lévy metric. L(X,Y)
√

2 is the maximum dis-
tance between the graphs of FX and FY along a 45 degrees direction. The
arrow indicates where the maximum is attained.

application in probability theory as it metrizes the weak conver-
gence. It can be viewed as measuring the closeness between the
graphs of the distribution functions while the Kolmogorov metric
is a uniform metric between the distribution functions. The general
relationship between the two is

L(X,Y) ≤ ρ(X,Y) (2.2.4)

For example, suppose that X is a random variable describing the
return distribution of a portfolio of stocks and Y is a determinis-
tic benchmark with a return of 2.5% (Y = 2.5%). (The deterministic
benchmark in this case could be either the cost of funding over a spec-
ified time period or a target return requirement to satisfy a liability
such as a guaranteed investment contract.) Assume also that the port-
folio return has a normal distribution with mean equal to 2.5% and
a volatility �, X ∈ N(2.5%, �2). Since the expected portfolio return is
exactly equal to the deterministic benchmark, the Kolmogorov dis-
tance between them is always equal to 1/2 irrespective of how small
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Figure 2.3: Illustration of the relationship between the Lévy and
Kolmogorov metrics. The length of the vertical arrow equals ρ(X,Y), while
the length of the tilted indicate equals L(X,Y)

√
2 where X ∈ N(2.5%, �2),

�1 > �2 and Y = 2.5%.

the volatility is,

ρ(X, 2.5%) = 1/2, ∀ � > 0.

Thus, if we rebalance the portfolio and reduce its volatility, the
Kolmogorov metric will not register any change in the distance
between the portfolio return and the deterministic benchmark. In
contrast to the Kolmogorov metric, the Lévy metric will indicate that
the rebalanced portfolio is closer to the benchmark. This is illustrated
in Figure 2.3.

Remark 2.2.1. We see that ρ and L may actually be considered as
metrics on the space of all distribution functions. However, this can-
not be done for EN simply because EN(X,Y) = 0 does not imply the
coincidence of FX and FY, while ρ(X,Y) = 0 ⇐⇒ L(X,Y) = 0 ⇐⇒
FX = FY. The Lévy metric metrizes weak convergence (convergence
in distribution) in the space F, whereas ρ is often applied in the CLT,
cf. Hennequin and Tortrat (1965).

13
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2.2.4 Kantorovich metric

The Kantorovich metric is

κ(X,Y) =
∫
R

|FX(x) − FY(x)|dx X,Y ∈ X1. (2.2.5)

The Kantorovich metric can be interpreted along the lines of the
Kolmogorov metric. Suppose that X and Y are random variables
describing the return distribution of two common stocks. Then, as
we explained, FX(x) and FY(x) are the probabilities that X and Y,
respectively, lose more than the level x. The Kantorovich metric
sums the absolute deviation between the two probabilities for all
possible values of the loss level x. Thus, the Kantorovich metric pro-
vides aggregate information about the deviations between the two
probabilities. This is illustrated in Figure 2.4.

−3 −2 −1 0 1 2 3
0

0.5

1

x

FX(x)

FY(x)

−3 −2 −1 0 1 2 3
0

0.5

1

x

Figure 2.4: Illustration of the Kantorovich metric. The bottom plot shows
the absolute difference between the two c.d.f.s plotted on the top plot. The
Kantorovich metric equals the shaded area.
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2.2 SOME EXAMPLES OF PROBABILITY METRICS

In contrast to the Kolmogorov metric, the Kantorovich metric
is sensitive to the differences in the probabilities corresponding to
extreme profits and losses but to a small degree. This is because
the difference |FX(x) − FY(x)| converges to zero as the loss level (x)
increases or decreases and, therefore, the contribution of the terms
corresponding to extreme events to the total sum is small. As a result,
the differences in the tail behavior of X and Y will be reflected in
κ(X,Y) but only to a small extent.

2.2.5 Lp-metrics between distribution functions

The Lp-metrics between distribution functions is

θp(X,Y) :=
(∫ ∞

−∞
|FX(t) − FY(t)|pdt

)1/p

p ≥ 1 X,Y ∈ X1.

(2.2.6)

The financial interpretation of θp(X,Y) is similar to the interpre-
tation of the Kantorovich metric, which appears as a special case,
κ(X,Y) = θ1(X,Y). The metric θp(X,Y) is an aggregate metric of the
difference between the probabilities that X and Y lose more than
the level x. The power p exercises a very special effect. It makes
the smaller contributors to the total sum of the Kantorovich metric
become even smaller contributors to the total sum in (2.2.6). Thus, as
p increases, only the largest absolute differences |FX(x) − FY(x)| start
to matter. At the limit, as p approaches infinity, only the largest dif-
ference |FX(x) − FY(x)| becomes significant and the metric θ∞(X,Y)
turns into the Kolmogorov metric. Therefore, if we would like
to accentuate on the differences between the two return distribu-
tions in the body of the distribution, we can choose a large value
of p.

Remark 2.2.2. Clearly the Kantorovich metric arises as a special
case,κ = θ1. Moreover, we can extend the definition of θp whenp = ∞
by setting θ∞ = ρ. One reason for this extension is the following dual
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representation for 1 ≤ p ≤ ∞:

�p(X,Y) = sup
f∈Fp

|E f (X) − E f (Y)|, X, Y ∈ X1

where Fp is the class of all measurable functions f with ‖ f ‖q < 1.
Here, ‖ f ‖q(1/p+ 1/q = 1) is defined, as usual, by

‖ f ‖q :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
|f |q

)1/q

1 ≤ q < ∞

ess sup
R

|f | q = ∞.

(The proof of the above representation is given by Dudley (1989), p.
333.)

2.2.6 Ky Fan metrics

The Ky Fan metrics are

K(X,Y) := inf{ε > 0 : Pr(|X − Y| > ε) < ε} X,Y ∈ X. (2.2.7)

and

K∗(X,Y) := E
|X − Y|

1 + |X − Y| . (2.2.8)

Both metrics metrize convergence in probability on X = X(R), the
space of real random variables (Lukacs (1968), Chapter 3, and Dudley
(1976), Theorem 3.5).

Assume that X is a random variable describing the return distri-
bution of a portfolio of stocks andY describes the return distribution
of a benchmark portfolio. The probability

P(|X − Y| > ε) = P
(
{X < Y − 	}

⋃
{X > Y + 	}

)
concerns the event that either the portfolio will outperform the
benchmark by 	 or it will underperform the benchmark by 	. There-
fore, the quantity 2	 can be interpreted as the width of a performance
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2.2 SOME EXAMPLES OF PROBABILITY METRICS

band. The probability 1 − P(|X − Y| > ε) is actually the probability
that the portfolio stays within the performance band, i.e. it does not
deviate from the benchmark more than 	 in an upward or downward
direction.

As the width of the performance band decreases, the probability
P(|X − Y| > ε) increases because the portfolio returns will be more
often outside a smaller band. The metric K(X,Y) calculates the width
of a performance band such that the probability of the event that the
portfolio return is outside the performance band is smaller than half
of it.

2.2.7 Lp-metric

The Lp-metric is

Lp(X,Y) := {E |X − Y|p}1/p p ≥ 1 X,Y ∈ Xp. (2.2.9)

From a financial economics viewpoint, we can recognize two
widely used measures of deviation which belong to the family of
the p-average compound metrics. If p is equal to 1, we obtain the
mean absolute deviation between X and Y,

L1(X,Y) = E|X − Y|.

Suppose that X describes the returns of a stock portfolio and Y

describes the returns of a benchmark portfolio. Then the mean abso-
lute deviation is a way to measure how closely the stock portfolio
tracks the benchmark. If p is equal to 2, we obtain

L2(X,Y) =
√
E(X − Y)2

which is a quantity very similar to the tracking error between the
two portfolios.

Remark 2.2.3. Certain relations can be obtained between the Ky
Fan metric, the Lp-metric, and a metric which is similar in nature to
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the engineer’s metric. Define

mp(X) := {E |X|p}1/p p > 1 X ∈ Xp (2.2.10)

and

MOMp(X,Y) := |mp(X) −mp(Y)| p ≥ 1 X,Y ∈ Xp. (2.2.11)

The metric MOMp(X,Y) measures the distance between the corre-
sponding absolute moments of the two random variables and, thus,
it is called the absolute moments metric. For example, if p = 2 then
MOM2(X,Y) calculates the distance between the standard devia-
tions of X and Y. From a financial economics perspective, if we
adopt standard deviation as a proxy for risk, MOM2(X,Y) can be
interpreted as measuring the deviation between the risk profiles of
X and Y.

The relationship between Lp(X,Y), K(X,Y), and MOMp(X,Y)
can be summarized in the following way. Choose a sequence of
random variables, X0, X1, . . . ∈ Xp. Then,

Lp(Xn,X0) → 0 ⇐⇒
{

K(Xn,X0) → 0

MOMp(Xn,X0) → 0.
(2.2.12)

See, for example, Lukacs (1968), Chapter 3.

All of the (semi-)metrics on subsets ofXmentioned above may be
divided into three main groups:

• primary;
• simple;
• compound.

A metric � is primary if �(X,Y) = 0 implies that certain moment
characteristics of X and Y agree. As examples, we have EN (2.2.1)
and MOMp (2.2.11). For these metrics

EN(X,Y) = 0 ⇐⇒ EX = EY

MOMp(X,Y) = 0 ⇐⇒ mp(X) = mp(Y).
(2.2.13)
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A metric � is simple if �(X,Y) = 0 implies complete coincidence
between the distribution functions FX and FY,

�(X,Y) = 0 ⇐⇒ FX = FY. (2.2.14)

Examples are ρ (2.2.2), L (2.2.3), and θp (2.2.6). These metrics essen-
tially measure the distance between the distribution functionsFX and
FY. Simple metrics imply a stronger form of identity than primary
metrics since FX = FY implies coincidence of all moment character-
istics.

The third group, the compound (semi-)metrics have the property

�(X,Y) = 0 ⇐⇒ Pr(X = Y) = 1. (2.2.15)

Some examples are K (2.2.7), K∗ (2.2.8), and Lp (2.2.9). Compound
metrics imply a stronger form of identity than primary metrics. If X
and Y are two random variables which coincide in all states of the
world, possibly except for some states of the world with total prob-
ability equal to zero, their distributions functions agree completely.

Later on, precise definitions of these classes are given, and we
study the relationships between them. Now we begin with a com-
mon definition of probability metric which will include the types
mentioned above.

2.3 Distance and Semidistance Spaces

In section 2.2, we considered examples of probability metrics and
provided interpretations from a financial economics perspective. All
examples concerned one-dimensional random variables and, there-
fore, the probability metric was regarded as an object related to the
space of one-dimensional random variables. In a certain sense, the
random variables were considered points in an abstract space and
the probability metric appears as a function measuring the distance
between these abstract points.

In fact, we considered one-dimensional random variables but the
general idea of using a special function which can measure distances
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between abstract points belonging to a certain space does not depend
on this assumption. We can consider random elements which could
be of very general nature, such as multivariate variables and stochas-
tic processes, without changing much the general framework. From a
practical viewpoint, by extracting the general principles, we are able
to treat equally easy one-dimensional random variables describing,
for example, stochastic returns on investments, multivariate random
variables describing, for instance, the multi-dimensional behavior
of positions participating in two different portfolios, or much more
complex objects such as yield curves.

To this end, we begin with a slightly more technical discussion
concerning metric spaces, metric and semimetric functions without
involving the notion of random elements. The discussion is extended
further in section 2.4.

We begin with the notions of metric and semimetric space. Gener-
alizations of these notions will be needed in the Theory of Probability
Metrics (TPM).

Definition 2.3.1. A set S := (S, �) is said to be a metric space with the
metric � if � is a mapping from the product S× S to [0,∞) having
the following properties for each x, y, z ∈ S:

(1) Identity property: �(x, y) = 0 ⇐⇒ x = y;
(2) Symmetry: �(x, y) = �(y, x);
(3) Triangle inequality: �(x, y) ≤ �(x, z) + �(z, y).

Some well-known examples of metric spaces are the following.
(a) The n-dimensional vector space Rn endowed with the metric

�(x, y) := ‖x − y‖p, where

‖x‖p :=
(

n∑
i=1

|xi|p
)min(1,1/p)

x = (x1, . . . , xn) ∈ Rn 0 < � < ∞

‖x‖∞ := sup
1≤i≤n

|xi|.
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(b) The Hausdorff metric between closed sets

r(C1, C2) = max

{
sup
x1∈C1

inf
x2∈C2

�(x1, x2), sup
x2∈C2

inf
x1∈C1

�(x1, x2)

}

whereCis are closed sets in a bounded metric space (S, �) (Hausdorff
1949).

(c) The H-metric. Let D(R) be the space of all bounded functions
f : R→ R, continuous from the right and having limits from the left,
f (x−) = limt↑x f (t). For any f ∈ D(R) define the graph
f as the union
of the sets {(x, y) : x ∈ R, y = f (x)} and {(x, y) : x ∈ R, y = f (x−)}. The
H-metricH(f, g) inD(R) is defined by the Hausdorff distance between
the corresponding graphs,H(f, g) := r(
f , 
g). Note that in the space
F(R) of distribution functions, H metrizes the same convergence as
the Skorokhod metric:

s(F,G) = inf

{
ε > 0 : there exists a strictly increasing continuous

function � : R→ R, such that �(R) = R, sup
t∈R

|�(t) − t| < ε

and sup
t∈R

|F(�(t)) − G(t)| < ε

}
.

Moreover,H-convergence in F implies convergence in distributions
(the weak convergence). Clearly, ρ-convergence (see (2.2.2)) implies
H-convergence.

If the identity property in Definition 2.3.1 is weakened by changing
(1) to

x = y ⇒ �(x, y) = 0, (1∗)

then S is said to be a semimetric space (or pseudometric space) and � a
semimetric (or pseudometric) in S. For example, the Hausdorff metric
r is only a semimetric in the space of all Borel subsets of a bounded
metric space (S, �).

Obviously, in the space of real numbers EN (see (2.2.1)) is the
usual uniform metric on the real line R, i.e. EN(a, b) := |a− b|, a, b ∈
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R. For p ≥ 0, define Fp as the space of all distribution functions F
with

∫ 0
−∞ F(x)pdx + ∫ ∞

0 (1 − F(x))pdx < ∞. The distribution function
space F = F0 can be considered as a metric space with metrics ρ

and L, while θp(1 ≤ p < ∞) is a metric in Fp. The Ky-Fan metrics
(see (2.2.7), (2.2.8)) [resp. Lp-metric (see (2.2.9))] may be viewed as
semimetrics in X (resp. X1) as well as metrics in the space of all
Pr-equivalence classes:

X̃ := {Y ∈ X : Pr(Y = X) = 1} ∀X ∈ X[resp. Xp]. (2.3.1)

EN, MOMp, θp, Lp can take infinite values in X so we shall assume,
in the next generalization of the notion of metric, that � may take
infinite values; at the same time we shall extend also the notion of
triangle inequality.

Definition 2.3.2. The set S is called a distance space with distance �
and parameter K = K� if � is a function from S× S to [0,∞], K ≥ 1
and for each x, y, z ∈ S the identity property (1) and the symmetry
property (2) hold as well as the following version of the triangle
inequality: (3∗) (Triangle inequality with parameter K)

�(x, y) ≤ K[�(x, z) + �(z, y)]. (2.3.2)

If, in addition, the identity property (1) is changed to (1∗) then S
is called a semidistance space and � is called a semidistance (with
parameter K�).

Here and in the following we shall distinguish the notions ‘met-
ric’ and ‘distance’, using ‘metric’ only in the case of ‘distance with
parameter K = 1, taking finite or infinite values’.

Remark 2.3.1. It is not difficult to check that each distance
� generates a topology in S with a basis of open sets B(a, r) :=
{x ∈ S; �(x, a) < r}, ∈ S, r > 0. We know, of course, that every met-
ric space is normal and that every separable metric space has a
countable basis. In much the same way, it is easily shown that the
same is true for distance space. Hence, by Urysohn’s Metrization
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Theorem (Dunford and Schwartz (1988), 1.6.19), every separable
distance space is metrizable.

Actually, distance spaces have been used in functional analysis for
a long time, as is seen by the following examples.

Example 2.3.1. Let H be the class of all nondecreasing continuous
functions H from [0,∞) onto [0,∞) which vanish at the origin and
satisfy Orlicz’s condition

KH := sup
t>0

H(2t)
H(t)

< ∞. (2.3.3)

Then �̃ := H(�) is a distance in S for each metric � in S andK�̃ = KH .

Example 2.3.2. (Birnbaum–Orlicz distance space, Birnbaum and Orliz
(1931), and Dunford and Schwartz (1988), p. 400.)

The Birnbaum–Orlicz space LH(H ∈ H) consists of all integrable
functions on [0, 1] endowed with Birnbaum–Orlicz distance:

�H(f1, f2) :=
∫ 1

0
H(|f1(x) − f2(x)|)dx. (2.3.4)

Obviously, K�H = KH .

Example 2.3.3. Similarly to (2.3.4), Kruglov (1973) introduced the
following distance in the space of distribution functions:

Kr(F,G) =
∫
�(F(x) − G(x))dx (2.3.5)

where the function � satisfies the following conditions:

(a) � is even and strictly increasing on [0,∞), �(0) = 0;
(b) for any x and y and some fixed A ≥ 1

�(x + y) ≤ A(�(x) + �(y)). (2.3.6)

Obviously, KKr = A.
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2.4 Definitions of Probability Distances
and Metrics

While we gave examples with random variables in section 2.2,
probability metrics are naturally defined on spaces of probability
measures. Thus, a probability metric calculates the distance between
two specified probability measures. The probability measures them-
selves can be defined on a variety of spaces, such as the space of
real numbers, which was the context we considered in section 2.2.
The nature of the space the probability measures are defined on
determines the interpretation.

There is a subtle question of consistency which arises. If we are
naturally thinking of random elements in terms of their real-world
application (i.e., random variables, random vectors, stochastic pro-
cesses, and the definition of probability metrics involves the more
abstract concept of a probability measure), is there a loss of gen-
erality? It turns out that the answer to this question is essentially
negative under some regularity conditions and it will be considered
in the appendix to this chapter.

The definition of probability metrics involves two probability mea-
sures and it turns out that it may be important how they depend on
each other; that is, how they are coupled or joined in a joint prob-
ability measure. From a practical viewpoint, consider two random
variablesX andY, which are dependent. For example, they may rep-
resent the stochastic returns of two common stocks in one and the
same industry. Calculating the distance betweenX and Y in terms of
Lp(X,Y), for example, is influenced by the way X and Y depend on
each other. For this reason, probability metrics are defined on pairs
of random variables, in this case the pair (X,Y), in which X and Y
are the corresponding one-dimensional projections of the pair.

In this section, we provide a formal definition of probability met-
rics in the space of probability measures. We assume a very general
nature of the spaceU on which the probability measures are defined,
which includes as special cases all examples we have considered. We
introduce the following notation:

24



2.4 DEFINITIONS OF PROBABILITY DISTANCES AND METRICS

U a separable metric space (s.m.s.) with metric d
Uk = U× · · · ×

k times
U the k-fold Cartesian product of U

Bk = Bk(U) the � algebra of Borel subsets of Uk .
Pk = Pk(U) the space of all probability measures defined on

the � algebra Bk = Bk(U)

We shall use the terms “probability measure” and “law” inter-
changeably. For any set {˛, ˇ, . . . , �} ⊆ {1, 2, . . . , k} and for any P ∈
Pk let us define the marginal of P on the coordinates ˛, ˇ, . . . , � by
T˛,ˇ,...,�P. For example, for any Borel subsets A and B ofU, T1P(A) =
P(A×U × · · · ×U), T1,3P(A× B) = P(A×U × B× · · · ×U). Let B
be the operator in U2 defined by B(x, y) := (y, x) (x, y ∈ U). All met-
rics �(X,Y) cited in section 2.2 (see (2.2.1)–(2.2.11)) are completely
determined by the joint distributions PrX,Y (PrX,Y ∈ P2(R)) of the ran-
dom variables X,Y ∈ X(R). In the next definition we shall introduce
the notion of probability distance and thus we shall describe the pri-
mary, simple, and compound metrics in a uniform way. Moreover,
the space where the r.v.s X and Y take values will be extended to U,
an arbitrary s.m.s.

Definition 2.4.1. A mapping�defined onP2 and taking values in the
extended interval [0,∞] is said to be a probability semidistance with
parameterK := K� ≥ 1 (or briefly, p. semidistance) in P2, if it possesses
the three properties listed below:

(1) Identity Property (ID). If P ∈ P2 and P(∪x∈U{(x, x)}) = 1 then
�(P) = 0

(2) Symmetry (SYM). If P ∈ P2 then �(P ◦ B−1) = �(P)
(3) Triangle Inequality (TI). If P1 3, P1 2, P2 3 ∈ P2 and there exists

a law Q ∈ P3 such that the following ’consistency’ condition
holds:

T1 3Q = P1 3 T1 2Q = P1 2 T2 3Q = P2 3, (2.4.1)

then

�(P1 3) ≤ K[�(P1 2) + �(P2 3)].

25



CHAPTER 2 PROBABILITY DISTANCES AND METRICS

IfK = 1 then� is said to be a probability semimetric. If we strengthen
the condition ID to ĨD̃: If P ∈ P2, then

P(∪{(x, x) : x ∈ U}) = 1 ⇐⇒ �(P) = 0,

then we say that � is a probability distance with parameterK = K� ≥ 1
(or briefly, p. distance).

Definition 2.4.1 acquires a visual form in terms of random vari-
ables, namely, let X := X(U) be the set of all r.v.s on a given
probability space (�,A,Pr) taking values in (U,B1). By LX2 :=
LX2(U) := LX2(U;�,A,Pr) we denote the space of all joint distribu-
tions PrX,Y generated by the pairsX,Y ∈ X. Since LX2 ⊆ P2, then the
notion of p. (semi-)distance is naturally defined onLX2. Considering
� on the subset LX2, we shall put

�(X,Y) := �(PrX,Y)

and call � a p. semidistance on X. If � is a p. distance, then we use the
phrase p. distance on X. Each p. semidistance [resp. distance] � on X
is a semidistance [resp. distance] onX in the sense of Definition 2.3.2.
Then the relationships ID, ĨD̃, SYM, and TI have simple ‘metrical’
interpretations:

ID(∗) Pr(X = Y) = 1 ⇒ �(X,Y) = 0
ĨD̃(∗) Pr(X = Y) = 1 ⇐⇒ �(X,Y) = 0
SYM(∗) �(X,Y) = �(Y,X)
TI(∗) �(X,Z) ≤ K[�(X,Z) + �(Z,Y)].

Definition 2.4.2. A mapping � : LX2 → [0,∞] is said to be a proba-
bility semidistance in X [resp. distance] with parameter K := K� ≥ 1, if
�(X,Y) = �(PrX,Y) satisfies the properties ID(∗) [resp. ĨD̃(∗)], SYM(∗)

and TI(∗) for all r.v.s X,Y,Z ∈ X(U).

Example 2.4.1. Let H ∈ H (see Example 2.3.1) and (U, d) be a s.m.s.
Then LH(X,Y) = EH(d(Z,V)) is a p. distance in X(U). Clearly, LH
is finite in the subspace of all X with finite moment EH(d(X, a)) for
some a ∈ U. The Kruglov’s distance Kr(X,Y) := Kr(FX, FY) is a p.
semidistance in X(R).
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Examples of p. metrics in X(U) are the Ky Fan metric

K(X,Y) := inf{ε > 0 : Pr(d(X,Y) > ε) < ε} (X,Y ∈ X(U)) (2.4.2)

and the Lp-metrics (0 ≤ p ≤ ∞)

Lp(X,Y) := {E dp(X,Y)}min(1,1/p) 0 < p < ∞, (2.4.3)

L∞(X,Y) := ess sup d(X,Y) := inf{ε > 0 : Pr(d(X,Y) > ε) = 0}
(2.4.4)

L0(X,Y) := E I{X,Y} := Pr(X,Y). (2.4.5)

The engineer’s metric EN, Kolmogorov metric ρ, Kantorovitch
metric κ, and the Lévy metric L (see section 2.2) are p. semimetrics
in X(R).

Remark 2.4.1. Unlike Definition 2.4.2, Definition 2.4.1 is free of
the choice of the initial probability space, and depends only on the
structure of the metric space U. The main reason for considering
not arbitrary but separable metric spaces (U, d) is that we need the
measurability of the metric d in order to connect the metric structure
ofUwith that ofX(U). In particular, the measurability of d enables us
to handle, in a well-defined way, p. metrics such as the Ky Fan metric
K and Lp-metrics. Note that L0 does not depend on the metric d, so
one can defineL0 onX(U), whereU is an arbitrary measurable space,
while in (2.4.2)–(2.4.4) we need d(X,Y) to be a random variable. Thus
the natural class of spaces appropriate to our investigation is the class
of s.m.s.

One of the axioms defining probability semidistances is the sym-
metry axiom SYM(∗). In applications in financial economics, the
symmetry axiom is not important and we can omit it. Thus, we
extend the treatment of the defining axioms of probability semidis-
tances in the same way as it is done in the field of functional analysis.
In case the symmetry axiom, SYM(∗), is omitted, then quasi- is added
to the name.
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Definition 2.4.3. A mapping � : LX2 → [0,∞] is said to be

• a probability quasi-distance inXwith parameterK := K� ≥ 1 if ĨD̃(∗)

and TI(∗) hold;
• a probability quasi-semidistance in X with parameter K := K� ≥ 1

if ID(∗) and TI(∗) hold.

Note that by removing the symmetry axiom we obtain a larger class
in which semidistances appear as symmetric quasi-semidistances.
A probability quasi-semidistance with parameter K = 1 is called a
probability quasi-semimetric.

2.5 Summary

We considered a number of examples of probability metrics and
distances. We provided interpretations from a financial economics
perspective. Probability (semi-)distances were formally introduced
on the space of probability measures P2 defined on the �-algebras of
Borel subsets of U2.

Probability (semi-)distances were formally introduced on the
space of joint distributions LX2 generated by pairs ofU-valued ran-
dom variables defined on a probability space (�,A,Pr) where U is
a separable metric space.

Since the space of joint distributions LX2 forms a subspace of P2

by construction, we considered the question of when the notions of
a probability distance on P2 and on LX2 are the same. For every
s.m.s. U, we can find a probability space (�,A,Pr) such that this
equivalence holds. Moreover, if U is a s.m.s., then the equivalence
holds for every non-atomic probability space only ifU is universally
measurable.

2.6 Technical Appendix

In section 2.4, we discussed that there may be a loss of generality
when considering probability metrics defined on the space of pairs
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of random elements and space of joint probability measures. While
the latter notion is more general, we are accustomed to thinking in
terms of the corresponding real-world application which is directly
linked to the interpretation of the random elements. Therefore, it
is interesting to verify if thinking about probability metrics defined
on the space of pairs of random elements is not restrictive in some
way. In this appendix, we find out that the answer to this question
is negative under some regularity assumptions.

2.6.1 Universally measurable separable metric spaces

What follows is an exposition of some basic results regarding uni-
versally measurable separable metric spaces (u.m.s.m.s.). As we shall
see, the notion of u.m.s.m.s. plays an important role in TPM.

Definition 2.6.1. Let P be a Borel probability measure on a metric
space (U, d). We say that P is tight if for each ε > 0, there is a compact
K ⊆ U with P(K) ≥ 1 − ε. See Dudley (1989), section 11.5.

Definition 2.6.2. A s.m.s. (U, d) is universally measurable (u.m.) if every
Borel probability measure on U is tight.

Definition 2.6.3. A s.m.s. (U, d) is Polish if it is topologically complete
(i.e. there is a topologically equivalent metric e such that (U, e) is
complete). Here the topological equivalence of d and e simply means
that for any x, x1, x2, . . . in U

d(xn, x) → 0 ⇐⇒ e(xn, x) → 0.

Theorem 2.6.1. Every Borel subset of a Polish space is u.m.

Proof. See Billingsley (1968), Theorem 1.4, Cohn (1980), Proposition
8.1.10, and Dudley (1989), p. 391.

Remark 2.6.1. Theorem 2.6.1 provides us with many exam-
ples of u.m. spaces, but does not exhaust this class. The topological
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characterization of u.m. s.m.s. is a well-known open problem (see
Billingsley (1968), Appendix III, p. 234).

In his famous paper on measure theory, Lebesgue (1905) claimed
that the projection of any Borel subset of R2 onto R is a Borel set. As
noted by Souslin and his teacher Lusin (1930), this is in fact not true.
As a result of the investigations surrounding this discovery, a theory
of such projections (the so-called “analytic” or “Souslin” sets) was
developed. Although not a Borel set, such a projection was shown
to be Lebesgue-measurable, in fact u.m. This train of thought leads
to the following definition.

Definition 2.6.4. Let S be a Polish space and suppose that f is a mea-
surable function mapping S onto a separable metric space U. In this
case, we say that U is analytic.

Theorem 2.6.2. Every analytic s.m.s. is u.m.

Proof. See Cohn (1980), Theorem 8.6.13, p. 294, and Dudley (1989),
Theorem 13.2.6.

Example 2.6.1. Let Q be the set of rational numbers with the usual
topology. Since Q is a Borel subset of the Polish space R, then Q is
u.m., however, Q is not itself a Polish space.

Example 2.6.2. In any uncountable Polish space, there are analytic
(hence u.m.) non-Borel sets. See Cohn (1980), Corollary 8.2.17 and
Dudley (1989), Proposition 13.2.5.

Example 2.6.3. Let C[0, 1] be the space of continuous functions f :
[0, 1] → R under the uniform norm. Let E ⊆ C[0, 1] be the set of f
which fail to be differentiable at some t ∈ [0, 1]. Then a theorem of
Mazukiewicz (1936) says that E is an analytic, non-Borel subset of
C[0, 1]. In particular, E is u.m.
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Recall again the notion of Hausdorjf metric r := r� in the space of
all subsets of a given metric space (S, �)

r(A,B) = max

{
sup
x∈A

inf
y∈B
�(x, y), sup

y∈B
inf
x∈A

�(x, y)

}
= inf{ε > 0 : Aε ⊇ B, Bε ⊇ A}

(2.6.1)

where Aε is the open ε-neighborhood of A, Aε = {x : d(x.A) < ε}.
As we noticed in the space 2S of all subsets A /= ∅ of S, the Haus-

dorff distance r is actually only a semidistance. However, in the space
C = C(S) of all closed non-empty subsets, r is a metric (see Defini-
tion 2.3.1) and takes on both finite and infinite values, and if S is a
bounded set then r is a finite metric on C.

Theorem 2.6.3. Let (S, �) be a metric space, and let (C(S), r) be the
space described above. If (S, �) is separable [resp. complete; resp.
totally bounded], then (C(S), r) is separable [resp. complete; resp.
totally bounded].

Proof. See Hausdorff (1949), section 29, and Kuratowski (1969), sec-
tions 21 and 23. �

Example 2.6.4. Let S = [0, 1] and let � be the usual metric on S. Let
R be the set of all finite complex-valued Borel measuresm on S such
that the Fourier transform

m̂(t) =
∫ 1

0
exp(iut)m(du)

vanishes at t = ±∞. LetMbe the class of setsE ∈ C(S) such that there
is some m ∈ R concentrated on E. Then M is an analytic, non-Borel
subset of (C(S), r�), see Kaufman (1984).

We seek a characterization of u.m. s.m.s. in terms of their Borel
structure.

Definition 2.6.5. A measurable spaceMwith �-algebraM is standard
if there is a topologyTonM such that (M, T) is a compact metric space
and the Borel �-algebra generated by T coincides with M.
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A s.m.s. is standard if it is a Borel subset of its completion (see
Dudley (1989), p. 347). Obviously, every Borel subset of a Polish
space is standard.

Definition 2.6.6. Say that two s.m.s. U and V are called Borel-
isomorphic if there is a one-to-one correspondence f of U onto V
such that B ∈ B(U) if and only if f (B) ∈ B(V).

Theorem 2.6.4. Two standard s.m.s. are Borel-isomorphic if and only
if they have the same cardinality.

Proof. See Cohn (1980), Theorem 8.3.6 and Dudley (1989), Theorem
13.1.1. �

Theorem 2.6.5. Let U be a separable metric space. The following are
equivalent:

(1) U is u.m.
(2) For each Borel probability m on U, there is a standard set S ∈

B(U) such that m(S) = 1.

Proof. 1 ⇒ 2: Let m be a law on U. Choose compact Kn ⊆ U with
m(Kn) ≥ 1 − 1/n. Put S = ∪n≥1Kn. Then S is �-compact, and hence
standard. So m(S) = 1, as desired.

2 ⇐ 1: Let m be a law on U. Choose a standard set S ∈ B(U) with
m(S) = 1. Let U be the completion of U. Then S is Borel in its com-
pletion S, which is closed in U. Thus, S is Borel in U. It follows from
Theorem 2.6.1 that

1 = m(S) = sup{m(K) : K compact}.
Thus, every law m on U is tight, so that U is u.m. �

Corollary 2.6.1. Let (U, d) and (V, e) be Borel-isomorphic separable
metric spaces. If (U, d) is u.m., then so is (V, e).

Proof. Suppose that m is a law on V. Define a law n on U by n(A) =
m(f (A)) where f : U → V is a Borel-isomorphism. Since U is u.m.
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there is a standard set ⊆ U with n(S) = 1. Then f (S) is a standard
subset of V with m(f (S)) = 1. Thus, by Theorem 2.6.5, V is u.m. �

The following result, which is in essence due to Blackwell (1956),
will be used in an important way later on (cf. the basic theorem of
section 4.3, Theorem 4.3.1).

Theorem 2.6.6. Let U be a u.m. separable metric space and suppose
that Pr is a probability measure on U. If A is a countably generated
sub-�-algebra of B(U), then there is a real-valued function P(B|x),
B ∈ B(U), x ∈ U such that

(1) for each fixed B ∈ B(U), the mapping x → P(B|x) is an A-
measurable function on U;

(2) for each fixed x ∈ U, the set function B → P(B|x) is a law on U;
(3) for eachA ∈ AandB ∈ B(U), we have

∫
A P(B|x) Pr(dx) = Pr(A ∩

B);
(4) there is a set N ∈ A with Pr(N) = 0 such that P(B|x) = 1 when-

ever x ∈ U −N.

Proof. Choose a sequence F1, F2, . . . of sets in B(U) which generates
B(U) and is such that a subsequence generates A. We shall prove
that there exists a metric e on U such that (U, d) and (U, e) are Borel-
isomorphic and for which the sets F1, F2, . . . are clopen, i.e., open and
closed. �

Claim 1. If (U, d) is a s.m.s. and A1, A2, . . . is a sequence of Borel
subsets of U, then there is some metric e on U such that

(i) (U, e) is a separable metric space isometric with a closed subset
of R;

(ii) A1, A2, . . . are clopen subsets of (U, e);
(iii) (U, d) and (U, e) are Borel-isomorphic (see Definition 2.6.6).

Proof of claim. Let B1, B2, . . . be a countable base for the topol-
ogy of (U, d). Define sets C1, C2, . . . by C2n−1 = An and C2n = Bn
(n = 1, 2, . . . ) and f : U → R by f (x) = ∑∞

n=1 2ICn(x)/3n. Then f is a
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Borel-isomorphism of (U, d) onto f (U) ⊆ K, where K is the Cantor
set,

K :=
{ ∞∑
n=1

˛n/3n : ˛ntake value 0 or 2

}
.

Define the metric e by e(x, y) = |f (x) − f (y)|, so that (U, e) is isometric
with f (U) ⊆ K. Then An = f −1{x ∈ K; x(n) = 2}, where x(n) is the nth
digit in the ternary expansion of x ∈ K. Thus, An is clopen in (U, e),
as required.

Now (U, e) is (Corollary 2.6.1) u.m., so there are compact sets
K1 ⊆ K2 ⊆ · · · with Pr(Kn) → 1. LetG1 andG2 be the (countable) alge-
bras generated by the sequences F1, F2, . . . and F1, F2, . . . ,K1, K2, . . . ,
respectively. Then define P1(B|x) so that (1) and (3) are satisfied for
B ∈ G2. Since G2 is countable, there is some setN ∈ A with Pr(N) = 0
and such that for x ∈ N,

(a) P1(·|x) is a finitely additive probability on G2;
(b) P1(A|x) = 1 for A ∈ A ∩ G2 and x ∈ A;
(c) P1(Kn|x) → 1 as n → ∞.

Claim 2. For x ∈ N, the set function B → P1(B|x) is countably addi-
tive on G1.

Proof of claim. Suppose thatH1, H2, . . . are disjoint sets in G1 whose
union is U. Since the Hn are clopen and the Kn are compact in (U, e),
there is, for each n, some M = M(n) such that Kn ⊆ H1 ∪H2 ∪ · · · ∪
HM. Finite additivity of P1(x, ·) on G2 yields, for x /∈ N, P1(Kn|x) ≤∑M

i=1 P1(Hi|x) ≤ ∑∞
i=1 P1(Hi|x). Let n → ∞ and apply (c) to obtain∑∞

i=1(P1(Hi|x) = 1, as required.
In view of the claim, for each x ∈ N, we define B → P(B|x) as the

unique countably additive extension ofP1 fromG1 toB(U). For x ∈ N,
put P(B|x) = Pr(B). Clearly, (2) holds. Now the class of sets in B(U)
for which (1) and (3) hold is a monotone class containing G1, and so
coincides with B(U).

Claim 3. Condition (4) holds.
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Proof of claim. Suppose that A ∈ A and x ∈ A−N. Let A0 be the A-
atom containing x. Then A0 ⊆ A and there is a sequence A1, A2, . . .

in G1 such that A0 = A1 ∩ A2 ∩ · · · . From (b), P(An|x) = 1 for n ≥ 1,
so that P(A0|x) = 1, as desired. �

Corollary 2.6.2. Let U and V be u.m. s.m.s. and let Pr be a law on
U × V. Then there is a function P : B(V) ×U → R such that

(1) for each fixed B ∈ B(V) the mapping x → P(B|x) is measurable
on U;

(2) for each fixed x ∈ U, the set function B → P(B|x) is a law on V;
(3) for each A ∈ B(U) and B ∈ B(V), we have∫

A
P(B|x)P1(dx) = Pr(A ∩ B)

where P1 is the marginal of Pr on U.

Proof. Apply the preceding theorem with A the �-algebra of rectan-
gles A×U for A ∈ B(U). �

2.6.2 The equivalence of the notions of p.
(semi-)distance on P2 and on X

As we have seen in section 2.4, every p. (semi-)distance onP2 induces
(by restriction) a p. (semi-)distance on X. It remains to be seen
whether every p. (semi-)distance on X arises in this way. This will
certainly be the case whenever

LX2(U, (�,A,Pr)) = P2(U). (2.6.2)

Note that the left member depends not only on the structure of (U, d)
but also on the underlying probability space.

In this section we will prove the following facts.
(i) There is some probability space (�,A,Pr) such that (2.6.2) holds

for every separable metric space U.
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(ii) If U is a separable metric space, then (2.6.2) holds for every
non-atomic probability space (�,A,Pr) if and only ifU is universally
measurable.

We need a few preliminaries.

Definition 2.6.7. (see Loeve (1963), p. 99, and Dudley (1989), p. 82).
If (�,A,Pr) is a probability space, we say that A ∈ A is an atom
if Pr(A) > 0 and Pr(B) = 0 or Pr(A) for each measurable B ⊆ A. A
probability space is non-atomic if it has no atoms.

Lemma 2.6.1. (Berkes and Phillip (1979)). Let vbe a law on a complete
s.m.s. (U, d) and suppose that (�,A,Pr) is a non-atomic probability
space. Then there is aU-valued random variableXwith distribution
L(X) = v.

Proof. Denote by d∗ the following metric on U2 : d∗(x, y) :=
d(x1, x2) + d(y1, y2) for x = (x1, y1) and y = (x2, y2). For each k, there is
a partition ofU2 comprising non-empty Borel sets {Aik : i = 1, 2, . . . }
with diam(Aik) < 1/k and such that Aik is a subset of some Aj,k−1.

Since (�,A,Pr) is non-atomic, we see that for each C ∈ A and for
each sequence pi of non-negative numbers such that p1 + p2 + · · · =
Pr(C), there exists a partitioning C1, C2, . . . of C such that Pr(Ci) = pi,
i = 1, 2, . . . (see e.g. Loeve (1963), p. 99).

Therefore, there exist partitions {Bik : i = 1, 2, . . . } ⊆ A, k =
1, 2, . . . such that Bik ⊆ Bjk−1 for some j = j(i) and Pr(Bik) = v(Aik) for
all i, k. For each pair (i, j), let us pick a point xik ∈ Aik and define
U2-valued Xk(ω) = xik for ω ∈ Bik. Then d∗(Xk+m(ω), Xk(ω)) < 1/k,
m = 1, 2, . . . and since (U2, d∗) is a complete space, then there exists
the limit X(ω) = limk→∞Xk(ω). Thus

d∗(X(ω), Xk(ω))≤ lim
m→∞[d∗(Xk+m(ω), X(ω))+d∗(Xk+m(ω), Xk(ω))] ≤ 1

k
.

Let Pk := PrXk and P∗ := PrX . Further, our aim is to show that P∗ = v.
For each closed subset A ⊆ U

Pk(A) = Pr(Xk ∈ A) ≤ Pr(X ∈ A1/k) = P∗(A1/k) ≤ Pk(A2/k) (2.6.3)
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where A1/k is the open 1/k-neighborhood of A. On the other hand,

Pk(A)=
∑

{Pk(xik) : xik ∈ A} =
∑

{Pr(Bik) : xik ∈ A}
=

∑
{v(Aik) : xik ∈ A} ≤

∑
{v(Aik ∩ A1/k) : xik ∈ A}

≤v(A1/k) ≤
∑

{v(Aik) : xik ∈ A2/k} ≤ Pk(A2/k). (2.6.4)

Further, we can estimate the value Pk(A2/k) in the same way as in
(2.6.3) and (2.6.4) and thus, we get the inequalities

P∗(A1/k) ≤Pk(A2/k) ≤ P∗(A2/k) (2.6.5)

v(A1/k) ≤Pk(A2/k) ≤ v(A3/k). (2.6.6)

Since v(A1/k) tends to v(A) with k → ∞ for each closed set A and
analogously P∗(A1/k) → P∗(A) as k → ∞, then by (2.6.5) and (2.6.6)
we obtain the equality

P∗(A) = lim
k→∞

Pk(A2/k) = v(A)

for each closed A and hence, P∗ = v. �

Theorem 2.6.7. There is a probability space (�,A,Pr) such that for
every separable metric space U and every Borel probability � on U,
there is a random variable X : � → U with L(X) = �.

Proof. Define (�,A,Pr) as the measure-theoretic (von Neumann)
product (see Hewitt and Stromberg (1965), Theorems 22.7 and 22.8,
pp. 432–3) of the probability spaces (C,B(C), v), where C is some
non-empty subset ofRwith Borel �-algebra B(C) and v is some Borel
probability on (C,B(C)).

Now, given a separable metric space U, there is some set C ⊆ R
Borel-isomorphic withU (cf. Claim 1 in Theorem 2.6.6). Let f : C → U

supply the isomorphism. If � is a Borel probability on U, let v be
a probability on C such that f (v) := vf −1 = �. Define X : � → U as
X = f ◦ �, where� : � → C is a projection onto the factor (C,B(C), v).
Then L(X) = �, as desired. �
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Remark 2.6.2. The result above establishes the claim (i) made at
the beginning of the section. It provides one way of ensuring (2.6.2):
simply insist that all r.v.s be defined on a ‘super-probability space’ as
in Theorem 2.6.7. We make this assumption throughout the sequel.

The next theorem extends the Berkes and Phillips’s Lemma 2.6.1
to the case of u.m. s.m.s. U.

Theorem 2.6.8. Let U be a separable metric space. The following are
equivalent.

(1) U is u.m.
(2) If (�,A,Pr) is a non-atomic probability space, then for every

Borel probability P onU, there is a random variableX : � → U

with law L(X) = P.

Proof. 1 ⇒ 2: Since U is u.m. there is some standard set S ∈ B(U)
with P(S) = 1 (Theorem 2.6.5). Now there is a Borel-isomorphism f

mapping S onto a Borel subset B of R (Theorem 2.6.4). Then f (P) :=
P ◦ f −1 is a Borel probability on R. Thus, there is a random variable
g : � → RwithL(g) = f (P) and g(�) ⊆ B (Lemma 2.6.1 with (U, d) =
(R, | · |)). We may assume that g(�) ⊆ B since Pr(g−1(B)) = 1. Define
x : � → U by x(ω) = f −1(g(ω)). Then L(X) = v, as claimed.

2 ⇒ 1: Now suppose that v is a Borel probability on U. Consider
a random variable X : � → U on the (non-atomic) probability space
((0, 1),B(0, 1), �) with L(X) = v. Then range(X) is an analytic subset
of U with v∗(range(X)) = 1. Since range(X) is u.m. (Theorem 2.6.2),
there is some standard set S ⊆ range(X) with P(S) = 1. This follows
from Theorem 2.6.5. The same theorem shows that U is u.m. �

Remark 2.6.3. IfU is u.m. s.m.s., we operate under the assump-
tion that all U-valued r.v.s are defined on a non-atomic probability
space. Then (2.6.2) will be valid.
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Chapter 3

Choice under Uncertainty

The goals of this chapter are the following:

• To describe the expected utility theory which prescribes the
rational behavior of economic agents.

• To relate the notion of stochastic dominance to probability
metrics.

• To consider the cumulative prospect theory which is believed to
be most successful in explaining individuals’ behavior.

Notation introduced in this chapter:

Notation Description

PX � PY Lottery Y is not preferred to lottery X
u(x) The utility function of an economic agent
Eu(X) The expected utility of a lottery X
�FSD First-order stochastic dominance order
�SSD Second-order stochastic dominance order
�TSD Third-order stochastic dominance order
�n n-th order stochastic dominance order
v(x) The value function of an individual
w−(p) A function weighting the cumulative probabilities

P(X < x)

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
© 2011 Svetlozar T. Rachev, Stoyan V. Stoyanov and Frank J. Fabozzi
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3.1 INTRODUCTION

Notation Description

w+(p) A function weighting the tail P(X > x)
V(X) A value assigned to the prospect X by an individual

depending on the corresponding value function and
the weighting functions

Important terms introduced in this chapter:

Term Concise explanation

utility function A function defining the utility gained by an
agent from a given elementary outcome of a
random variable

stochastic
dominance
order

A partial order on the space of random variables
introduced according to the preferences of a
class of investors

status quo The current state which represents a reference
point relative to which individuals compare
future possible outcomes

value function A function defining the subjective value gained
by an individual from a change in profits
relative to the status quo

3.1 Introduction

Agents in financial markets operate in a world in which they make
choices under risk and uncertainty. Portfolio managers, for exam-
ple, make investment decisions in which they take risks and expect
rewards. They choose to invest in a given portfolio because they
believe it is “better” than any other they can buy. Thus, the chosen
portfolio is the most preferred one among all portfolios which are
admissible for investment. Not all portfolio managers invest in the
same portfolio because their expectations and preferences vary.

The theory of how choices under risk and uncertainty are made
was introduced by John von Neumann and Oskar Morgenstern in
1944 in their book Theory of Games and Economic Behavior. They gave
an explicit representation of investors’ preferences in terms of an
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CHAPTER 3 CHOICE UNDER UNCERTAINTY

investor’s utility function. If no uncertainty is present, the utility
function can be interpreted as a mapping between the available alter-
natives and real numbers indicating the “relative happiness” the
investor gains from a particular alternative. If an individual prefers
good “A” to good “B”, then the utility of “A” is higher than the util-
ity of “B”. Thus, the utility function characterizes an individual’s
preferences. Von Neumann and Morgenstern showed that if there is
uncertainty, then it is the expected utility which characterizes the pref-
erences. The expected utility of an uncertain prospect, often called a
lottery, is defined as the probability weighted average of the utilities
of the simple outcomes. In fact, the expected utility model was first
proposed by Daniel Bernoulli in 1738 as a solution to the famous St
Petersburg Paradox but von Neumann and Morgenstern proved that
only the expected utility can characterize preferences over lotteries.

The expected utility theory in von Neumann and Morgenstern
(1944) defines the lotteries by means of the elementary outcomes and
their probability distribution. In this sense, the lotteries can also be
interpreted as random variables which can be discrete, continuous,
or mixed, and the preference relation is defined on the probability
distributions of the random variables. The probability distributions
are regarded as objective: that is, the theory is consistent with the
classical view that, in some sense, the randomness is inherent in
Nature and all individuals observe the same probability distribution
of a given random variable.

In 1954, a decade after the pioneering von Neumann–Morgenstern
theory was published, a new theory of decision making under uncer-
tainty appeared. It was based on the concept that probabilities are not
objective, rather they are subjective and are a numerical expression
of the decision maker’s beliefs that a given outcome will occur. This
theory was developed by Leonard Savage in his book The Founda-
tions of Statistics. Savage (1954) showed that individuals’ preferences
in the presence of uncertainty can be characterized by an expected
utility calculated as a weighted average of the utilities of the simple
outcomes, and the weights are the subjective probabilities of the out-
comes. The subjective probabilities and the utility function arise as a
pair from the individual’s preferences. Thus, it is possible to modify
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3.1 INTRODUCTION

the utility function and to obtain another subjective probability mea-
sure so that the resulting expected utility also characterizes the indi-
vidual’s preferences. In some aspects, Savage’s approach is consid-
ered to be more general than the von Neumann–Morgenstern theory.

Another mainstream utility theory describing choices under
uncertainty is the state-preference approach of Kenneth Arrow
and Gérard Debreu. The basic principle is that the choice under
uncertainty is reduced to a choice problem without uncertainty by
considering state-contingent bundles of commodities. The agent’s
preferences are defined over bundles in all states of the world and
the notion of randomness is almost ignored. This construction is
quite different from the theories of von Neumann–Morgenstern
and Savage because preferences are not defined over lotteries. The
Arrow–Debreu approach is applied in general equilibrium theories
where the payoffs are not measured in monetary amounts but are
actual bundles of goods.1

In 1992, a new version of the expected utility theory was advanced
by Amos Tversky and Daniel Kahneman – the cumulative prospect
theory. Instead of a utility function, they introduce a value function
which measures the payoff relative to a reference point. Tversky
and Kahneman (1992) also introduce a weighting function which
changes the cumulative probabilities of the prospect. The cumula-
tive prospect theory is believed to be a superior alternative to the von
Neumann–Morgenstern expected utility theory as it resolves some of
the puzzles related to it. Nevertheless, the cumulative prospect the-
ory is a positive theory, explaining individuals’ behavior, in contrast
to the expected utility theory which is a normative theory prescribing
the rational behavior of agents.

The appeal of utility theories stems from the generality in which
the choice under uncertainty is considered. On the basis of such gen-
eral thinking, it is possible to characterize classes of investors by
the shape of their utility function, such as non-satiable investors,
risk-averse investors, and so on. Moreover, we are able to iden-
tify general rules that a class of investors would follow in choosing
between two risky ventures. If all investors of a given class prefer
one prospect from another, we say that this prospect dominates the

43



CHAPTER 3 CHOICE UNDER UNCERTAINTY

other. In this fashion, the first-, second-, and third-order stochastic
dominance relations arise.2 The stochastic dominance rules charac-
terize the efficient set of a given class of investors; the efficient set
consists of all risky ventures which are not dominated by other risky
ventures according to the corresponding stochastic dominance rela-
tion. Finally, the consequences of stochastic dominance relations are
so powerful that any newly formed theory of choice under risk and
uncertainty is tested as to whether it is consistent with them.

In this chapter, we briefly describe expected utility theory and the
stochastic dominance relations that result. We apply the stochastic
dominance relations to the portfolio choice problem and check how
the theory of probability metrics can be combined with the stochastic
dominance relations.

3.2 Expected Utility Theory

We start with the well-known St Petersburg Paradox, which is his-
torically the first application of the concept of the expected utility
function. As a next step, we describe the essential result of von
Neumann–Morgenstern characterization of the preferences of indi-
viduals.

3.2.1 St Petersburg Paradox

The St Petersburg Paradox is a lottery game presented to Daniel
Bernoulli by his cousin Nicolas Bernoulli in 1713. Daniel Bernoulli
published the solution in 1734 but another Swiss mathematician,
Gabriel Cramer, had already discovered parts of the solution in 1728.

The lottery goes as follows. A fair coin is tossed until a head
appears. If the head appears on the first toss, the payoff is $1.3 If
it appears on the second toss, then the payoff is $2. After that, the
payoff increases sharply. If the head appears on the third toss, the
payoff is $4, on the fourth toss it is $8, etc. Generally, if the head
appears on the n-th toss, the payoff is 2n−1 dollars.

At that time, it was commonly accepted that the fair value of a
lottery should be computed as the expected value of the payoff. Since
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a fair coin is tossed, the probability of having a head on the n-th toss
equals 1/2n,

P(“First head on trial n”) = P(“Tail on trial 1”) · P(“Tail on trial 2”)

· . . . · P(“Tail on trial n-1”) · P(“Head on trial n”) = 1
2n

Therefore, the expected payoff is calculated as

Expected payoff = 1 · 1
2

+ 2 · 1
4

+ . . .+ 2n−1 · 1
2n

+ . . .

= 1
2

+ 1
2

+ . . .+ 1
2

+ . . .

= ∞.

This result means that people should be willing to participate in the
game no matter how large the price of the ticket. Any price makes
the game worthwhile because the expected payoff is infinite. Nev-
ertheless, in reality very few people would be ready to pay as much
as $100 for a ticket.

In order to explain the paradox, Daniel Bernoulli suggested that
instead of the actual payoff, the utility of the payoff should be con-
sidered. Thus, the fair value is calculated by

Fair value = u(1) · 1
2

+ u(2) · 1
4

+ . . .+ u(2n−1) · 1
2n

+ . . .

=
∞∑
k=1

u(2k−1)
2n

where the function u(x) is the utility function. The general idea is
that the value is determined by the utility an individual gains and
not directly by the monetary payoff.

Daniel Bernoulli considered utility functions with diminishing
marginal utility: that is, the utility gained from one extra dollar
diminishes with the sum of money one has. In the solution of
the paradox, Bernoulli considered the logarithmic utility function,
u(x) = log x, and showed that the fair value of the lottery equals
approximately $2.
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The solutions of Bernoulli and Cramer are not completely satis-
factory because the lottery can be changed in such a way that the
fair value becomes infinite even with their choice of utility func-
tions. Nevertheless, their attempt to solve the problem uses concepts
which were later developed into theories of decision making under
uncertainty.

3.2.2 The von Neumann–Morgenstern expected
utility theory

The St Petersburg Paradox shows that the naive approach to calcu-
late the fair value of a lottery can lead to counter-intuitive results. A
deeper analysis shows that it is the utility gained by an individual
which should be considered and not the monetary value of the out-
comes. The theory of von Neumann–Morgenstern gives a numerical
representation of individuals’ preferences over lotteries. The numer-
ical representation is obtained through the expected utility and it
turns out that this is the only possible way of obtaining a numerical
representation.

We used the term “lottery” in the discussion of the game behind the
St Petersburg Paradox without providing a definition. Technically,
a lottery is a probability distribution defined on the set of payoffs.
In fact, the lottery in the St Petersburg Paradox is given in Table 3.1.
Generally, lotteries can be discrete, continuous and mixed. Table 3.1
provides an example of a discrete lottery. In the continuous case, the
lottery is described by the cumulative distribution function (c.d.f.)
of the random payoff. Any portfolio of common stocks, for example,
can be regarded as a continuous lottery defined by the c.d.f. of the
portfolio payoff. We use the notation PX to denote the lottery (or the
probability distribution), the payoff of which is the random variable

Table 3.1 The lottery in the St Petersburg
Paradox.

Probability 1/2 1/4 1/8 . . . 1/2n . . .
Payoff 1 2 4 . . . 2n−1 . . .
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X. The particular values of the random payoff (the outcomes) we
denote by lower-case letters, x, and the probability that the payoff is
below x is denoted by P(X ≤ x) = FX(x), which is in fact the c.d.f.

Denote by X the set of all lotteries. Any element of X is considered
a possible choice of an economic agent. If PX ∈ X and PY ∈ X, then
there are the following possible cases:

• The economic agent may preferPX toPY or be indifferent between
them, denoted by PX � PY.

• The economic agent may preferPY toPX or be indifferent between
them, denoted by PY � PX .

• If both relations hold, PY � PX and PX � PY, then we say that the
economic agent is indifferent between the two choices, PX ∼ PY.

Sometimes, for notational convenience, we will use X � Y instead
of PX � PY without changing the assumption that we are comparing
the probability distributions.

A preference relation or a preference order of an economic agent on the
set of all lotteries X is a relation concerning the ordering of the ele-
ments of X, which satisfies certain axioms called the axioms of choice.
A more detailed description of the axioms of choice is provided in
the appendix to this chapter. A numerical representation of a prefer-
ence order is a real-valued functionU defined on the set of lotteries,
U : X → R, such that PX � PY if and only if U(PX) ≥ U(PY),

PX � PY ⇐⇒ U(PX) ≥ U(PY).

Thus, the numerical representation characterizes the preference
order. In fact, we can take advantage of the numerical representation
as comparing real numbers is easier than dealing with the preference
order directly.

The von Neumann–Morgenstern theory states that if the prefer-
ence order satisfies certain technical continuity conditions, then the
numerical representation U has the form

U(PX) =
∫
R

u(x)dFX(x) (3.2.1)
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where u(x) is the utility function of the economic agent defined over
the elementary outcomes of the random variable X, the probability
distribution function of which is FX(x). Equation (3.2.1) is actually
the mathematical expectation of the random variable u(X),

U(PX) = Eu(X),

and for this reason the numerical representation of the preference
order is, in fact, the expected utility.

Note that the preference order is defined by the economic agent;
various agents may have different preference orders. In the equiv-
alent numerical representation, it is the utility function u(x) which
characterizes U and, therefore, determines the preference order. In
effect, the utility function can be regarded as the fundamental build-
ing block which describes the agent’s preferences.

As we explained, lotteries may be discrete, continuous, or mixed.
If the lottery is discrete, then the payoff is a discrete random variable
and equation (3.2.1) becomes

U(PX) =
n∑
j=1

u(xj)pj (3.2.2)

where xj are the outcomes and pj is the probability that the j-th
outcome occurs, pj = P(X = xj). The formula for the fair value in
the St Petersburg Paradox given by Daniel Bernoulli has the form
of equation (3.2.2). Thus, the St Petersburg Paradox is resolved by
calculating the fair value through the expected utility of the lottery.
If the lottery is such that it has only one possible outcome (i.e., the
profit is equal to xwith certainty), then the expected utility coincides
with the utility of the corresponding payoff, u(x).

3.2.3 Types of utility functions

Some properties of the utility function are derived from common
arguments valid for investors belonging to a certain category. For
example, concerning certain prospects, all investors who prefer more
to less are called non-satiable. If there are two prospects, one with a
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3.2 EXPECTED UTILITY THEORY

certain payoff of $100, and another with a certain payoff of $200, a
non-satiable investor would never prefer the first opportunity. There-
fore, the utility function of any such investor should indicate that
the utility corresponding to the first prospect should not be less
than the utility of the second one, u(200) ≥ u(100). We can gener-
alize that the utility functions of non-satiable investors should be
non-decreasing,

Non-decreasing property u(x) ≤ u(y), if x ≤ y for any x, y ∈ R.

The outcomes x and y can be interpreted as the payoffs of two oppor-
tunities without an element of uncertainty, i.e. both x and y occur
with probability 1. If the utility function is differentiable, then the
non-decreasing property translates as a non-negative first derivative,
u′(x) ≥ 0, x ∈ R.

Other characteristics of investors’ preferences can also be
described by the shape of the utility function. Suppose that the
investor gains a lower utility from a venture with some expected
payoff and a prospect with a certain payoff, equal to the expected
payoff of the venture: that is, the investor is risk averse. Assume that
the venture has two possible outcomes: x1 with probability p, and
x2 with probability 1 − p, p ∈ [0, 1]. Thus, the expected payoff of the
venture equals px1 + (1 − p)x2. In terms of the utility function, the
risk-aversion property is expressed as

u(px1 + (1 − p)x2) ≥ pu(x1) + (1 − p)u(x2), ∀x1, x2 and p ∈ [0, 1]

(3.2.3)

where the left-hand side corresponds to the utility of the certain
prospect and the right-hand side is the expected utility of the venture.
By definition, if a utility function satisfies (3.2.3), then it is called
concave and, therefore, the utility functions of risk-averse investors
should be concave:

Concavity u(x) with support on a set S is said to be a concave
function if S is a convex set and if u(x) satisfies
(3.2.3) for all x1, x2 ∈ S and p ∈ [0, 1].
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If the utility function is twice differentiable, the concavity property
translates as a negative second derivative, u′′(x) ≤ 0, ∀x ∈ S.

A formal measure of absolute risk aversion is the coefficient of
absolute risk aversion4 defined by

rA(x) = −u
′′(x)
u′(x)

, (3.2.4)

which indicates that the more curved the utility function is, the
higher the risk-aversion level of the investor (the more pronounced
the inequality in (3.2.3) becomes).

Some common examples of utility functions are listed below.

(a) Linear utility function

u(x) = a+ bx

The linear utility function always satisfies (3.2.3) with equality
and, therefore, represents a risk-neutral investor. If b > 0, then
it represents a non-satiable investor.

(b) Quadratic utility function

u(x) = a+ bx + cx2

If c < 0, then the quadratic utility function is concave and rep-
resents a risk-averse investor.

(c) Logarithmic utility function

u(x) = log x, x > 0

The logarithmic utility represents a non-satiable, risk-averse
investor. It exhibits a decreasing absolute risk aversion since
rA(x) = 1/x and the coefficient of absolute risk aversion
decreases with x.

(d) Exponential utility function

u(x) = −e−ax, a > 0
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The exponential utility represents a non-satiable, risk-averse
investor. It exhibits a constant absolute risk aversion since
rA(x) = a and the coefficient of absolute risk aversion does not
depend on x.

(e) Power utility function

u(x) = −x−a

a
, x > 0, a > 0

The power utility represents a non-satiable, risk-averse investor.
It exhibits a decreasing absolute risk aversion since rA(x) = a/x

and the coefficient of absolute risk aversion decreases with x.

3.3 Stochastic Dominance

In section 3.2.3, we noted that key characteristics of investors’ pref-
erences determine the shape of the utility function. For example,
all non-satiable investors have non-decreasing utility functions and
all risk-averse investors have concave utility functions. Thus, differ-
ent classes of investors can be defined through the general unifying
properties of their utility functions.

Suppose that there are two portfolios X and Y, such that all
investors from a given class do not preferY toX. This means that the
probability distributions of the two portfolios differ in a special way
that, no matter the particular expression of the utility function, if an
investor belongs to the given class, then Y is not preferred by that
investor. In this case, we say that portfolio X dominates portfolio Y
with respect to the class of investors. Such a relation is often called a
stochastic dominance relation or a stochastic ordering.

Since it is only a relationship between the probability distributions
ofX andYwhich determines whetherX dominatesY for a given class
of investors, it appears possible to obtain a criterion characterizing
the stochastic dominance, involving only the cumulative distribu-
tion functions (c.d.f.s) of X and Y. Thus, we are able to identify by
only looking at distribution functions of X and Y if either of the two
portfolios is preferred by an investor from the class. This section
discusses such criteria for three important classes of investors.
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3.3.1 First-order stochastic dominance

Suppose that X is an investment opportunity with two possible out-
comes – the investor receives $100 with probability 1/2 and $200
with probability 1/2. Similarly, Y is a venture with two payoffs –
$150 with probability 1/2 and $200 with probability 1/2. A non-
satiable investor would never prefer the first opportunity because
of the following relationship between the corresponding expected
utilities:

U(PX) = u(100)/2 + u(200)/2 ≤ u(150)/2 + u(200)/2 = U(PY).

The inequality arises because u(100) ≤ u(150) as a non-satiable
investor by definition prefers more to less.

Denote by U1 the set of all utility functions representing non-
satiable investors: that is, the set contains all non-decreasing utility
functions. We say that the venture X dominates the venture Y in the
sense of the first-order stochastic dominance (FSD), X �FSD Y, if a non-
satiable investor would not prefer Y to X. In terms of the expected
utility,

X �FSD Y if Eu(X) ≥ Eu(Y), for any u ∈ U1.

The condition in terms of the c.d.f.s of X and Y characterizing the
FSD order is

X �FSD Y if and only if FX(x) ≤ FY(x), ∀ x ∈ R. (3.3.1)

where FX(x) and FY(x) are the c.d.f.s of the two ventures.
Figure 3.1 provides an illustration of the relationship between the

two c.d.f.s. If X and Y describe the payoff of two portfolios with
distribution functions such as the ones plotted in Figure 3.1, then we
can conclude that a non-satiable investor would never invest in Y.

A necessary condition for FSD is that the expected payoff of the
preferred venture should exceed the expected payoff of the alterna-
tive, EX ≥ EY if X �FSD Y. This is true because the utility function
u(x) = x represents a non-satiable investor as it is non-decreasing
and, therefore, it belongs to the setU1. Consequently, ifX is preferred
by all non-satiable investors, then it is preferred by the investor with
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Figure 3.1: An illustration of the first-order stochastic dominance condi-
tion in terms of the distribution functions, X �FSD Y.

utility function u(x) = x which means that the expected utility of X
is not less than the expected utility of Y, EX ≥ EY.

In general, the converse statement does not hold. If the expected
payoff of a portfolio exceeds the expected payoff of another portfolio,
it does not follow that any non-satiable investor would necessarily
choose the portfolio with the larger expected payoff. This is because
the inequality between the c.d.f.s of the two portfolios given in
(3.3.1) may not hold. In effect, there will be non-satiable investors
who would choose the portfolio with the larger expected payoff and
other non-satiable investors who would choose the portfolio with
the smaller expected payoff. It depends on the particular expression
of the utility function: for example, whether it is a logarithmic or a
power utility function.

3.3.2 Second-order stochastic dominance

For decision making under risk, the concept of first-order stochas-
tic dominance is not very useful because the condition in (3.3.1) is
rather restrictive. According to the analysis in the previous section,
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if the distribution functions of two portfolios satisfy (3.3.1), then a
non-satiable investor would never prefer portfolioY. This conclusion
also holds for the subcategory of the non-satiable investors who are
also risk-averse. Therefore, the condition in (3.3.1) is only a sufficient
condition for this subcategory of investors but is unable to char-
acterize completely their preferences. This is demonstrated in the
following example.

Consider a venture Y with two possible payoffs: $100 with proba-
bility 1/2 and $200 with probability 1/2, and a prospect X yielding
$180 with probability 1. A non-satiable, risk-averse investor would
never prefer Y to X because the expected utility of Y is not larger
than the expected utility of X,

Eu(X) = u(180) ≥ u(150) ≥ u(100)/2 + u(200)/2 = Eu(Y)

where u(x) satisfies property (3.2.3) and is assumed to be non-
decreasing. The distribution functions of X and Y do not satisfy
(3.3.1). Nevertheless, a non-satiable, risk-averse investor would
never prefer Y.

Denote by U2 the set of all utility functions which are non-
decreasing and concave. Thus, the set U2 represents the non-satiable,
risk-averse investors and is a subset of U1, U2 ⊂ U1. We say that a
venture X dominates venture Y in the sense of second-order stochas-
tic dominance (SSD), X �SSD Y, if a non-satiable, risk-averse investor
does not prefer Y to X. In terms of the expected utility,

X �SSD Y if Eu(X) ≥ Eu(Y), for any u ∈ U2.

The condition in terms of the c.d.f.s of X and Y characterizing the
SSD order is

X �SSD Y ⇐⇒
∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY(t)dt, ∀ x ∈ R (3.3.2)

where FX(t) and FY(t) are the c.d.f.s of the two ventures.
Similarly to FSD, inequality between the expected payoffs is a

necessary condition for SSD,EX ≥ EY ifX �SSD Y, because the utility
function u(x) = x belongs to the set U2. In contrast to the FSD, the
condition in (3.3.2) allows the distribution functions to intersect. It

54



3.3 STOCHASTIC DOMINANCE

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

F
X

(x)

F
Y

(x)

Figure 3.2: An illustration of the second-order stochastic dominance con-
dition in terms of the distribution functions, X �SSD Y.

turns out that if the distribution functions cross only once, then X
dominates Y with respect to SSD if FX(x) is below FY(x) to the left of
the crossing point. Such an illustration is provided in Figure 3.2.

3.3.3 Rothschild–Stiglitz stochastic dominance

In the SSD order, we considered the class of all non-satiable and risk-
averse investors. Rothschild and Stiglitz (1970) introduce a slightly
different order by dropping the requirement that the investors are
non-satiable. A venture X is said to dominate a venture Y in the
sense of Rothschild–Stiglitz stochastic dominance (RSD),5 X �RSD Y, if
no risk-averse investor prefersY toX. In terms of the expected utility,

X �RSD Y if Eu(X) ≥ Eu(Y), for any concave u(x).

The class of risk-averse investors is represented by the set of all
concave utility functions, which contains the set U2. Thus, the con-
dition in (3.3.2) is only a necessary condition for the RSD but it is
not sufficient to characterize the RSD order. If the portfolio X domi-
nates the portfolioY in the sense of the RSD order, then a risk-averter
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would never preferY toX. This conclusion holds for the non-satiable
risk-averters as well and, therefore, the relation in (3.3.2) holds as a
consequence,

X �RSD Y =⇒ X �SSD Y.

The converse relation is not true. This can be demonstrated with
the help of the example developed in section 3.3.2. If the portfolio
Y pays off $100 with probability 1/2 and $200 with probability 1/2
then no risk-averse investor would prefer it to a prospect yielding
$150 with probability 1,

u(150) = u(100/2 + 200/2) ≥ u(100)/2 + u(200)/2 = Eu(Y),

which is just an application of the assumption of concavity in (3.2.3).
It is not possible to determine whether a risk-averse investor would
prefer a prospect yielding $150 with probability 1 or the prospect X
yielding $180 with probability 1. Those who are non-satiable would
certainly prefer the larger sum but this is not universally true for
all risk-averse investors because we do not assume that u(x) is non-
decreasing.

The condition which characterizes the RSD stochastic dominance
is the following one:

X �RSD Y ⇐⇒

⎧⎪⎨⎪⎩
EX = EY,∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY(t)dt, ∀ x ∈ R.

(3.3.3)

In fact, this is the condition for the SSD order with the additional
assumption that the mean payoffs should coincide.

3.3.4 Third-order stochastic dominance

We defined the coefficient of absolute risk aversion rA(x) in equation
(3.2.4). Generally, its values vary for different payoffs depending on
the corresponding derivatives of the utility function. Larger values
of rA(x) correspond to a more pronounced risk-aversion effect.
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Figure 3.3: The graph of the logarithmic utility function, u(x) = log x. For
smaller values of x, the graph is more curved while for larger values of x,
the graph is closer to a straight line and, thus, to risk neutrality.

In section 3.2.3, we noted that a negative second derivative of the
utility function for all payoffs means that the investor is risk averse
at any payoff level. Therefore, the closer u′′(x) to zero, the less risk
averse the investor since the coefficient rA(x) decreases, other things
held equal. The logarithmic utility function is an example of a utility
function exhibiting decreasing absolute risk aversion. The larger the
payoff level, the less “curved” the function is, which corresponds to a
closer to zero second derivative and a less pronounced risk-aversion
property. An illustration is given in Figure 3.3.

Utility functions exhibiting a decreasing absolute risk aversion
are important because the investors they represent favor positive
to negative skewness. This is a consequence of the decreasing risk
aversion – at higher payoff levels such investors are less inclined to
avoid risk in comparison to lower payoff levels at which they are
much more sensitive to risk taking. Technically, a utility function
with a decreasing absolute risk aversion has a non-negative third
derivative, u′′′(x) ≥ 0, as this means that the second derivative is non-
decreasing.
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Denote by U3 the set of all utility functions which are non-
decreasing, concave, and have a non-negative third derivative,
u′′′(x) ≥ 0. Thus, U3 represents the class of non-satiable, risk-averse
investors who prefer positive to negative skewness. A venture X is
said to dominate a ventureY in the sense of third-order stochastic dom-
inance (TSD),X �TSD Y, if an investor with a utility function from the
set U3 does not prefer Y to X. In terms of the expected utility,

X �TSD Y if Eu(X) ≥ Eu(Y), for any u ∈ U3.

The set of utility functions U3 is contained in the set of non-
decreasing, concave utilities,U3 ⊂ U2. Therefore, the condition (3.3.2)
for SSD is only sufficient in the case of TSD,

X �SSD Y =⇒ X �TSD Y.

The condition which characterizes the TSD stochastic dominance
is

X �TSD Y ⇐⇒ E(t− X)2
+ ≤ E(t− Y)2

+, ∀ t ∈ R (3.3.4)

where the notation (t− x)2
+ means the maximum between t− x

and zero raised to the second power, (t− x)2
+ = (max(t− x, 0))2. The

quantity E(t− X)2
+ is known as the second lower partial moment of the

random variable X. It measures the variability of X below a target
payoff level t. Suppose thatX andY have equal means and variances.
IfX has a positive skewness andY has a negative skewness, then the
variability of X below any target payoff level t will be smaller than
the variability of Y below the same target payoff level.

At first sight, (3.3.4) has nothing to do with (3.3.2) and it is not clear
that SSD entails TSD. In fact, it is only a matter of algebraic manipu-
lations to show that, indeed, if (3.3.2) holds, then (3.3.4) holds as well.

3.3.5 Efficient sets and the portfolio choice problem

Taking advantage of the criteria for stochastic dominance discussed
in the previous sections, we can characterize the efficient sets of the
corresponding categories of investors. The efficient set of a given
class of investors is defined as the set of ventures not dominated
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with respect to the corresponding stochastic dominance relation. For
example, the efficient set of the non-satiable investors is the set of
those ventures which are not dominated with respect to the FSD
order. As a result, by construction, any venture which is not in the
efficient set will be necessarily discarded by all investors in the class.

The portfolio choice problem of a given investor can be divided
into two steps. The first step concerns finding the efficient set of the
class of investors which the given investor belongs to. Any portfolio
not belonging to the efficient set will not be selected by any of the
investors in the class and is, therefore, suboptimal for the investor.
Such a class may be composed of, for example, all non-satiable, risk-
averse investors if the utility function of the given investor is non-
decreasing and concave. In this case, the efficient set comprises all
portfolios not dominated with respect to the SSD order. Note that in
this step, we do not take advantage of the particular expression for
the utility function of the investor.

Once we have obtained the efficient set, we proceed to the sec-
ond step in which we calculate the expected utility of the investor
for the portfolios in the efficient set. The portfolio which maximizes
the investor’s expected utility represents the optimal choice of the
investor.

The difficulty of adopting this approach in practice is that it is very
hard to obtain explicitly the efficient sets. That is why the problem of
finding the optimal portfolio for the investor is very often replaced
by a simpler one, involving only certain characteristics of the port-
folios return distributions, such as the expected return and the risk.
In this situation, it is critical that the simpler problem is consistent
with the corresponding stochastic dominance relation in order to
guarantee that its solution is among the portfolios in the efficient set.
Checking the consistency reduces to choosing a risk measure which
is compatible with the stochastic dominance relation.

3.3.6 Return versus payoff

Note that the expected utility theory deals with the portfolio payoff
and not the portfolio return. Nevertheless, all relations defining the
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stochastic dominance orders can be adopted if we consider the dis-
tribution functions of portfolio returns rather than portfolio profits. In
the following, we examine the FSD and SSD orders concerning log-
return distributions and the connection to the corresponding orders
concerning random payoffs. The logarithmic return, or simply the
log-return, is a central concept in fundamental theories in finance,
such as derivative pricing and modern portfolio theory. Therefore, it
makes sense to consider stochastic orders with respect to log-return
distributions rather than payoff.

Suppose that Pt is a random variable describing the price of a
common stock at a future time t, t > 0 where t = 0 is present time.
Without loss of generality, we can assume that the stock does not pay
dividends. Denote by rt the log-return for the period (0, t),

rt = log
Pt
P0
,

where P0 is the price of the common stock at present and is a non-
random positive quantity. The random variable Pt can be regarded
as the random payoff of the common stock at time t, while rt is
the corresponding random log-return. The formula expressing the
random payoff in terms of the random log-return is

Pt = P0 exp(rt).

Even though log-returns and payoffs are directly linked by means of
the above formulae, it turns out that, generally, stochastic dominance
relations concerning two log-return distributions are not equivalent
to the corresponding stochastic dominance relations concerning their
payoff distributions.

Consider an investor with utility function u(x) where x > 0 stands
for payoff. In the appendix to this chapter, we demonstrate that
the utility function of the investor concerning the log-return can be
expressed as

v(y) = u(P0 exp(y)), y ∈ R (3.3.5)
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Figure 3.4: u(x) represents a non-satiable and risk-averse investor on the
space of payoffs and v(y) is the corresponding utility on the space of log-
returns. Apparently, v(y) is not concave.

where y stands for the log-return of a common stock and P0 is the
price at present.6 Equation (3.3.5) and the inverse,

u(x) = v(log(x/P0)), x > 0, (3.3.6)

provide the link between utilities concerning log-returns and payoff.
It turns out that an investor who is non-satiable and risk averse

with respect to payoff distributions may not be risk averse with
respect to log-return distributions. The utility function u(x) repre-
senting such an investor has the properties

u′(x) ≥ 0 and u′′(x) ≤ 0, ∀x > 0,

but it does not follow that the functionv(y) given by (3.3.5) will satisfy
them. In fact, v(y) also has non-positive first derivative but the sign
of the second derivative can be arbitrary. Therefore the investor is
non-satiable but may not be risk-averse with respect to log-return
distributions. This fact is illustrated in Figure 3.4 for the exponential
utility function.
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Conversely, an investor who is non-satiable and risk averse with
respect to log-return distributions is also non-satiable and risk averse
concerning payoff distributions. This is true because if v(y) satis-
fies the corresponding derivative inequalities, so does u(x) given
by (3.3.6). Consequently, it follows that the investors who are non-
satiable and risk averse on the space of log-return distributions are a
subclass of those who are non-satiable and risk averse on the space
of payoff distributions.

This analysis implies that the FSD order of two common stocks, for
example, remains unaffected as to whether we consider their payoff
distributions or their log-return distributions,

P1
t �FSD P

2
t ⇐⇒ r1

t �FSD r
2
t ,

where P1
t and P2

t are the payoffs of the two common stocks at time
t > t0, and r1

t and r2
t are the corresponding log-returns for the same

period. However, such an equivalence does not hold for the SSD
order. Actually, the SSD order on the space of payoff distributions
implies the same order on the space of log-return distributions but
not vice versa,

P1
t �SSD P

2
t =⇒ r1

t �SSD r
2
t .

In the appendix to this chapter, we demonstrate that the same
conclusion holds for the TSD order and, generally, for the n-th
order stochastic dominance, n > 1. Such kinds of relations deserve
a closer scrutiny as optimal portfolio problems are usually set in
terms of returns, and consistency with a stochastic dominance rela-
tion implies that the stochastic dominance relation is also set on the
space of return distributions, not on the space of payoff distributions.
Moreover, in this section we considered only one-period returns.
In a multi-period setting, for example in the area of asset-liability
management, matters get even more involved.

Note that these relations are always true if the present values of
the two ventures are equal,P1

0 = P2
0. Otherwise they may be violated.

Consider, for example, the FSD order of random payoffs. Suppose
thatP1

t dominatesP2
t with respect to the FSD order,P1

t �FSD P
2
t . Then,
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according to the characterization in terms of the c.d.f.s we obtain

FP1
t
(x) ≤ FP2

t
(x), ∀x ∈ R.

We can represent this inequality in terms of the log-returns r1
t and r2

t

in the following way:

P

(
r1
t ≤ log

x

P1
0

)
≤ P

(
r2
t ≤ log

x

P2
0

)
, ∀x ∈ R.

In fact, the above inequality implies that r1
t �FSD r

2
t if P1

0 = P2
0. In case

the present values of the ventures differ a lot, it may happen that the
c.d.f.s of the log-return distributions do not satisfy the inequality
Fr1

t
(y) ≤ Fr2

t
(y) for all y ∈ R, which means that the FSD order may not

hold.

3.4 Probability Metrics and Stochastic
Dominance

The conditions for stochastic dominance involving the distribution
functions of the ventures X and Y represent a powerful method to
determine if an entire class of investors would prefer any of the port-
folios. For example, in order to verify if any non-satiable, risk-averse
investor would not preferY toX, we have to verify if condition (3.3.2)
holds. Note that a negative result does not necessarily mean that any
such investor would actually prefer Y or be indifferent between X
andY. It may be the case that the inequality between the quantities in
(3.3.2) is satisfied for some values of the argument, and for others, the
converse inequality holds. That is, neither X �SSD Y nor Y �SSD X is
true. Thus, only a part of the non-satiable, risk-averse investors may
preferX toY; it now depends on the particular investor we consider.

Suppose the verification confirms that either X is preferred or the
investors are indifferent between X and Y, X �SSD Y. This result is
only qualitative, there are no indications whether Y would be cate-
gorically disregarded by all investors in the class, or the differences
between the two portfolios are very small. Similarly, if we know that
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no investors from the class prefer Y to Z, Z �SSD Y, then can we
determine whether Z is more strongly preferred to Y than X is?

The only way to approach these questions is to add a quantitative
element through a probability metric since only by means of a proba-
bility metric can we calculate distances between random quantities.7

For example, we can choose a probability metric � and we can cal-
culate the distances �(X,Y) and �(Z,Y). If �(X,Y) < �(Z,Y), then
the return distribution of X is “closer” to the return distribution of
Y than are the return distributions of Z and Y. On this ground, we
can draw the conclusion that Z is more strongly preferred to Y than
X is, on condition that we know in advance the relations X �SSD Y

and Z �SSD Y.
However, not any probability metric appears suitable for this cal-

culation. This is illustrated by the following example. Suppose that
Y andX are normally distributed random variables describing port-
folio returns with equal means, X ∈ N(a, �2

X) and Y ∈ N(a, �2
Y), with

�2
X < �2

Y. Z is a prospect yielding a dollars with probability 1. The
c.d.f.s FX(x) and FY(x) cross only once at x = a and the FX(x) is below
FY(x) to the left of the crossing point because the variance of X is
assumed to be smaller than the variance of Y. Therefore, according
to the condition in (3.3.3), no risk-averse investor would preferY toX
and consequentlyX �SSD Y. The prospect Z provides a non-random
return equal to the expected returns of X and Y, EX = EY = a, and,
in effect, any risk-averse investor would rather choose Z from the
three alternatives, Z �SSD X �SSD Y.

A probability metric with which we would like to quantify
the second-order stochastic dominance relation should be able to
indicate that, first,�(X,Y) < �(Z,Y) because Z is more strongly pre-
ferred toY and, second,�(Z,X) < �(Z,Y) becauseY is more strongly
rejected than X with respect to Z. The assumptions in the example
give us the information to order completely the three alternatives
and that is why we are expecting the two inequalities should hold.

Let us choose the Kolmogorov metric,8

ρ(X,Y) = sup
x∈R

|FX(x) − FY(x)|,
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Figure 3.5: The distribution functions of two normal distributions with
equal means,EX = EY = a and the distribution function ofZ = awith prob-
ability 1. The arrows indicate the corresponding Kolmogorov distances.

for the purpose of calculating the corresponding distances. It com-
putes the largest absolute difference between the two distribution
functions. Applying the definition to the distributions in the exam-
ple, we obtain that ρ(X,Z) = ρ(Y,Z) = 1/2 and ρ(X,Y) < 1/2. As a
result, the Kolmogorov metric is capable of showing that Z is more
strongly preferred relative to Y but cannot show that Y is more
strongly rejected with respect to Z. Figure 3.5 contains a plot of
the c.d.f.s of the three random variables. The arrows indicate where
the largest absolute difference between the corresponding c.d.f.s is
located. The arrow length equals the Kolmogorov distance.

The example shows that there are probability metrics which are
not appropriate to quantify a stochastic dominance order. The task of
finding a suitable metric is not a simple one because the structure of
the metric should be based on the conditions defining the dominance
order. Inevitably, we cannot expect that one probability metric will
appear suitable for all stochastic orders; rather, a probability metric
may be best suited for a selected stochastic dominance relation.

Technically, we have to impose another condition in order for
the problem of quantification to have a practical meaning. The
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probability metric calculating the distances between the ordered ran-
dom variables should be bounded. If it explodes, then we cannot
draw any conclusions. For instance, if�(X,Y) = ∞ and�(Z,Y) = ∞,
then we cannot compare the investors’ preferences.

Concerning the FSD order, a suitable choice for a probability metric
is the Kantorovich metric,

κ(X,Y) =
∫ ∞

−∞
|FX(x) − FY(x)|dx,

introduced in equation (2.2.5) in Chapter 2 . Note that the condition in
(3.3.1) can be restated as FX(x) − FY(x) ≤ 0, ∀x ∈ R. Thus, summing
up all absolute differences gives an idea how “close”X is toY, which
is a natural way of measuring the distance between X and Y with
respect to the FSD order. The Kantorovich metric is finite as long as
the random variables have finite means. We can always count on
this assumption if the random variables describe portfolio returns,
for example.

The RSD order can also be quantified in a similar fashion. Consider
the Zolotarev ideal metric,

ζ2(X,Y) =
∫ ∞

−∞

∣∣∣∣∫ x

−∞
FX(t)dt−

∫ x

−∞
FY(t)dt

∣∣∣∣ dx,
introduced in Chapter 4. The structure of this probability metric is
directly based on the condition in (3.3.3) and it calculates in a natural
way the distance betweenX andYwith respect to the RSD order. The
requirement that EX = EY in (3.3.3) combined with the additional
assumption that the second moments of X and Y are finite, EX2 <

∞ and EY2 < ∞, represent the needed sufficient conditions for the
boundedness of ζ2(X,Y).

3.5 Cumulative Prospect Theory

In the introduction to this chapter, we noted that expected utility
theory is prescriptive in the sense that it determines what the rational
behavior of economic agents should be. Empirical work in the field of
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behavioral finance has identified certain situations in which people
behave differently from the rational prescription of expected util-
ity theory. Some of these instances of inconsistency are often called
paradoxes, such as Allias’s paradox and the Ellsberg paradox. Other
instances concern particular psychological effects. For example, the
so-called framing effect states that people’s choice can vary depend-
ing on the wording of a problem – whether more emphasis is placed
on the potential loss or the potential profit. Another example is the
status quo bias. It is described as the natural preference people have
for the current state. The loss aversion effect states that the disutility of
giving up an object is greater than the utility associated with acquir-
ing it. In a sense, forgone gains are less painful than perceived losses.
For more detailed information and further examples, the reader is
referred to Kahneman et al. (1991), Rabin and Thaler (2001), and
Siegel and Thaler (1997).

The situations in which expected utility theory fails in describing
the corresponding behavior gave rise to theories aiming at explaining
observed behavior, rather than trying to prescribe rational behavior.
There are a few such theories, the most prominent of which is the
cumulative prospect theory proposed by Tversky and Kahneman
(1992). It is built upon the following main observations. First,
investors usually think about possible outcomes relative to a cer-
tain reference point rather than the final outcome. This is referred to
as the status quo by behavioral finance theorists. Second, investors
have different attitudes towards gains (outcomes which are larger
than the reference point) and losses (outcomes which are less than
the reference point), referred to by behavioral finance theorists as
loss aversion. Finally, investors tend to overweight extreme events
and underweight events with higher probability.

Cumulative prospect theory has been applied to a diverse range
of problems, such as the asset allocation puzzle, the equity premium
puzzle, the status quo bias, and various gambling and betting puz-
zles which appear inconsistent with standard economic rationality:
see, for example, Benartzi and Thaler (1995) and Kahneman et al.
(1991). However, the applications are in a simple discrete setting
and only a few attempts have been made to apply the theory in a
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Figure 3.6: The graph of an s-shaped function.

more complicated setting: see, for example, Baucells and Heukamp
(2006) and Hwang and Satchell (2003).

Cumulative prospect theory arises as an alternative to expected
utility theory on the basis of the observations outlined above. The
utility function, which is a basic concept in expected utility theory,
is replaced by a value function. In a similar fashion, cumulative
probabilities are replaced by weighted cumulative probabilities. The
value function, v(x), assigns values to the possible outcomes. It is
non-decreasing and v(0) = 0 since the outcome equal to the refer-
ence point brings no value to the individual. Different functional
forms for v(x) have been suggested. It is often assumed that the v(x)
has an s-shaped form, i.e. v(x) is convex for x < 0 and it is concave
for x > 0 (see Kahneman and Tversky, 1979). An illustration is pro-
vided in Figure 3.6. From a financial viewpoint, the value function
can be constructed for returns rather than wealth as in the classi-
cal expected utility theory. In this way, cumulative prospect theory
is the natural setting for the discussion about return versus payoff
based stochastic dominance in section 3.3.6. In order to account for
the observed loss-aversion effect, the value function is assumed to be
radially asymmetric, i.e. v(x) /= − v(−x). Furthermore, it is assumed
to be steeper for losses than for gains.
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The weighted cumulative probabilities are usually modeled as
transformations of the c.d.f. of the prospect FX(x) = P(X ≤ x) and
the tail 1 − FX(x) = P(X > x) depending on whether x < 0 or x > 0,
respectively. The transformation for the losses is denoted by w−(p)
and the one for the profits is denoted by w+(p). Both weighting
functions are non-decreasing and satisfy the following conditions:

w−(0) = w+(0) = 0

w−(1) = w+(1) = 1.

Empirical studies suggest that the general shape of the weight-
ing functions is inverse s-shaped: see, for example, Tversky and
Kahneman (1992).

According to cumulative prospect theory, individuals make a
choice between two risky prospects X and Y by computing the
subjective expected values according to the functional

V(X) =
∫ 0

−∞
v(x)d[w−(FX(x))] +

∫ ∞

0
v(x)d[−w+(1 − FX(x))]

(3.5.1)

and then compare V(X) and V(Y): see, for example, Baucells and
Heukamp (2006). The first summand is focused on losses and the
second summand is related to gains. If V(X) ≥ V(Y), then Y is not
preferred to X. If V(X) = V(Y), then the individual is indifferent.
Note that if the individuals do not weight the cumulative proba-
bilities, i.e. w−(p) = w+(p) = p, then the definition of V(X) reduces
to

V(X) = Ev(X) =
∫ ∞

−∞
v(x)dFX(x).

The expression (3.5.1) implies that we can map all individuals to
pairs (v,w) where v is the corresponding value function and w is a
shorthand for both w− and w+. In this way, a set of individuals can
be represented by (vj, wj), j ∈ J.
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3.6 Summary

In this chapter, we considered the problem of choice under uncer-
tainty as described by the classical von Neumann–Morgenstern
expected utility theory. We also described the most important types
of stochastic dominance relations resulting from the theory, which
characterize the choices of entire classes of investors. One application
of the theory of probability metrics in stochastic dominance relations
is to add a quantitative element to their qualitative nature. Instead
of knowing only that a venture is preferred to another venture by a
whole class of investors, a probability metric is capable of showing
if the differences between the two ventures are very small, or one of
the two ventures is categorically discarded by the entire class.

Another major point concerning stochastic dominance relations is
to take into account if probability distributions of returns or payoffs
are considered. Usually, optimal portfolio problems are set in terms
of returns and consistency with the SSD order is sought. In such a
case, the SSD order concerns distributions of returns, rather than pay-
offs and this should be borne in mind when analyzing the solution.

This consideration is in line with cumulative prospect theory,
which is an alternative to expected utility theory arising from the
field of behavioral economics. According to it, not only do indi-
viduals value outcomes relative to a reference point, but they also
subjectively weight cumulative probabilities.

3.7 Technical Appendix

In this appendix, we state the axioms of choice, which are the basis
for von Neumann–Morgenstern theory, and we comment on the
uniqueness of the expected utility representation of a preference
order. The stochastic orders given in the chapter concern the most
important classes of investors. We give examples of several oth-
ers in the appendix. Finally, we briefly mention a parallel between
representations of probability metrics known as dual and stochastic
orders.

70



3.7 TECHNICAL APPENDIX

3.7.1 The axioms of choice

The axioms of choice are fundamental assumptions defining a pref-
erence order. In the following, X stands for the set of the probability
distributions of the ventures also known as lotteries, and the notation
PX � PY means that the economic agent prefers PX to PY or is indif-
ferent between the two choices. The notation PX � PY means that PX
is strictly preferred to PY. The axioms of choice are the following:

Completeness For all PX, PY ∈ X, either PX � PY or PY � PX
or both are true, PX ∼ PY.

Transitivity If PX � PY and PY � PZ, then PX � PZ, where
PX, PY and PZ are three lotteries.

Archimedean
axiom

If PX, PY, PZ ∈ X are such that PX � PY � PZ,
then there is an ˛, ˇ ∈ (0, 1) such that
˛PX + (1 − ˛)PZ � PY and also
PY � ˇPX + (1 − ˇ)PZ.

Independence
axiom

For all PX, PY, PZ ∈ X and any ˛ ∈ [0, 1],
PX � PY if and only if ˛PX + (1 − ˛)PZ �
˛PY + (1 − ˛)PZ.

The completeness axiom states that economic agents should
always be able to compare two lotteries (e.g., two portfolios). They
either prefer one or the other, or are indifferent. The transitivity
axiom rules out the possibility that an investor may prefer PX to
PY, PY to PZ, and also PZ to PX . It states that if the first two rela-
tions hold, then necessarily the investor should prefer PX to PZ. The
Archimedean axiom is like a “continuity” condition. It states that
given any three distributions strictly preferred to each other, we can
combine the most and the least preferred distribution through an
˛ ∈ (0, 1) such that the resulting distribution is strictly preferred to
the middle distribution. Likewise, we can combine the most and the
least preferred distribution through a ˇ ∈ (0, 1) so that the middle
distribution is strictly preferred to the resulting distribution. The
independence axiom claims that the preference between two lotter-
ies remains unaffected if they are both combined in the same way
with a third lottery.
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The basic result of von Neumann–Morgenstern is that a preference
relation satisfies the four axioms of choice if and only if there is a
real-valued function, U : X → R, such that:

(a) U represents the preference order

PX � PY ⇐⇒ U(PX) ≥ U(PY)

for all PX, PY ∈ X.
(b) U has the linear property9

U(˛PX + (1 − ˛)PY) = ˛U(PX) + (1 − ˛)U(PY)

for any ˛ ∈ (0, 1) and PX, PY ∈ X.

Moreover, the numerical representationU is unique up to a positive
linear transform. That is, ifU1 andU2 are two functions representing
one and the same preference order, then U2 = aU1 + b where a > 0
and b are some coefficients.

It turns out that the numerical representation has a very special
form under some additional technical continuity conditions. It can
be expressed as

U(PX) =
∫
R

u(x)dFX(x)

where the function u(x) is the utility function of the economic agent
and FX(x) is the c.d.f. of the probability distribution PX . Thus, the
numerical representation of the preference order of an economic
agent is the expected utility of X. The fact that U is known up to
a positive linear transform means that the utility function of the eco-
nomic agent is not determined uniquely from the preference order
but is also unique up to a positive linear transform.

3.7.2 Stochastic dominance relations of order n

In the chapter, we introduced the first-, second-, and third-
order stochastic dominance relations which represent non-satiable
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investors, non-satiable and risk-averse investors, and non-satiable,
risk-averse investors preferring positive to negative skewness. That
is, including additional characteristics of the investors by impos-
ing conditions on the utility function, we end up with more refined
stochastic orders.

This method can be generalized in the n-th order stochastic dom-
inance. Denote by Un the set of all utility functions, the derivatives
of which satisfy the inequalities (−1)k+1u(k)(x) ≥ 0, k = 1, 2, . . . , n
where u(k)(x) denotes the k-th derivative of u(x). For each n, we have
a set of utility functions which is a subset of Un−1,

U1 ⊂ U2 ⊂ . . . ⊂ Un ⊂ . . .

The classes of investors characterized by the first-, second-, and third-
order stochastic dominance are U1, U2, and U3.

Imposing further properties on the derivatives of the utility func-
tion requires that we make more assumptions for the moments of the
random variables we consider. We assume that the absolute moments
E|X|k and E|Y|k, k = 1, . . . , n of the random variables X and Y are
finite. We say that the portfolio X dominates the portfolio Y in the
sense of the n-th order stochastic dominance, X �n Y, if no investor
with a utility function in the set Un would prefer Y to X,

X �n Y if Eu(X) ≥ Eu(Y), ∀u(x) ∈ Un.

Thus, the first-, second-, and third-order stochastic dominance
appear as special cases from the n-th order stochastic dominance
with n = 1, 2, 3.

There is an equivalent way of describing the n-th order stochastic
dominance in terms of the c.d.f.s of the ventures only. The condition
is

X �n Y ⇐⇒ F
(n)
X (x) ≤ F

(n)
Y (x), ∀x ∈ R (3.7.1)

where F(n)
X (x) stands for the n-th integral of the c.d.f. of X, which can

be defined recursively as

F
(n)
X (x) =

∫ x

−∞
F

(n−1)
X (t)dt.
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An equivalent form of the condition in (3.7.1) can be derived, which
is close to the form of (3.3.4),

X �n Y ⇐⇒ E(t− X)n−1
+ ≤ E(t− Y)n−1

+ , ∀t ∈ R (3.7.2)

where (t− x)n−1
+ = max(t− x, 0)n−1. This equivalent formulation

clarifies why it is necessary to assume that all absolute moments
until order n are finite.

Since in the n-th order stochastic dominance we furnish the con-
ditions on the utility function as n increases, the following relation
holds,

X �1 Y =⇒ X �2 Y =⇒ . . . =⇒ X �n Y,

which generalizes the relationship between FSD, SSD, and TSD given
in the chapter.

Further on, it is possible to extend the n-th order stochastic dom-
inance to the ˛-order stochastic dominance in which ˛ ≥ 1 is a real
number and instead of the ordinary integrals of the c.d.f.s, fractional
integrals are involved. Ortobelli et al. (2007) provide more infor-
mation on extensions of stochastic dominance orderings and their
relation to probability metrics and risk measures.

3.7.3 Return versus payoff and stochastic dominance

The lotteries in von Neumann–Morgenstern theory are usually inter-
preted as probability distributions of payoffs. That is, the domain of
the utility function u(x) is the positive half-line which is interpreted
as the collection of all possible outcomes in terms of dollars from a
given venture. Assume that the payoff distribution is actually the
price distribution Pt of a financial asset at a future time t. In line with
the von Neumann–Morgenstern theory, the expected utility of Pt for
an investor with utility function u(x) is given by

U(Pt) =
∫ ∞

0
u(x)dFPt(x) (3.7.3)

where FPt(x) = P(Pt ≤ x) is the c.d.f. of the random variable Pt. Fur-
ther on, suppose that the price of the common stock at the present
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time is P0. Consider the substitution x = P0 exp(y). Under the new
variable, the c.d.f. of Pt changes to

FPt(P0 exp(y)) = P(Pt ≤ P0 exp(y)) = P

(
log

Pt
P0

≤ y

)
which is, in fact, the distribution function of the log-return of
the financial asset rt = log(Pt/P0). The integration range changes
from the positive half-line to the entire real line and equation
(3.7.3) becomes

U(Pt) =
∫ ∞

−∞
u(P0 exp(y))dFrt(y). (3.7.4)

On the other hand, the expected utility of the log-return distribu-
tion has the form

U(rt) =
∫ ∞

−∞
v(y)dFrt(y) (3.7.5)

where v(y) is the utility function of the investor on the space of log-
returns which is unique up to a positive linear transform. Note that
v(y) is defined on the entire real line as the log-return can be any
real number.

Compare equations (3.7.4) and (3.7.5). From the uniqueness of the
expected utility representation, it appears that (3.7.4) is the expected
utility of the log-return distribution. Therefore, the utility function
v(y) can be computed by means of the utility function u,

v(y) = a.u(P0 exp(y)) + b, a > 0 (3.7.6)

in which the constants a and b appear because of the uniqueness
result. Conversely, the utility function u(x) can be expressed via v,

u(x) = c.v(log(x/P0)) + d, c > 0. (3.7.7)

Note that the two utilities in equations (3.7.4) and (3.7.5) are iden-
tical (up to a positive linear transform) and this is not surprising.
In our reasoning, the investor is one and the same. We only change
the way we look at the venture, in terms of payoff or log-return, but
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the venture is also fixed. As a result, we cannot expect that the utility
gained by the investor will fluctuate depending on the point of view.

Because of the relationship between the functions u and v, proper-
ties imposed on the utility function umay not transfer to the function
v and vice versa. We remark on what happens with the properties
connected with the n-th order stochastic dominance given in this
appendix. Suppose that the utility function v(y) belongs to the set
Un, i.e. it satisfies the conditions

(−1)k+1v(k)(y) ≥ 0, k = 1, 2, . . . , n

where v(k)(y) denotes the k-th derivative of v(y). It turns out that
the function u(x) given by (3.7.7) satisfies the same properties and,
therefore, it also belongs to the set Un. This is verified directly by
differentiation.

In the reverse direction, the statement holds only for n = 1. That
is, if u ∈ Un, n > 1, then the function v given in (3.7.6) may not belong
to Un, n > 1, and we obtain a set of functions to which Un is a subset.
In effect, the n-th degree stochastic dominance, n > 1, on the space
of payoffs implies the n-th degree stochastic dominance, n > 1, on
the space of the corresponding log-returns but not vice versa,

P1
t �n P

2
t =⇒ r1

t �n r
2
t .

where P1
t and P2

t are the payoffs of the two common stocks, for exam-
ple, at time t > 0, and r1

t and r2
t are the corresponding log-returns for

the same period.
Note that this relationship holds if we assume that the prices of

the two common stocks at the present time are equal toP1
0 = P2

0 = P0.
Otherwise, as we demonstrated in the chapter, no such relationship
may exist.

3.7.4 Other stochastic dominance relations

There are ways of obtaining stochastic dominance relations other
than the n-th order stochastic dominance which is based on certain
properties of investors’ utility functions. We borrow an example from
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reliability theory and adapt it for distributions describing payoffs,
losses, or returns.10 The condition defining the order relation is based
on the tail behavior of the corresponding distribution.

Consider the conditional probability

QX(t, x) = P(X > t+ x|X > t) (3.7.8)

where x ≥ 0 and suppose thatX describes a random loss. Then, equa-
tion (3.7.8) calculates the probability of losing more than t+ x on
condition that the loss is larger than t. This probability may vary
depending on the level t with the additional amount of loss being
fixed (x does not depend on t). For example, if t1 ≤ t2, then the corre-
sponding conditional probabilities may be related in the following
way:

QX(t1, x) ≥ QX(t2, x). (3.7.9)

Thus, the deeper we go into the tail, the less likely it is to lose addi-
tional x dollars provided that the loss is larger than the selected
threshold. Conversely, if the inequality is

QX(t1, x) ≤ QX(t2, x), (3.7.10)

then the further we go into the tail, the more likely it becomes to lose
additional x dollars. Basically, the inequalities in (3.7.9) and (3.7.10)
describe certain tail properties of the random variable X.

Denote by F̄X(x) = 1 − FX(x) = P(X > x) the tail of the random
variable X. Then, according to the definition of conditional prob-
ability, equation (3.7.8) can be stated in terms of F̄X(x),

QX(t, x) = F̄X(x + t)
F̄X(t)

. (3.7.11)

Denote by Q the class of all random variables for which QX(t, x) is a
non-increasing function of t for any x ≥ 0, and by Q∗ the class of all
random variables for which QX(t, x) is a non-decreasing function of t
for any x ≥ 0. The random variables belonging to Q satisfy inequal-
ity (3.7.9) and those belonging to Q∗ satisfy inequality (3.7.10) for
any x ≥ 0.

77



CHAPTER 3 CHOICE UNDER UNCERTAINTY

In case the random variable X has a density fX(x), then it can
be determined whether it belongs to Q or Q∗ by the behavior of
the function

hX(t) = fX(t)
F̄X(t)

(3.7.12)

which is known as the hazard rate function or the failure rate function.
If hX(t) is a non-increasing function, then X ∈ Q. If it is a non-
decreasing function, thenX ∈ Q∗. In fact, the only distribution which
belongs to both classes is the exponential distribution. The hazard
rate function of the exponential distribution is constant with respect
to t.

In the following, we introduce a stochastic dominance order
assuming that the random variables describe random profits. Then,
we show how the dominance order definition can be modified if
the random variables describe losses or returns. Denote by �X(t)
the transform

�X(t) = − log(F̄X(t)). (3.7.13)

A positive random variable X is said to dominate another positive
random variable Y with respect to the � transform, X �� Y, if the
random variable Z = �Y(X) is such that Z ∈ Q.

The rationale behind the � transform is the following. First, con-
sider the special case Y = X. The random variable Z = �Y(X) has
exactly the exponential distribution because F̄Y(X) is uniformly dis-
tributed. If Y has a heavier tail than X, then Z has a tail which
increases no more slowly than the tail of the exponential distribution
and, therefore, Z ∈ Q. Thus, the stochastic order �� emphasizes the
tail behavior of X relative to Y.

This stochastic order is interesting since it does not arise from a
class of utility functions through the expected utility theory and,
nevertheless, it has application in finance describing choice under
uncertainty. We illustrate this by showing a relationship with SSD.
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Suppose thatX �� Y. Then, Kalashnikov and Rachev (1990) show
that the following condition holds∫ ∞

t
F̄X(x)dx ≤

∫ ∞

t
F̄Y(x)dx, ∀t ≥ 0. (3.7.14)

The converse statement is not true: that is, condition (3.7.14) does
not ensure X �� Y. Equation (3.7.14) can be directly connected with
SSD. In fact, if (3.7.14) holds and we assume that the expected payoffs
of X and Y are equal, then∫ t

0
FX(x)dx ≤

∫ t

0
FY(x)dx, ∀t ≥ 0.

This inequality means that X dominates Y with respect to RSD and,
therefore, with respect to SSD. Thus, we have demonstrated that if
EX = EY, then

X �� Y =⇒ X �RSD Y =⇒ X �SSD Y. (3.7.15)

Suppose that the random variables describe losses. This interpre-
tation has application in the area of operational risk management
where losses are modeled as positive random variables. We mod-
ify the stochastic order in the following way. A positive random
variable X is said to dominate another positive random variable Y
with respect to the � transform, X ��∗ Y, if the random variable
Z = �Y(X) is such that Z ∈ Q∗. In this case, the tail of X is heavier
than the tail of Y.

If the random variables describe returns, then the left tail describes
losses and the right tail describes profits. The random variable can
be decomposed into two terms,

X = X+ − X−,

where X+ = max(X, 0) stands for the profit and X− = max(−X, 0)
denotes the loss. By modifying the stochastic order, we can determine
the tail of which of the two components influences the stochastic
order. Consider two real valued random variables X and Y describ-
ing random returns. The order �� compares the tails of the profits
X+ and Y+, and ��∗ compares the tails of the losses X− and Y−.
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The stochastic orders �� and ��∗ are constructed without consid-
ering first a particular class of investors but by imposing directly a
condition on the tail of the random variable. There may or may not
be a corresponding set of utility functions such that if Eu(X) ≥ Eu(Y)
for all u(x) in this class, then X �� Y, for example. Nevertheless, we
have demonstrated that the order �� is consistent with SSD and is
not implied by it. We can generalize by concluding that if practical
problems require introducing a stochastic order on the basis of cer-
tain characteristics of the profit, the loss, or the return distribution,
the stochastic order can be defined without seeking first a class of
investors which can generate it. In case this question appears impor-
tant, we can only search for a consistency relation with an existing
stochastic order, such as the one in equation (3.7.15).

Notes

1. The equilibrium model was published in Arrow and Debreu (1954).
2. The theory of stochastic dominance was formulated in the following

papers: Hadar and Russel (1969), Hanoch and Levy (1969), Rothschild
and Stiglitz (1970), and Whitmore (1970).

3. Actually, the payoff was in terms of ducats – a gold coin used as a trade
currency in Europe before World War I.

4. It is also known as the Arrow–Pratt measure of absolute risk aversion after
the economists Kenneth Arrow and John W. Pratt. (See Pratt (1964) and
Arrow (1965).)

5. The Rothschild–Stiglitz stochastic dominance order is also called con-
cave order.

6. In fact, the correct relationship is a positive linear transform of the
function u but this detail is immaterial for the discussion which fol-
lows.

7. Chapter 2 provides more background on probability metrics.
8. The Kolmogorov metric ρ(X,Y) is introduced in Chapter 2; see

equation (2.2.2).
9. Functions satisfying this property are also called affine.

10. Rachev (1985) and Kalashnikov and Rachev (1990) provide more
details on the application of the stochastic order discussed in this
section in reliability theory.
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Chapter 4

A Classification of Probability
Distances

The goals of this chapter are the following:

• To introduce formally primary, simple, and compound probabil-
ity distances.

• To provide examples and study the relationship between primary,
simple, and compound distances.

• To introduce the notions of minimal probability distance, minimal
norms, co-minimal functionals, and moment functions, which are
needed in the study of primary, simple, and compound probabil-
ity distances.

• To introduce formally the class of ideal probability metrics.

Notation introduced in this chapter:

Notation Description

�h A primary distance generated by a p.
semidistance � and mapping h

�̃h A primary h-minimal distance
miP = m

(p)
i P Marginal moment of order p

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
© 2011 Svetlozar T. Rachev, Stoyan V. Stoyanov and Frank J. Fabozzi
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Notation Description

MH,p(g) A primary distance generated by g,H, p
M(g) A primary metric generated by g
� The discrete primary metric
EN(X,Y;H) The engineer’s distance
EN(X,Y; p) The Lp-engineer’s metric
w→ The weak convergence of laws
�̂ The minimal distance w.r.t. �
�H The minimal distance w.r.t. LH (the

Kantorovich distance)
�p The minimal metric w.r.t. Lp
σ The total variation metric
F−1 The generalized inverse of the distribution

function F
� The Prokhorov metric
�� The parametric version of the Prokhorov

metric
�H The Prokhorov distance
θH The Birnbaum–Orlicz distance
ρH The Birnbaum–Orlicz uniform distance
��(P1, P2, ˛) Co-minimal metric functional w.r.t. the p.

distances � and �
��(P1, P2, ˛) Simple semi-distance with K�� = 2K�K�
�c(m) The total cost of transportation of masses

under the plan m
◦
�c The minimal norm w.r.t. �c
�F The Zolotarev semimetric
�s,p The Zolotarev ideal semimetric
�s,p,˛ The Rachev ideal semimetric
M(X,Y) The moment metric
LH H-average compound distance
KFH The Ky Fan distance
K� The parametric family of Ky Fan metrics
�H The Birnbaum–Orlicz compound distance
�p The Birnbaum–Orlicz compound metric
RH The Birnbaum–Orlicz compound average

distance
�̆ The maximal distance w.r.t. �
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Notation Description
(s)
� �-upper bound with marginal sum fixed
(m,p)
� �-upper bound with fixed p-th marginal

moments
�

(m,p)
�-lower bound with fixed p-th marginal

moments
� �-upper bound with fixed sum of p-th

marginal moments
� �-lower bound with fixed sum of p-th

marginal moments

Important terms introduced in this chapter:

Term Concise explanation

primary probability
semimetric

A semimetric function measuring distances
between random quantities in terms of the
disagreement between certain characteristics
of the random quantities

simple probability
semimetric

A semimetric function measuring distances
between random quantities in terms of their
distribution function

compound probability
semimetric

A semimetric function measuring distances
between random quantities defined on a
common probability space

minimal probability
semimetric w.r.t. a
given semimetric

A simple probability semimetric obtained by
minimizing the given semimetric over all
possible joint laws while holding the
marginal distributions fixed

moment function An axiomatically introduced function having
all properties of a probability distance save
for the identity property, used in obtaining
upper bounds to probability distances

ideal semimetric A probability semimetric satisfying a few
properties in addition to the standard ones,
which is best suited for studying rates of
convergence to limit theorems
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4.1 Introduction

The goal of Chapter 2 was to introduce the concept of measuring
distances between random quantities and to provide examples of
probability metrics. While we treated the general theory of probabil-
ity metrics in detail, we did not provide much theoretical background
on the distinction between different classes of probability metrics. We
only noted that three classes of probability (semi-)metrics are distin-
guished – primary, simple, and compound. The goal of this chapter is
to revisit these ideas but at a more advanced level.

When delving into the details of primary, simple, and compound
probability metrics, we also consider a few related objects. They
include co-minimal functionals, minimal norms, minimal metrics,
and moment functions. In the theory, these related functionals are
used to establish upper and lower bounds to given families of prob-
ability metrics. They also help specify under what conditions a given
probability metric is finite.

Finally, we consider ideal probability metrics which can be simple
or compound. They satisfy two properties in addition to the stan-
dard properties satisfied by any probability metric, which makes
their axiomatic structure suitable for studying rates of convergence
in limit theorems. Besides their theoretical properties, we discuss
applications in finance.

In the appendix to this chapter, we provide more general results
and proofs where necessary.

4.2 Primary Distances and Primary Metrics

The theory of probability metrics distinguishes between three cat-
egories of probability metrics. The principal criterion is contained
in the answer to the question: What are the implications for X and
Y provided that they have a zero distance? Suppose that X and Y
stand for the random returns of two equities. Zero distance between
X and Y means that the two random variables are indistinguishable
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in a certain sense. This sense could be to the extent of a given set
of characteristics of X and Y. For example, X is to be considered
indistinguishable from Y if their expected returns and variances are
the same. Therefore, a way to define the distance between them
is through the distance between the corresponding characteristics
(i.e., how much their expected returns and variances deviate). One
example is

�(X,Y) = |EX − EY| + |�2(X) − �2(Y)|.

Such probability metrics are called primary metrics, and they imply
the weakest form of sameness. Common examples of primary met-
rics include Engineer’s metric defined in (2.2.1) and the absolute
moments metric given in (2.2.11).

In this section, we define primary metrics in a general context in
which the set of characteristics is introduced by means of a mapping
defined on a space of probability laws taking values inRJ . Generally,
primary probability distances induce a distance in the image space
of the mapping (i.e., in the space of characteristics RJ). For example,
in the case of Engineer’s metric, the image space of the mapping is
the real line representing the mathematical expectation of probability
laws. Finally, we define a functional which under certain conditions
yields primary distances. Additional examples are considered in the
appendix to this chapter.

Let h : P1 → RJ be a mapping, whereP1 = P1(U) is the set of Borel
probability measures (laws) for some separable metric space (s.m.s.)
(U, d) and J is some index set. This function h induces a partition of
P2 = P2(U) (the set of laws on U2) into equivalence classes for the
relation

P
h∼ Q ⇐⇒ h(P1) = h(Q1) andh(P2) = h(Q2)Pi : = TiP, Qi : = TiQ

(4.2.1)

where Pi and Qi (i = 1, 2) are the ith marginals of P and Q,
respectively. Let � be a p. semidistance on P2 with parameter
K� (Definition 2.4.1), such that � is constant on the equivalence
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classes of ∼, i.e.

P
h∼ Q ⇐⇒ �(P) = �(Q). (4.2.2)

For better readability, sometimes we use hP1 instead of h(P1) to
denote the characteristics of the probability law P1.

Definition 4.2.1. If the p. semidistance� = �h satisfies relation (4.2.2),
then we call � a primary distance (with parameter K�). If K� = 1 and
� assumes only finite values, we say that � is a primary metric.

Obviously, by relation (4.2.2), any primary distance is completely
determined by the pair of marginal characteristics (hP1, hP2). In the
case of primary distance � we shall write �(hP1, hP2) : = �(P) and
hence �may be viewed as a distance in the image space h(P1) ⊆ RJ :
that is, the following metric properties hold:

ID(1) hP1 = hP2 ⇐⇒ �(hP1, hP2) = 0
SYM(1) �(hP1, hP2) = �(hP2, hP1)
TI(1) If the following marginal conditions are fulfilled

a = h(T1P
(1)) = h(T1P

(2)) b = h(T2P
(2)) = h(T1P

(3))

c = h(T2P
(1)) = h(T2P

(3))

for some law P(1), P(2), P(3) ∈ P2 then �(a, c) ≤ K�[�(a, b) + �(b, c)].
The notion of primary semidistance�h becomes easier to interpret

assuming that a probability space (	,A,Pr) with property (2.6.2)
is fixed (see Remark 2.6.2). In this case �h is a usual distance (see
Definition 2.3.1) in the space

h(X) : = {hX : = hPrx, where X ∈ X(U)} (4.2.3)

and thus, the metric properties of � = �h take the simplest form (cf.
Definition 2.3.2):

ID(1∗) hX = hY ⇐⇒ �(hX, hY) = 0
SYM(2∗) �(hX, hY) = �(hY, hX),
TI(3∗) �(hX, hZ) ≤ K�[�(hX, hY) + �(hY, hZ)].
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We noted that the Engineer’s metric and the absolute moments met-
ric are two examples of primary metrics. There is a general procedure
which, under certain conditions, produces a primary metric. We
illustrate this procedure in the more simple setting of random vari-
ables but it is applicable to any kind of random elements. Suppose
that the random variables X and Y describe the return distribution
of the common stocks of two corporations and we are interested
in only three characteristics – expected return, variance, and skew-
ness. Also, suppose that we have selected a probability metric which
compares the random variables, such as the Kolmogorov metric or
the Lp-metric discussed in Chapter 2. It is possible to obtain a pri-
mary metric comparing these three characteristics, which is based
on the already selected probability metric. The procedure is the fol-
lowing. Take all random variables with expected return, variance,
and skewness equal to those of X and also all random variables
with the corresponding three characteristics equal to those of Y.
Build all possible pairs and then from each pair construct all pos-
sible two-dimensional random vectors by varying the dependence
structure. Collect all two-dimensional vectors resulting from all pairs
and estimate the distance between the elements of these pairs using
the selected probability metric. Compute the minimum of these dis-
tances and call it the primary minimal distance. Since we compute the
minimum by varying everything but the three characteristics, the
primary minimal distance depends only on them. It is possible to
demonstrate that under certain conditions the primary minimal dis-
tance satisfies the axioms of probability semimetric; therefore it can
be used to measure the dissimilarity between X and Y in terms of
the three characteristics.

It is essential that the resulting minimal primary metric originates
from an already selected probability metric. Thus, this procedure
provides a way of obtaining a primary metric consistent in a certain
sense with another probability metric. This example is illustrated in
a more formal way below.

Example 4.2.1. Primary minimal distances. Each p. semidistance �
and each mapping h : P1 → RJ determine a functional �̃h : h(P1) ×
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h(P1) → [0,∞] defined by the following equality

�̃h(a1, a2) : = inf{�(P) : hPi ≡ ai, i = 1, 2} (4.2.4)

where Pi are the marginals of P for any pair (a1, a2) ∈ h(P1) × h(P1).
As we noted, the functional (4.2.4) does not always yield a primary

distance. It is a primary distance for different special functions h and
spaces U. The appendix to this chapter contains other examples of
primary metrics.

Definition 4.2.2. The functional �̃h is called a primary h-minimal dis-
tance with respect to the p. semidistance �.

4.3 Simple Distances and Metrics

Technically, simple distances are defined on the space of distribu-
tion functions. If two random variables have one and the same
distribution functions, then a simple semidistance indicates that
the two random variables are coincident. In a similar way, if a sim-
ple distance between two random variables is equal to zero, then the
corresponding distribution functions coincide.

Important examples of simple metrics include the Kolmogorov
metric defined in (2.2.2), the Lévy metric defined in (2.2.3), and
the Kantorovich metric defined in (2.2.5) in Chapter 2. Some of the
simple metrics defined directly as functionals of distribution func-
tions arise as minimal metrics. We discuss this important construction
and prove that minimal semidistances are always simple. Two other
related constructions include minimal norms and co-minimal func-
tionals. While in general they are not simple distances, they give rise
to probability distances under certain conditions. They can also be
used to construct lower and upper bounds respectively to simple
distances.

Further on, some simple semidistances allow for alternative repre-
sentations known as dual forms. Generally, dual forms are represented
as the supremum of a functional with respect to functions belong-
ing to some functional space. Dual forms are also referred to as
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�-representations. In this chapter, we do not discuss in detail theories
leading to dual forms. We only state the dual forms of some proba-
bility metrics in the appendix to this chapter where we also provide
further examples of simple distances.

There is a link between simple and primary distances. By including
additional characteristics in a primary metric, we include additional
information from the distribution functions of the two random vari-
ables. If we include a sufficiently large number of characteristics, the
primary metric turns into a simple metric. Generally, a very rich set
of characteristics will ensure that the distribution functions coincide.

More formally, any primary distance �(P) (P ∈ P2) is completely
determined by the pair of marginal distributions Pi = TiP (i = 1, 2),
since the equality P1 = P2 implies hP1 = hP2 (see relations (4.2.1),
(4.2.2) and Definition 4.2.1). On the other hand, if the mapping h is
“rich enough” then the opposite implication

hP1 = hP2 ⇒ P1 = P2

occurs. The simplest example of such “rich” h : P1(U) → RJ is given
by the equalities

h(P) : = {P(C), C ∈ C, P ∈ P1(U)} (4.3.1)

where J ≡ C is the family of all closed non-empty subsets C ⊆ U.
This example allows for the following interpretation in invest-

ment management when considering random variables describing
the return of two investments. Suppose that X and Y are two such
random variables. The function h as defined in (4.3.1) calculates
the probability that X or Y belongs to any closed interval (e.g.,
P(a ≤ X ≤ b) for all possible choices of a and b). The relation hX = hY

means that all these probabilities computed forX coincide with those
computed for Y (i.e., P(a ≤ X ≤ b) = P(a ≤ Y ≤ b) for all possible
values of a and b). This information is sufficient to conclude that
the distribution function of X coincides with the distribution func-
tion of Y because the choice a = −∞ and b = x, x ∈ R defines the
distribution function. Therefore, the requirement that the probabil-
ities of X and Y coincide on all closed intervals implies that their
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distribution functions coincide. However, this does not mean that in
all states of the world the return of investment X would equal the
return of investment Y. Even though the two investments are iden-
tical from the point of view of their return distribution, a portfolio
manager may be interested in holding both in a portfolio because
of a diversification effect arising from the way X and Y depend on
each other.

Another example of a sufficiently rich set of characteristics is

h(P) =
{
Pf : =

∫
U
fdP : f ∈ Cb(U)

}
P ∈ P1(U)

where Cb(U) is the set of all bounded continuous functions on U.
In this case, if we consider random variables, the function h calcu-
lates the moments Ef (X) for all possible choices of f from the set of
bounded continuous functions defined on the real line. Even though
the practical application of this example is limited, it illustrates the
connection between primary and simple distances.

Keeping in mind these two examples, we shall define the notion
of “simple” distance as a particular case of primary distance with h
given by equality (4.3.1).

Definition 4.3.1. The p. semidistance � is said to be a simple semidis-
tance in P2 = P2(U), if for each P ∈ P2

�(P) = 0 ⇐ T1P = T2P.

If, in addition, � is a p. semimetric, then � will be called a simple
semimetric. If the converse implication (⇒) also holds, we say that �
is simple distance. If, in addition, � is a p. semimetric, then � will be
called a simple metric.

Since the values of the simple distance �(P) depend only on the pair
marginals P1, P2 we shall consider � as a functional on P1 × P1 and
we shall use the notation

�(P1, P2) : = �(P1 × P2) (P1, P2 ∈ P1)
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where P1 × P2 means the measure product of laws P1 and P2. In this
case the metric properties of� take the form (cf. Definition 2.4.1) (for
each P1, P2, P3 ∈ P1):

ID(2) P1 = P2 ⇐⇒ �(P1, P2) = 0
SYM(2) �(P1, P2) = �(P2, P1)
TI(2) �(P1, P2) ≤ K�(�(P1, P2) + �(P2, P3)).

Hence, the space P1 of laws P with a simple distance � is a distance
space (see Definition 2.3.2). Clearly each primary distance is a simple
semidistance inP1. The Kolmogorov metric ρ (2.2.2), the Lévy metric
L (2.2.3), and the θp-metrics (2.2.6) are simple metrics in P(R).

Let us consider a few more examples of simple metrics which we
shall use later on.

Example 4.3.1. Minimal distances. We described the primary mini-
mal distance as a procedure for obtaining primary distances starting
from a given probability distance. There is a similar procedure which
yields simple distances from a given probability distance. In con-
trast to the primary minimal distance, this procedure always yields
a simple distance. We will illustrate it in the context of two random
variables X and Y describing the return distribution of the common
stocks of two corporations.

Denote the distribution functions of the two random variables by
FX and FY, respectively. Construct the set of all random variables
with the same distribution function as FX and also the set of all
random variables with the same distribution function as FY. Take
a member from the first set and one from the second set and build all
possible bivariate random vectors by varying the dependence struc-
ture between the two random variables. To evaluate the probability
distance, we start with all those pairs and then calculate the mini-
mum. This minimum is called the minimal distance. It depends only
on the distribution functions FX and FY, and satisfies the axioms of
probability semidistances. Therefore, it is a simple semidistance.

If a simple distance indicates that FX and FY coincide, this does not
necessarily mean that in all states of the world the common stocks
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have equal returns – they only have equal distribution functions. As
we noted, a portfolio manager may include both in a portfolio if there
is a diversification effect (e.g., if X is negatively correlated to Y).

The minimal semidistance is defined formally in the follo-
wing way.

Definition 4.3.2. For a given p. semidistance � on P2 the functional
�̂ on P1 × P1 defined by the equality

�̂(P1, P2) : = inf{�(P);TiP = Pi, i = 1, 2} P1, P2 ∈ P1 (4.3.2)

is said to be (simple) minimal (w.r.t. �) distance.

As we showed in section 2.6.2, for a “rich enough” probability space,
the space P2 of all laws onU2 coincides with the set of joint distribu-
tions PrX,Y ofU-valued random variables. Thus, it is�(P) = �(PrX,Y)
for someX,Y ∈ X(U) and as a result equation (4.3.2) can be rewritten
as follows:

�̂(P1, P2) = inf{�(X,Y) : PrX = P1,PrY = P2}.

The last is the Zolotarev definition of a minimal metric (Zolotarev,
1976).

In the next theorem we shall consider the conditions on U that
guarantee �̂ to be a simple metric. We use the notation w−→ to mean
“weak convergence of laws” (see, for example, Billingsley, 1968).

Theorem 4.3.1. LetU be a u.m. s.m.s. (see Definition 2.6.2) and let�be
a p. semidistance with parameterK�. Then �̂ is a simple semidistance
with parameter K�̂ = K�. Moreover, if � is a p. distance satisfying
the following “continuity” condition

P(n) ∈ P2 P(n) w−→ P ∈ P2

�(P(n)) → 0

⎫⎬⎭ ⇒ �(P) = 0

then �̂ is a simple distance with parameter K�̂ = K�.
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Remark 4.3.1. The continuity condition is not restrictive; in fact,
all p. distances we are going to use satisfy this condition.

Remark 4.3.2. Clearly, if � is a p. semimetric then, by the above
theorem, �̂ a simple semimetric.

Proof. ID(2): If P1 ∈ P1 then we letX ∈ X(U) have the distribution P1.
Then, by ID(∗) (Definition 2.4.2),

�̂(P1, P1) ≤ �(Pr(X,X)) = 0.

Suppose now that � is a p. distance and the continuity condition
holds. If �̂(P1, P2) = 0 then there exists a sequence of laws P(n) ∈ P2

with fixed marginals TiP(n) = Pi (i = 1, 2) such that �(P(n)) → 0 as
n → ∞. Since Pi is a tight measure then the sequence {P(n), n ≥ 1}
is uniformly tight, i.e., for any ε > 0 there exists a compact Kε ⊆ U2

such thatP(n)(Kε) ≥ 1 − ε for alln ≥ 1 (cf. Dudley (1989), Section 11.5).
Using Prokhorov compactness criteria (see, for instance, Billingsley
(1968), Theorem 6.1) we choose a subsequenceP(n′) that weakly tends
to a lawP ∈ P2, hence,TiP = Pi and�(P) = 0. Since� is a p. distance,
P is concentrated on the diagonal x = y and thus P1 = P2 as desired.

SYM(2): Obvious.
TI(2): Let P1, P2, P3 ∈ P1. For any ε > 0 define a law P12 ∈ P2 with

marginals TiP12 = Pi (i = 1, 2) and a law P23 ∈ P2 with TiP23 = Pi+1

(i = 1, 2) such that �̂(P1, P2) ≥ �(P12) − ε and �̂(P2, P3) ≥ �(P23) − ε.
Since U is a u.m. s.m.s. then there exist Markov kernels P′(A|z) and
P′′(A|z) defined by the equalities

P12(A1 × A2): =
∫
A2

P′(A1|z)P2(dz) (4.3.3)

P23(A2 × A3): =
∫
A2

P′′(A3|z)P2(dz) (4.3.4)

for allA1,A2,A3 ∈ B1 (see Corollary 2.6.2). Then define a set function
Q on the algebra A of finite unions of Borel rectangles A1 × A2 × A3

95



CHAPTER 4 A CLASSIFICATION OF PROBABILITY DISTANCES

by the equation

Q(A1 × A2 × A3) : =
∫
A2

P′(A1|z)P′′(A3|z)P2(dz). (4.3.5)

It is easily checked that Q is countably additive on A and therefore
extends to a law on U3. We use “Q” to represent this extension also.
The lawQ has the projections T12Q = P12, T23Q = P23. Since � is a p.
semidistance with parameter K = K� we have

�(P1, P3)≤�(T13Q) ≤ K[�(P12) + �(P13)]

≤K[�̂(P1, P2) + �̂(P2, P3)] + 2Kε.

Letting ε → 0 we complete the proof of TI(2). �

We will demonstrate in the next chapters that all simple distances in
the examples in the appendix to this chapter are actually simple min-
imal �̂distances with respect to p. distances� that will be introduced
in section 4.4 (see further examples 4.7.10 to 4.7.12).

Example 4.3.2. Co-minimal metrics. There is an extension of the con-
struct of minimal metrics which also produces simple metrics. The
extension involves not one but several preselected probability dis-
tances which restrict the set of pairs of probability laws we consider
for computing the minimal distance. For example, suppose that X
andY are two random variables describing the return distribution of
a portfolio and a benchmark, respectively. We may want to compute
the distance between X and Y through the minimal metric construct
but considering only those pairs of random variables which are cou-
pled in a particular way. For instance, we would like to consider only
those for which the tracking error is below a given number. We may
want to impose this restriction because without it the minimal dis-
tance may indicate thatX is too close to Y because it may be attained
at an unrealistic dependence model. In effect, the set of bivariate
random variables (U,V) we would like to consider is

{(U,V) : FU = FX, FV = FY, �(X − Y) ≤ ˛}
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where ˛ > 0 is the upper bound on the tracking error. As a result, we
compute

��(X,Y, ˛) = inf{�(U,V), FU = FX, FV = FY, �(X − Y) ≤ ˛}
where�(U,V) is chosen in advance as in the construct of the minimal
metric. The functional ��(X,Y, ˛) is called co-minimal functional with
respect to the two probability distances � and �.

Following the main idea of obtaining primary and simple dis-
tances by means of minimization procedures of certain types (see
Definitions 4.2.2 and 4.3.2), we define formally the notion of “co-
minimal distance.” For a given compound, semidistances � and �

with parametersK� andK�, respectively, and for each ˛ > 0 denote

��(P1, P2, ˛) = inf{�(P) : P ∈ P2, T1P = P1, T2P = P2, �(P) ≤ ˛}
P1, P2 ∈ P1 (4.3.6)

(see equations (4.7.14) and (4.7.16)).

Definition 4.3.3. The functional��(P1, P2, ˛) (P1, P2 ∈ P1, ˛ > 0) will
be called the co-minimal (metric) functional w.r.t. the p. distances � and
� (see Figure 4.2)

The co-minimal functional is not a probability semidistance itself.
Nevertheless, it induces a probability semidistance. The details are
given in the appendix to this chapter. We will only note that there
is a relationship between the minimal distance and the co-minimal
distance which, in this example, is the inequality

�̂(X,Y) ≤ ��(X,Y, ˛).

Intuitively, the more ˛ increases, the less restrictive the additional
constraint becomes. Therefore, at the limit �̂(X,Y) = ��(X,Y,∞).

Example 4.3.3. Minimal norms. We considered a number of different
examples of probability distances in Chapter 2. Note that some of
the simple metrics directly depend on the difference between the
probability laws P1 − P2, such as the Kolmogorov metric (2.2.2), the
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Kantorovich metric (2.2.5), and the Lp-metrics between distribution
functions (2.2.6). If we consider random variables, the difference
P1 − P2 translates into the difference between the corresponding dis-
tribution functions FX(x) − FY(x). There is a set of such functionals
which are called minimal norms and denoted by

◦
� but not all proba-

bility semidistances which directly depend on the difference P1 − P2

are minimal norms.
We introduce the minimal norms in this section by means of their

dual representation. The formal definition of minimal norms is given
in the appendix to this chapter. The dual representation allows for an
interesting interpretation in the field of behavioral finance concern-
ing making choice under uncertainty. We discussed expected utility
theory and cumulative prospect theory in Chapter 3.

The minimal norm
◦
�c(P1, P2) of two probability laws P1, P2 ∈ P1

is defined as

◦
�c(P1, P2) = sup

f∈F

∣∣∣∣∫
U
fd(P1 − P2)

∣∣∣∣ (4.3.7)

where f : U → R is a function satisfying the “Lipschitz” condition
|f (x) − f (y)| ≤ c(x, y) in which c(x, y) : U2 → R+ is a given continu-
ous, symmetric, and non-negative function. The Lipschitz condition
can be regarded as a growth condition on f . Thus, we compute the
supremum by varying the function f in the set F of all functions sat-
isfying the growth condition. The function c is specified in advance
and this is reflected by the subscript in the notation of the minimal
norm.

From the point of view of cumulative prospect theory, the function
f appearing in the definition can be interpreted as a value func-
tion of an individual. It indicates how much “utility” the individual
gains from a given outcome. Suppose that X and Y are two random
variables describing the return distribution of two investments. In
this setting, we can interpret

∫
R
fdFX as the expected value gained

by the individual with a value function f . In effect, the functional∫
R
fd(FX − FY) computes the difference between the expected values

of the two investments gained by the same individual. Therefore, the
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minimal norm in (4.3.7) can be interpreted as the largest difference
running through all the investors. Intuitively, if the largest difference
is zero, then all investors are indifferent between the two opportu-
nities. If the set of investors is large enough, this would indicate that
the distribution functions FX and FY coincide.

Using the theory of probability metrics, it is possible to show that
there exists a relationship between minimal norms and minimal met-
rics. In the context of the example above, the following inequality
holds true,

◦
�c(X,Y) ≤ �̂c(Y,X) ≤ �c(Y,X),

where�c = Ec(X,Y). In the appendix to this chapter, this relationship
is considered in the general case.

It is important to note that generally the minimal norm provides
a lower bound for the minimal metric in contrast to the co-minimal
distance which provides an upper bound. In fact, the minimal norm
is not always a simple semidistance. It depends on how rich the set
F is. In the appendix to this chapter, we provide a sufficient condition.

4.4 Compound Distances and Moment Functions

We continue the classification of probability distances. Recall some
basic examples of p. metrics on a s.m.s. (U, d):

(a) The moment metric (see Example 4.7.1):

M(X,Y) = |Ed(X, a) − Ed(Y, a)| X,Y ∈ X(U)

(M is a primary metric in the space X(U) of U-valued r.v.s).
(b) The Kantorovich metric (see Example 4.7.6):

κ(X,Y) = sup{|E f (X) − E f (Y)| : f : U → R bounded,

|f (x) − f (y)| ≤ d(x, y) ∀x and y ∈ U}

(κ is a simple metric in X(U)).
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(c) The L1-metric (see (2.4.3)):

L1(X,Y) = Ed(X,Y) X,Y ∈ X(U).

The L1-metric is a p. metric inX(U) (Definition 2.4.2). Since the value
of L1(X,Y) depends on the joint distribution of the pair (X,Y), we
shall call L1 a compound metric.

Definition 4.4.1. A compound distance (resp., metric) is any probability
distance � (resp., metric). See Definitions 2.4.1 and 2.4.2.

Remark 4.4.1. In many papers on probability metrics, “com-
pound” metric stands for a metric which is not simple. However, all
“non-simple” metrics that have been used in these papers are in fact
“compound” in the sense of Definition 4.4.1. The problem of classi-
fication of p. metrics which are neither compound (in the sense of
Definition 4.4.1) nor simple is open.

We noted that the coincidence of distribution functions is stronger
than the coincidence of certain characteristics, such as absolute
moments. There is a stronger form of identity than coincidence
of distribution functions, which is actually the strongest possible.
Consider the case in which no matter what happens, the returns of
common stock 1 and common stock 2 are identical. Hence, we can
describe the two random variables as being coincident in each state
of the world. As a consequence, their distribution functions are the
same because the probabilities of all events of the return of common
stock 1 are exactly equal to the corresponding events of the return
of common stock 2. This identity is also known as almost everywhere
identity because it considers all states of the world which happen
with non-zero probability. The compound metrics imply the almost
everywhere identity.

Since a compound metric � may take infinite values, we have to
determine a concept of �-boundedness. This concept allows con-
struction of upper bounds by means of special functionals called
moment functions. We will illustrate this concept with the L2-metric
defined in equation (2.2.9) in Chapter 2.
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We noted that the L2-metric is closely related to tracking error.
Assume that an approximate model for the daily return distribution
of a portfolio and a benchmark are two zero-mean random variables
X and Y with standard deviations �X and �Y, respectively. Under
these assumptions, the tracking error equals the L2-metric,

L2(X,Y) = (E(X − Y)2)1/2.

If we want to compute and use the tracking error in practice, we have
to make sure it is a finite number. The sample estimate of tracking
error is always a finite number, as any other sample estimate, but
it may become infinite depending on the assumed model for the
return distributions. Using the properties of variance, we obtain the
following bounds for the tracking error,

|�X − �Y| ≤ L2(X,Y) ≤ �X + �Y.

Both bounds are obtained by varying the correlation between the
portfolio and benchmark returns. The upper bound appears whenX
and Y are perfectly positively correlated and the lower bound when
they are perfectly negatively correlated. The upper bound appears
to be the sum of the standard deviations of X and Y. Therefore, if
the assumed models are such that �X < ∞ and �Y < ∞, the tracking
error is always finite.

Note that we can view the upper bound as a sum of two moments.
In the general case, the upper bound can also be a sum of two
moments which is why it is called a moment function. Moments func-
tions have an axiomatic construction which differs from the notion
of simple distance in the “identity” property only (cf. Definition 4.3.1
and ID(2), TI(2)).

Definition 4.4.2. A mapping M : P1 × P1 → [0,∞] is said to be a
moment function (with parameterKM ≥ 1) if it possesses the following
properties for all P1, P2, P3 ∈ P1.

SYM(4) M(P1, P2) =M(P2, P1),
TI(4) M(P1, P3) ≤ KM[M(P1, P2) +M(P2, P3)].
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As we noted, we use moment functions as upper bounds for p. dis-
tances �. As a more general example, we now consider � to be the
p. average distance (see equalities (4.7.49) and (4.7.50)):

Lp(P) : =
[∫

U×U
dp(x, y)P(dx,dy)

]p′

p > 0

× p′ : = min(1, 1/p) P ∈ P2. (4.4.1)

For any p > 0 and a ∈ U define the moment function:

�p,a(P1, P2) : =
[∫

U
dp(x, a)P1(dx)

]p′

+
[∫

U
dp(x, a)P2(dx)

]p′

(4.4.2)

Taking advantage of the Minkovski inequality, we get our first
(rough) upper bound for the value Lp(P) under the convention that
the marginals TiP = Pi (i = 1, 2) are known:

Lp(P) ≤ �p,a(P1, P2). (4.4.3)

Obviously, by the inequality (4.4.3), we can get a more refined esti-
mate:

Lp(P) ≤ �p(P1, P2) (4.4.4)

where

�p(P1, P2) : = inf
a∈U

�p,a(P1, P2). (4.4.5)

Further, we shall consider the following question.

Problem 4.4.1. What is the best possible inequality of the type

Lp(P) ≤ L̆p(P1, P2), (4.4.6)

where L̆p is a functional that depends on the marginals Pi = TiP

(i = 1, 2) only?

Remark 4.4.2. Suppose (X,Y) is a pair of dependent random vari-
ables taking on values in s.m.s. (U, d). Knowing only the marginal
distributions P1 = PrX and P2 = PrY, what is the best possible
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improvement of the “triangle inequality” bound

L1(X,Y) : = Ed(X,Y) ≤ Ed(X, a) + Ed(Y, a). (4.4.7)

The answer is simple: The best possible upper bound for Ed(X,Y) is
given by

L̆1(P1, P2) : = sup{L1(X1, X2) : PrXi = Pi, i = 1, 2}. (4.4.8)

More difficult is to determine dual and explicit representations for L̆1

similar to those of the minimal metric L̂1 (the Kantorovich metric).

More generally, for any compound semidistance �(P) (P ∈ P2) let
us define the functional

�̆(P1, P2) : = sup{�(P) : TiP = Pi, i = 1, 2}P1, P2 ∈ P1. (4.4.9)

Definition 4.4.3. The functional �̆ : P1 × P1 → [0,∞] will be called
maximal distance w.r.t. the given compound semidistance �.

Conceptually, the idea of maximal distances is close to the idea of
minimal distances. According to the definitions, we compute the
probability semidistance at all bivariate laws with one-dimensional
projections equal to P1 and P2. However, instead of computing the
infimum, we calculate the supremum. While similar on a conceptual
level, the maximal distance does not have metric properties in con-
trast to the minimal distance. The appendix to this chapter contains
further properties of maximal distances.

There are examples of probability semidistances for which the
minimal and the maximal distances can be computed explicitly. Sup-
pose that the probability semidistance can be represented in the
following special form,

�c(P) =
∫
U2
c(x, y)P(dx,dy), P ∈ P2,

where c(x, y) : U2 → R+ is a symmetric, non-negative function. If
the function c can be represented as c(x, y) =  (x − y) where  is a
convex, non-negative function, then the minimal and the maximal
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distances allow for the following explicit representations,

�̂(P1, P2) =
∫ 1

0
 (F−1

1 (t) − F−1
2 (t))dt

�̆(P1, P2) =
∫ 1

0
 (F−1

1 (t) − F−1
2 (1 − t))dt,

where F−1
i denotes the generalized inverse of the distribution func-

tion Fi, i = 1, 2. This fact can be used to derive explicit forms of
minimal and maximal distances for the average compound distances
LH(P) given in equation (4.7.10).

Minimal and maximal distances are only one possible way to
obtain lower and upper bounds of probability semidistances. There
are other general constructs, which are described in the appendix to
this chapter. In this section, we provide an illustration of only one of
them-the �-lower and �-upper bound with fixed marginal moments. The
general idea is again to compute infimum and supremum but mak-
ing the constraints more loose: that is, instead of holding the marginal
distribution functions fixed, we hold two marginal moments fixed.
In the general setting, we compute,

�
(m)

(a, b) = inf
{
�(P) :

∫
U
fdP1 = a,

∫
U
fdP2 = b

}
and

(m)
� (a, b) = sup

{
�(P) :

∫
U
fdP1 = a,

∫
U
fdP2 = b

}
where P1 and P2 are the marginal laws of P ∈ P2 and f defines the
moment. From general arguments, it follows that

�
(m)

(a, b) ≤ �̂(P1, P2) ≤ �(P) ≤ �̆(P1, P2) ≤ (m)
� (a, b)

where P1 and P2 are the marginal laws of P ∈ P2. For some spe-
cial cases of �, these two bounds allow for explicit representations.
For example, consider the average compound metric L2(X,Y) =
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(E(X − Y)2)1/2 and the following bounds,

�
(m,p)

(a, b) = inf{L2(X,Y) : (E(X − u)p)1/p = a, (E(Y − u)p)1/p = b}

and
(m,p)
� (a, b) = sup{L2(X,Y) : (E(X − u)p)1/p = a, (E(Y − u)p)1/p = b}

where p ≥ 1. In this case, it can be proved that

�
(m,p)

(a, b) = |a− b| and
(m,p)
� (a, b) = a+ b.

This result is consistent with the example we gave at the beginning
of the section with tracking error which appears as a special case
when p = 2.

Note that the�-lower bound with marginal moments fixed resem-
bles the minimal primary distance. In fact, the concept of minimal
primary distance is more general and the �-lower bound with
marginal moments fixed is a special case.

In the appendix to this section, we provide other examples of lower
and upper bounds and how they are related to one another.

4.5 Ideal Probability Metrics

We noted that an important application of probability metrics is in
establishing the rate of convergence in limit theorems. In the litera-
ture, there are many results which state the convergence rate in terms
of different simple probability metrics, such as the Kolmogorov met-
ric, the total variation metric, the uniform metric between densities,
the Kantorovich metric, etc.1 In fact, it turned out that probability
metrics with special structure have to be introduced in order for
exact estimates of the convergence rate to be obtained in limit theo-
rems. These metrics are called ideal metrics and their special structure
is dictated by the particular problem under study – different addi-
tional axioms are added depending on the limit problem. In this
respect, they are called ideal because they solve the problem in the
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best possible way due to their special structure. In this section, we
describe the notion of ideal probability metrics used to obtain exact
convergence rates in the generalized central limit theorem (CLT)
which we described in Chapter 1. It appears that the additional
axioms have an interesting interpretation from the point of view of
finance.

In Chapter 2, we introduced the axiomatic definition of probability
metrics. We briefly repeat the definition. A probability metric�(X,Y)
is a functional which measures the “closeness” between the random
variables X and Y, satisfying the following three properties:

Property 1. �(X,Y) ≥ 0 for any X,Y and �(X,X) = 0
Property 2. �(X,Y) = �(Y,X) for any X,Y
Property 3. �(X,Y) ≤ �(X,Z) + �(Z,Y) for any X,Y,Z

The three properties are called the identity axiom, the symmetry axiom,
and the triangle inequality, respectively.

The ideal probability metrics are probability metrics which satisfy
two additional properties which make them uniquely positioned
to study problems related to the generalized CLT. The two addi-
tional properties are the homogeneity property and the regularity
property.

Homogeneity property The homogeneity property is

Property 4. �(cX, cY) = |c|r�(X,Y) for any X,Y and constants
c ∈ R and r ∈ R.

Basically, the homogeneity property states that if we scale the
two random variables by one and the same constant, the distance
between the scaled quantities (�(cX, cY)) is proportional to the ini-
tial distance (�(X,Y)) by |c|r. In particular, if r = 1, then the distance
between the scaled quantities changes linearly with c.

The homogeneity property has the following financial interpreta-
tion. If X and Y are random variables describing the random return
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of two portfolios, then converting proportionally into cash, for exam-
ple, 30% of the two portfolios results in returns scaled down to 0.3X
and 0.3Y. Since the returns of the two portfolios appear scaled by the
same factor, it is reasonable to assume that the distance between the
two scales down proportionally.

Regularity property The regularity property is

Property 5. �(X + Z,Y + Z) ≤ �(Y,X) for any X,Y and Z
independent of X and Y.

The regularity property states that if we add to the initial random
variablesX and Y one and the same random variable Z independent
of X and Y, then the distance decreases.

The regularity property has the following financial interpretation.
Suppose that X and Y are random variables describing the random
values of two common stock portfolios and Z describes the random
price of a common stock. Then buying one share of stock Z per port-
folio results in two new portfolios with random wealth X + Z and
Y + Z. Because of the common factor in the two new portfolios, we
can expect that the distance betweenX + Z andY + Z is smaller than
the one between X and Y.

4.5.1 Interpretation and examples of ideal
probability metrics

Any functional satisfying all five properties is called an ideal prob-
ability metric of order r.

There are examples of both compound and simple ideal probabil-
ity metrics. For instance, the p-average compound metric Lp(X,Y)
defined in equation (4.7.49) in the appendix to this chapter and the
Birnbaum–Orlicz metric �p(X,Y) defined in equation (4.7.59) in the
appendix to this chapter are ideal compound probability metrics of
order 1 and 1/p, respectively. In fact, almost all known examples of
ideal probability metrics of order r > 1 are simple metrics.
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Other examples of simple ideal probability distances include:

(a) The uniform metric between densities �(X,Y) defined as

�(X,Y) = max
x∈R

| fX(x) − fY(x)| (4.5.1)

is an ideal metric of order −1.
(b) The Lp-metrics between distribution functions θp(X,Y) defined

in equation (4.7.40) in the appendix to this chapter is an ideal
probability metric of order 1/p, p ≥ 1.

(c) The Kolmogorov metric ρ(X,Y) defined in equation (4.7.41)
in the appendix to this chapter is an ideal metric of order 0.
This can also be inferred from the relationship ρ(X,Y) =
θ∞(X,Y).

(d) The Lp-metrics between inverse distribution functions �p(X,Y)
defined in equation (4.7.23) in the appendix to this chapter is
an ideal metric of order 1.

(e) The total variation metric σ(X,Y) defined in equation (4.7.25)
in the appendix to this chapter is an ideal probability metric of
order 0.

Let us illustrate the order of ideality, or the homogeneity order, by the
ideal metrics �(X,Y) and σ(X,Y) which are both based on measuring
distances between density functions. The left part of Figure 4.1 shows
the densities fX(x) and fY(x) of two random variablesX and Y. At the
bottom of the figure, we can see the absolute difference between
the two densities |fX(x) − fY(x)| as a function of x. The upper-right
plot shows the densities of the scaled random variables 0.5X and
0.5Y. Note that they are more peaked at the means of X and Y. The
lower-right plot shows the absolute difference |fX/2(x) − fY/2(x)| as a
function of x.

The uniform distance between the two densities is equal to the
maximum absolute difference between them – see the definition in
(4.5.1). On Figure 4.1 we can see that the maximum between the
densities of the scaled random variables is clearly larger than the
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Figure 4.1: The left part shows the densities of X and Y and the absolute
difference between them. The right part shows the same information but
for the scaled random variables 0.5X and 0.5Y.

maximum of the non-scaled counterparts. Actually, it is exactly twice
as large,

�(X/2, Y/2) = 2�(X,Y)

because the metric �(X,Y) is ideal of order −1.
The total variation metric σ(X,Y) can be expressed as

σ(X,Y) = 1
2

∫
R

|fX(x) − fY(x)|dx

provided that X and Y have densities fX(x) and fY(x). Since the total
variation metric is ideal of order zero,

σ(X/2, Y/2) = σ(X,Y),
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then it follows that the surface closed between the two graphs is not
changed by the scaling. Therefore, the shaded areas on Figure 4.1 are
exactly the same.

Suppose that X and Y are random variables describing the return
of two portfolios. In line with the interpretation of the homogeneity
property, if we start converting those portfolios into cash, then their
returns appear scaled by a smaller and smaller factor. Our expec-
tations are that the portfolios should appear more and more alike:
that is, when decreasing the scaling factor, the ideal metric should
indicate that the distance between the two portfolios decreases.
We verified that the metrics �(X,Y) and σ(X,Y) indicate otherwise.
Therefore, from the perspective of applications in finance, it makes
more sense to consider ideal metrics of order greater than zero, r > 0.

Besides the ideal metrics we have listed above, there are others
which allow for interesting interpretations.

Example 4.5.1. The Zolotarev ideal metric. The general form of the
Zolotarev ideal metric is

ζs(X,Y) =
∫ ∞

−∞

∣∣Fs,X(x) − Fs,Y(x)
∣∣ dx (4.5.2)

where s = 1, 2, . . . and

Fs,X(x) =
∫ x

−∞

(x − t)s−1

(s− 1)!
dFX(t) (4.5.3)

The Zolotarev metric ζs(X,Y) is ideal of order r = s. Zolotarev (1997)
provides more information.

Example 4.5.2. The Rachev metric. The general form of the Rachev
metric is

ζs,p,˛(X,Y) =
(∫ ∞

−∞

∣∣Fs,X(x) − Fs,Y(x)
∣∣p |x| p̨′

dx

)1/p′

(4.5.4)

where p′ = max(1, p),˛ ≥ 0, p ∈ [0,∞], andFs,X(x) is defined in equa-
tion (4.5.3). If ˛ = 0, then the Rachev metric ζs,p,0(X,Y) is ideal of
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order r = (s− 1)p/p′ + 1/p′. The Zolotarev metric in (4.5.2) is a special
case of the Rachev metric with ˛ = 0 and p = 1.

Note that ζs,p,˛(X,Y) can be represented in terms of lower partial
moments,

ζs,p,˛(X,Y) = 1
(s− 1)!

(∫ ∞

−∞

∣∣E(t− X)s+ − E(t− X)s+
∣∣p |t| p̨′

dt

)1/p′

.

In financial theory, the lower partial moments are used to character-
ize preferences of difference classes of investors. For example, the
lower partial moment of order 2 characterizes the investors, prefer-
ences who are non-satiable, risk averse, and prefer positively skewed
distributions. Suppose that X and Y describe the return distribution
of two portfolios. X is preferred to Y by this class of investors if
EX = EY and

E(t− X)2
+ ≤ E(t− Y)2

+, ∀t ∈ R.

The Rachev ideal metric ζ2,p,0(X,Y) quantifies such a preference order
in a natural way – ifX is preferred toY, then we can calculate the dis-
tance by ζ2,p,0(X,Y) and check whether X significantly dominates Y.

Example 4.5.3. The Kolmogorov–Rachev metrics. The Kolmogorov–
Rachev metrics arise from other ideal metrics by a process known as
smoothing. Suppose the metric � is ideal of order 0 ≤ r ≤ 1. Consider
the metric defined as

�s(X,Y) = sup
h∈R

|h|s�(X + hZ,X + hZ) (4.5.5)

where Z is independent of X and Y and is a symmetric random

variable Z d= −Z. The metric �s(X,Y) defined in this way is ideal of
order r = s. Note that while (4.5.5) always defines an ideal metric of
order s, this does not mean that the metric is finite. The finiteness of
�s should be studied for every choice of the metric �.

For example, suppose that �(X,Y) is the total variation metric
σ(X,Y) defined in (4.7.25) in the appendix to this chapter and Z

has the standard normal distribution, Z ∈ N(0, 1). If we assume that
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X and Y have densities, we calculate that

σs(X,Y) = sup
h∈R

|h|sσ(X + hZ,X + hZ)

= sup
h∈R

|h|s 1
2

∫
R

|fX(x) − fY(x)| fZ(x/h)
h

dx

= sup
h∈R

|h|s 1
2

∫
R

|fX(x) − fY(x)| 1√
2�h2

e−
x2

2h2 dx

(4.5.6)

in which we use the explicit form of the standard normal density,
fZ(u) = exp(−u2/2)/

√
2�, u ∈ R. Note that the absolute difference

between the two densities of X and Y is averaged with respect to
the standard normal density. This is why the Kolmogorov–Rachev
metrics are also called smoothing metrics.

The Kolmogorov–Rachev metrics are applied in estimating the
convergence rate in the Generalized CLT and other limit theo-
rems. Rachev and Rüschendorf (1998) and Rachev (1991) provide
more background and further details on the application in limit
theorems.

4.5.2 Conditions for boundedness of ideal
probability metrics

In the following, we specify the exact conditions which need to be
satisfied in order for the ideal metrics considered to be finite. We
briefly mention a few general conditions.

Suppose that the probability metric�(X,Y) is a simple ideal metric
of order r, r > 1. The finiteness of �(X,Y) guarantees equality of all
integer moments up to order r,

�(X,Y) < ∞ =⇒ E(Xk − Yk) = 0, k = 1, 2, . . . , n < r.

Conversely, if all moments k = 1, 2, . . . , n < r agree and, in addi-
tion to this, the absolute moments of order r are finite, then metric
�(X,Y), which can be the Zolotarev metric, the Rachev metric, or the
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Kolmogorov–Rachev metric, is finite,

EXk = EYk

E|X|r < ∞
E|Y|r < ∞

=⇒ �(X,Y) < ∞

where k = 1, 2, . . . , n < r. In fact this result seems to be universal for
all known ideal metrics of order r > 1.

The conditions which guarantee finiteness of the ideal metric �
are very important when investigating the problem of convergence
in distribution of random variables in the context of the metric �.2

Consider a sequence of random variables X1, X2, . . . , Xn, . . . and a
random variable X which satisfy the conditions,

EXkn = EXk, ∀n, k = 1, 2, . . . , n < r

and

E|X|r < ∞, E|Xn|r < ∞, ∀n.

For all known ideal metrics �(X,Y) of order r > 0, given the above
moment assumptions, the following holds:�(Xn,X) → 0 if and only
ifXn converges toX in distribution and the absolute moment of order
r converge,

�(Xn,X) → 0 if and only if Xn
d−→ X and E|Xn|r → E|Xr|.

This abstract result has the following interpretation. Suppose that X
andY describe the returns of two portfolios. Choose an ideal metric�
of order 3 < r < 4, for example. The convergence result above means
that if�(X,Y) ≈ 0, then both portfolios have very similar distribution
functions and also they have very similar means, volatilities and
skewness.

Note that, generally, the distribution functions of two portfolios
being “close” to each other does not necessarily mean that their
moments will be approximately the same. The ideal metrics have this
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nice property that they guarantee convergence of certain moments.
Rachev (1991) provides an extensive review of the properties of
ideal metrics and their applications to limit theorems in probability
theory.

4.6 Summary

In this chapter, we described in detail the characterization of proba-
bility distances in terms of the three major classes of primary, simple,
and compound distances. We discussed constructions of minimal
functionals which have a very important place in the theory as
they lead to the notions of minimal metrics, minimal norms, and
co-minimal functionals used to derive lower bounds to probabil-
ity distances. Also, we considered the notion of moment functions
which are used to construct upper bounds of probability distances
and, as a consequence, are related to the problem of specifying the
conditions under which given probability distances are finite. Finally,
we considered the class of ideal probability metrics and provided
applications in finance.

4.7 Technical Appendix

Particular examples of primary, simple, and compound probability
distances are provided in this appendix.

4.7.1 Examples of primary distances

In this section, we provide additional examples of primary semi-
metrics. Before starting with the examples, we would like to stress
that as far as the minimal functional �̃h introduced in section 4.2 is
concerned, the following problem arises.

In general it is not true that the metric properties of a p.
distance � imply that �̃h is a distance. The following two examples
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illustrate this fact:

(a) Let U = R, d(x, y) = |x − y|. Consider the p. metric

�(X,Y) = X0(X,Y) = Pr(X /= Y) X,Y ∈ X(R)

and the mapping h : X(R) → [0,∞] given by hX = E|X|. Then

�̃h(a, b) = inf{Pr(X /= Y) : E|X| = a, E|Y| = b} = 0

for all a ≥ 0 and b ≥ 0. Hence in this case the metric properties
of � imply only semimetric properties for �̃h.

(b) Now let � be defined as in (a) but h : X(R) → [0,∞] × [0,∞]
be defined by hX = (E|X|, EX2). Then

�h((a1, a2), (b1, b2))

= inf{Pr(X /= Y) : E|X| = a1, EX
2 = a2, E|Y| = b1, EY

2 = b2}
(4.7.1)

where �̃h is not even p. semidistance since the triangle inequal-
ity TI(3∗) is not valid.

With respect to this, the following problem arises, which is not yet
completely resolved in the literature on probability metrics: under
which condition on the spaceU, p. distance � onX(U) and transformation
h : X(U) → RJ the primary h-minimal distance �̃h is a primary p. distance
in h(X)?

As we shall see later on, all further examples 4.7.1 to 4.7.4 of
primary distances are special cases of primary h-minimal distances.

Example 4.7.1. Let H ∈ H (see Example 2.3.1) and 0 be a fixed point
of a s.m.s. (U, d). For each P ∈ P2 with marginals Pi = TiP, let m1P,
m2P denote the “marginal moments of order p > 0”,

miP : = m
(p)
i P : =

(∫
U
dp(x, 0)Pi(dx)

)p′

p > 0 p′ : = min(1, 1/p).

Then

MH,p(P) : = MH,p(m1P,m2P) : = H(|m1P −m2P|) (4.7.2)
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is a primary distance. One can also consider MH,p as a distance in
the space

m(p)(P1) : =
{
m(p) : =

(∫
U
dp(x, a)P(dx)

)p′

< ∞, P ∈ P1(U)

}
(4.7.3)

of moments m(p)P of order p > 0. If H(t) = t then

M(P) : = MH,1(P) =
∣∣∣∣∫
U
d(x, 0)(P1 − P2)(dx)

∣∣∣∣
is a primary metric in m(p)(P1).

Example 4.7.2. Let g : [0,∞] → R and H ∈ H Then

M(g)H,p(m1P,m2P) : = H(|g(m1P) − g(m2P)|) (4.7.4)

is a primary distance in g ◦m(P1) and

M(g)(m1P,m2P) : = |g(m1P) − g(m2P)| (4.7.5)

is a primary metric.
If U is a Banach space with norm ‖ · ‖ then we define the primary

distance MH,p(g) as follows

MH,p(g)(m(p)X,m(p)Y) : = H(|m(p)P −m(p)Y|) (4.7.6)

where (cf. (2.2.10)) m(p)X is the ‘p-th moment (norm) of X’

m(p)X : = {E‖X‖p}p′
.

By equation (4.7.5), MH,p(g) may be viewed as a distance (see Defi-
nition 2.3.2) in the space

g ◦m(X) : = {g ◦m(X) : = g({E‖X‖p}p′
), X ∈ X} p′

= min(1, p−1), X = X(U) (4.7.7)
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of moments g ◦m(X). If U is the real line R and g(t) = H(t) = t(t ≥
0) then MH,p(m(p)X,m(p)Y) is the usual deviation between moments
m(p)X and m(p)Y (see (2.2.11)).

Example 4.7.3. Let J be an index set (with arbitrary cardinality),
gi (i ∈ J) be real functions on [0,∞] and for each P ∈ P1(U) define
the set

hP : = {gi(mP), i ∈ J} (4.7.8)

Further, for each P ∈ P2(U) let us consider hP1 and hP2 where Pi’s
are the marginals of P. Then

�(hP1, hP2) =
{

0 if hP1 ≡ hP2

1 otherwise
(4.7.9)

is a primary metric.

Example 4.7.4. Let U be the n-dimensional Euclidean space Rn, H ∈
H. Define the ‘engineer distance’

EN(X,Y;H) : = H

(∣∣∣∣∣
n∑
i=1

(EXi − EYi)

∣∣∣∣∣
)

(4.7.10)

where X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) belong to the subset
X̃(Rn) ⊆ X(Rn) of all n-dimensional random vectors that have inte-
grable components. Then EN(·, ·;H) is a p. semidistance in X̃(Rn).
Analogously, the ‘Lp-engineer metric’

EN(X,Y, p) : =
[

n∑
i=1

|EX − EY|p
]min(1,1/p)

, p > 0 (4.7.11)

is a primary metric in X̃(Rn). In the case p = 1 and n = 1, the metric
EN(·, ·; p) coincides with the engineer metric in X(R) (see (2.2.1)).
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4.7.2 Examples of simple distances

In the introduction to this chapter, we noted that there are simple dis-
tances which have alternative representations known as dual forms.
In this section, we provide additional examples of simple distances
together with their dual forms.

Example 4.7.5. Co-minimal metrics. As we have seen in section 4.2
each primary distance �(P) = �(h(T1P), h(T2P)) (P ∈ P2) determines
a semidistance (see Definition 2.3.2) in the space of equivalence
classes

{P ∈ P2 : h(T1P) = a, h(T2P) = b} a, b ∈ RJ . (4.7.12)

Analogously, the minimal distance

�̂(P): =�̂(T1P, T2P)

: =inf{�(P̃) : P̃ ∈P2(U), P̃ and P have one and the same marginals,

TiP̃ = TiP, i = 1, 2}, P ∈ P2(U)

may be viewed as a semidistance in the space of classes of equiva-
lence

{P ∈ P2 : T1P = P1, T2P = P2} P1, P2 ∈ P1 (4.7.13)

The partitioning (4.7.13) is more refined than equation (4.7.12) and
hence each primary semidistance is a simple semidistance. Thus

{the class of primary distances (Definition 4.2.1)}
⊂ {the class of simple semidistances (Definition 4.3.1)}
⊂ {the class of all p. semidistances (Definition 2.4.1)}.

A basic problem in TPM, which is still open, is to find a good
classification of the set of all p. semidistances. Does there exist a
‘Mendeleyev periodic table’ of p. semidistances?

One can get a classification of probability semidistances consid-
ering more and more refined partitions of P2. For instance, one can
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use a partition finer than equation (4.7.13), generated by

{P ∈ PCt ⊂ P2 : T1P = P1, T2P = P2}, t ∈ T (4.7.14)

where P1 and P2 are laws in P1 and PCt (t ∈ T) are subsets of P2,
whose union covers P2. As an example of the set PCt one could
consider

PCt =
{
P ∈ P2 :

∫
U2
fidP ≤ bi, i ∈ J

}
t = (J, b, f ) (4.7.15)

where J is an index set, b : = (bi, i ∈ J) is a set of reals and f = {fi, i ∈ J}
is a family of bounded continuous functions on U2 (Kemperman,
1983; Levin and Rachev, 1990).

Another useful example of a set PCt is constructed using a given
probability metric �(P) (P ∈ P2) and has the form

PCt = {P ∈ P2 : �(P) ≤ t} (4.7.16)

where t ∈ [0,∞] is a fixed number.
Related is the following question. Under which conditions is the

functional

�(P1, P2;PCt) : = inf{�(P) : P ∈ P2, TiP = Pi(i = 1, 2), P ∈ PCt}
(P1, P2 ∈ P1)

a simple semidistance (resp., semimetric) w.r.t. the given p. distance
(resp. metric) �? TPM does not provide a complete solution as this
question is still open.

Further, we shall examine this problem in the special case of
(4.7.16) (see Theorem 4.7.1). Analogously, one can investigate the case
of PCt = {P ∈ P2 : �i(P) ≤ ˛i, i = 1, 2 . . . } (t = (˛1, ˛2, . . . )) for fixed
p. metrics �i, and ˛i ∈ [0,∞].

As we will see in the next theorem, the functional ��(·, ·, ˛) has
some metric properties but nevertheless it is not a p. distance. How-
ever, ��(·, ·, ˛) induces p. semidistances as follows.

Let �� be the so-called co-minimal distance

��(P1, P2) = inf{˛ > 0;��(P1, P2, ˛) < ˛} (4.7.17)
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Figure 4.2: Co-minimal distance ��(P1, P2).

(see Figure 4.2) and let

��(P1, P2) = lim
˛→0

sup˛��(P1, P2, ˛).

Then the following theorem is true.

Theorem 4.7.1. Let U be an u.m. s.m.s. and � be a p. distance satis-
fying the ‘continuity’ condition in Theorem 4.3.1. Then, for any p.
distance �,

(a) ��(·, ·, ˛) satisfies the following metric properties:

ID(3): ��(P1, P2, ˛) = 0 ⇐⇒ P1 = P2

SYM(3): ��(P1, P2, ˛) = ��(P2, P1, ˛)
TI(3): ��(P1, P3,K�(˛+ ˇ)) ≤ K�(��(P1, P2, ˛) +

��(P2, P3, ˇ))

for any P1, P2, P3 ∈ P1, ˛ ≥ 0, ˇ ≥ 0.
(b) �� is a simple distance with parameter K�� = max[K�,K�]. In

particular, if � and � are p. metrics then �� is a simple metric.
(c) �� is a simple semidistance with parameter K�� = 2K�K�.
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Proof. (a) By Theorem 4.3.1, and Figure 4.2, ��(P1, P2, ˛) = 0 ⇒
�̂(P1, P2) = 0 → P1 = P2 as well as if P1 ∈ P1 and X is a r.v. with
distribution P1 then ��(P1, P2, ˛) ≤ �(PrX,X) = 0. So, ID(3) is valid.
Let us prove TI(3). For each P1, P2, P3 ∈ P1 ˛ ≥ 0, ˇ ≥ 0 and ε ≥ 0
define laws P12 ∈ P2 and P23 ∈ P2 such that TiP12 = Pi, TiP23 =
Pi+1 (i = 1, 2), �(P12) ≤ ˛, �(P23) ≤ ˇ and ��(P1, P2, ˛) ≥ �(P12) − ε,
��(P2, P3, ˛) ≥ �(P23) − ε. Define a law Q ∈ P3 by equation (4.3.5).
Then Q has bivariate marginals T12Q = P12 and T23Q = P23, hence,
�(T13Q) ≤ K�[�(P12) + �(P23)] ≤ K�(˛+ ˇ) and

��(P1, P3,K�(˛+ ˇ))≤�(T13Q) ≤ K[�(P12) + �(P23)]

≤K�[��(P1, P2, ˛) + ��(P2, P3, ˇ) + 2ε].

Letting ε → 0, we get TI(3).
(b) If ��(P1, P2) < ˛ and ��(P2, P3) < ˇ, then there exists P12;
(resp, P23) with marginals P1 and P2 (resp. P2 and P3) such that
�(P12) < ˛, �(P12) < ˛, �(P23) < ˇ. In a similar way, as in (a) we
conclude that ��(P1, P3,K�(˛+ ˇ)) < K�(˛+ ˇ), thus, ��(P1, P2) <
max(K�,K�)(˛+ ˇ).
(c) Follows from (a) with ˛ = ˇ. �

Example 4.7.6. (Kantorovich metric and Kantorovich distance). In sec-
tion 2.2, we introduced the Kantorovich metric κ and its ‘dual’
representation

κ(P1, P2) =
∫ +∞

−∞
|F1(x) − F2(x)|dx

= sup
{∣∣∣∣∫

R

fd(P1 − P2)
∣∣∣∣ : f : R→ R, f ′ exists a.e. and |f ′| < 1 a.e.

}
wherePis are laws onRwith d.f.s Fi and finite first absolute moment.
From the above representation it also follows that

κ(P1, P2) = sup

{∣∣∣∣∫
R

fd(P1 − P2)
∣∣∣∣ : f : R→ R, f is (1, 1)-Lipschitz,

i.e., |f (x) − f (y)| ≤ |x − y|∀x, y ∈ R
}
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In this example we shall extend the definition of the above simple p.
metric of the setP1(U) of all laws on a s.m.s. (U, d). For any ˛ ∈ (0,∞)
and ˇ ∈ [0, 1] define the Lipschitz functions class

Lip˛ˇ : = {f : U → R : |f (x) − f (y)| ≤ ˛dˇ(x, y) ∀x, y ∈ U} (4.7.18)

with the convention

d0(x, y) : =
{

1 if x /= y

0 if x = y.
(4.7.19)

Denote the set of all bounded functions f ∈ Lip˛ˇ(U) by Lipb˛ˇ(U). Let
GH(U) be the class of all pairs (f, g) of functions that belong to the set

Lipb(U) : =
⋃
˛>0

Lip˛,1(U) (4.7.20)

and satisfy the inequality

f (x) + g(y) ≤ H(d(x, y)) ∀x, y ∈ U (4.7.21)

whereH is a convex function from H. Recall thatH ∈ H ifH is a non-
decreasing continuous function from [0,∞) onto [0,∞), vanishes at
the origin and KH : = supt>0H(2t)/H(t) < ∞. For any two laws P1

and P2 on a s.m.s. (U, d) define

�H(P1, P2) : = sup
{∫

U
fdP1 +

∫
U
gdP2 : (f, g) ∈ GH(U)

}
. (4.7.22)

We shall prove further that �H is a simple distance withK�H = KH in
the space of all laws P with finite ‘H-moment’,

∫
H(d(x, a))P(dx) <

∞. The proof is based on the representation of �H as a minimal
distance �H = L̂H with respect to a p. distance (with KLH = KH)
�H(P) = ∫

U2 H(d(x, y))P(dx,dy) and then an appeal to Theorem 4.3.1
proves that �H is a simple p. distance if (U, d) is a universally mea-
surable s.m.s. In the case H(t) = tp (1 < p < ∞) define

�p(P1, P2) : = �H(P1, P2)1/p 1 < p < ∞. (4.7.23)
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In addition, for p ∈ [0, 1] and p = ∞, denote

�p(P1, P2) : = sup
{∣∣∣∣∫

U
fd(P1 − P2)

∣∣∣∣ : f ∈ Lipb1,p(U)
}

× p ∈ (0, 1] P1, P2 ∈ P1(U)

(4.7.24)

�0(P1 − P2): =
{∣∣∣∣∫

U
fd(P1 − P2)

∣∣∣∣ : f ∈ Lip1,0(U)
}

(4.7.25)

= σ(P1, P2) : = sup
A∈B1

|P1(A) − P2(A)|

�∞(P1, P2) : = inf{ε > 0 : P1(A) ≤ P2(Aε) ∀A ∈ B1} (4.7.26)

where, as above, B1 = B(U) is the Borel �-algebra on a s.m.s. (U, d),
and Aε : = {x : d(x,A) < ε}.

For any 0 ≤ p ≤ 1, p = ∞, �p is a simple metric in P1(U) which
follows immediately from the definition. To prove that �p is a p.
metric (taking possibly infinite values) one can use the equality

sup
A∈B1

[P1(A) − P2(Aε)] = sup
A∈B1

[P2(A) − P1(Aε)].

The equality �0 = σ in equation (4.7.25) follows from the fact that
both metrics are minimal with respect to one and the same p. distance
L0(P) = P((x, y) : x /= y). We shall prove also that �H = L̂H , as a min-
imal distance w.r.t. �H defined above, admits the Birnbaum–Orlicz
representation (see Example 2.3.2)

�H(P1, P2) = �H(F1, F2) : =
∫ 1

0
H(|F−1

1 (t) − F−1
2 (t)|)dt (4.7.27)

in the case of U = R and d(x, y) = |x − y|. In equation (4.7.27),

F−1
i (t) : = sup{x : Fi(x) ≤ t} (4.7.28)
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is the (generalized) inverse of the d.f. Fi determined by Pi (i = 1, 2).
Letting H(t) = t we claim that

�1(P1, P2)=
∫ 1

0
|F−1

1 (t) − F−1
2 (t)|dt

= κ(P1, P2) : =
∫ ∞

−∞
|F1(x) − F2(x)|dx Pi ∈ P(R) i = 1, 2

(4.7.29)

Remark 4.7.1. Here and in the sequel, for any simple
semidistance � on P(Rn) we shall use the following notations inter-
changeably:

� = �(P1, P2) ∀P1, P2 ∈ P(Rn)

� = �(X1, X2) : = �(PrX1,PrX2 ) ∀X1, X2 ∈ X(Rn)

� = �(F1, F2) : = �(P1, P2) ∀F1, F2 ∈ F(Rn)

where PrXi is the distribution ofXi, Fi is the d.f. ofPi andF(Rn) stands
for the class of d.f.s on Rn.

The �1-metric (4.7.29) is known as the average metric in F(R) as well
as the first difference pseudomoment, and it is also denoted by κ (see
Zolotarev 1976). A great contribution in the investigation of �1-metric
properties was made by Kantorovich 1942, 1948, Kantorovich and
Akilov 1984, 4, Chap. VIII). That is the reason the metric �1 is called
the Kantorovich metric. Considering �H as a generalization �1, we
shall call �H the Kantorovich distance.

Example 4.7.7. (Prokhorov metric and Prokhorov distance). Prokhorov
1956 introduced his famous metric

π(P1, P2) : =inf{ε > 0 : P1(C) ≤ P2(Cε) + ε, P2(C) ≤ P1(Cε)

+ ε ∀C ∈ C} (4.7.30)
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where C : = C(U) is the set of all non-empty closed subsets of a Polish
space U and

Cε : = {x : d(x, C) < ε}. (4.7.31)

The metric π admits the following representations: for any laws P1

and P2 on a s.m.s. (U, d)

π(P1, P2) = inf{ε > 0 : P1(C) ≤ P2(Cε) + ε for any C ∈ C}
= inf{ε > 0 : P1(C) ≤ P2(Cε]) + ε for any C ∈ C}
= inf{ε > 0 : P1(A) ≤ P2(Aε) + ε, for any A ∈ B1} (4.7.32)

where

Cε] = {x : d(x, C) ≤ ε} (4.7.33)

is the ε-closed neighborhood of C (see, for example, Theorem 8.1,
Dudley 1976).

Let us introduce a parametric version of the Prokhorov metric

π�(P1, P2) : = inf{ε > 0 : P1(C) ≤ P2(C�ε) + ε for any C ∈ C}.
(4.7.34)

The next lemma gives the main relationship between the Prokhorov-
type metrics and the metrics �0 and �∞ denned by equalities (4.7.25)
and (4.7.26).

Lemma 4.7.1. For any P1, P2 ∈ P1(U)

lim
�→0

π�(P1, P2) = σ(P1, P2) = �0(P1, P2) (4.7.35)

lim
�→0

�π�(P1, P2) = �∞(P1, P2).

Proof. For any fixed ε > 0 the functionAε(�) : = sup{P1(C) − P2(C�ε) :
C ∈ C}, � ≥ 0 is non-increasing on ε > 0, hence

π�(P1, P2) = inf{ε > 0 : Aε(�) ≤ ε} = max
ε>0

min(ε,Aε(�)).
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For any fixed ε > 0, Aε(·) is non-increasing and

lim
�→0

Aε(�)=Aε(0) = sup
C∈C

(P1(C) − P2(C)) = sup
A∈B(U)

(P1(A) − P2(A))

= sup
A∈B(U)

|P1(A) − P2(A)| =: σ(P1, P2)

Thus

lim
�→0

π�(P1, P2)= max
ε>0

min
(
ε, lim
�→0

Aε(�)
)

= max
ε>0

min(ε, σ(P1, P2)) = σ(P1, P2).

Analogously, as � → ∞
�π�(P1, P2) = inf{�ε > 0 : Aε(�) ≤ ε}

= inf{ε > 0 : Aε(1) ≤ ε/�} → inf{ε > 0 : Aε(1) ≤ 0}
= �∞(P1, P2)

�

As a generalization of π� we define the Prokhorov distance

πH(P1, P2) : = inf{H(ε) > 0 : P1(Aε) ≤ P2(A) +H(ε), ∀A ∈ B1}
(4.7.36)

for any strictly increasing function H ∈ H.
From equation (4.7.36),

π(P1, P2) = inf{ı > 0 : P1(A) ≤ P2(AH
−1(ı)) + ı for any A ∈ B1}

(4.7.37)

and it is easy to check that πH is a simple distance with K�H = KH
(see condition (2.3.3)). The metric π� is a special case of πH with
H(t) = t/�.

Example 4.7.8. (Birnbaum–Orlicz distance (θH) and θp-metric in P(R)).
Let U = R, d(x, y) = |x − y|. Following Example 2.3.2 we define
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the Birnbaum–Orlicz average distance

θH(F1, F2) : =
∫ +∞

−∞
H(|F1(t) − F2(t)|)dt H ∈ H Fi ∈ F(R) i = 1, 2

(4.7.38)

and the Birnbaum–Orlicz uniform distance

ρH(F1, F2) : = H(ρ(F1, F2)) = sup
x∈R

H(|F1(x) − F2(x)|). (4.7.39)

The θp-metric (p > 0)

θp(F1, F2) : =
{∫ ∞

−∞
|F1(t) − F2(t)|pdt

}p′

p′ : = min(1, 1/p)

(4.7.40)

is a special case of θH with appropriate normalization that makes θp
p. metric taking finite and infinite values in the distribution functions
space F : = F(R). In case p = ∞ we denote θ∞ to be the Kolmogorov
metric

θ∞(F1, F2) : = ρ(F1, F2) : = sup
x∈R

|F1(x) − F2(x)|. (4.7.41)

In the case p = 0 we put

θ0(F1, F2) : =
∫ ∞

−∞
I{t : F1(t) /= F2(t)}dt = Leb(F1 /= F2)

Here as in the following, I(A) is the indicator of the set A.

Example 4.7.9. Minimal norms. We noted that each co-minimal dis-
tance �� is greater than the minimal distance �̂ (see Figure 4.3). We

now consider examples of simple metrics
◦
� corresponding to given

p. distances �̂ that have (like ��) a ‘minimal’ structure but
◦
� ≤ �̂.

Let Mk be the set of all finite non-negative measures on the Borel
�-algebra Bk = B(Uk) (U is a s.m.s.). Let M0 denote the space of all
finite signed measures � on B1 with total mass m(U) = 0. Denote
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by CS(U2) the set of all continuous, symmetric, and non-negative
functions on U2. Define the functionals

�c(m) : =
∫
U2
c(x, y)m(dx,dy), m ∈ M2 c ∈ CS(U2) (4.7.42)

and
◦
�c(�) : = inf{�c(m) : T1m− T2m = �} � ∈ M0 (4.7.43)

where Tim means the i-th marginal measure of m.

Lemma 4.7.2. For any c ∈ CS(U2) the functional
◦
�c is a seminorm in

the space M0.

Proof. Obviously,
◦
�c ≥ 0. For any positive constant a we have

◦
�c(a�) = inf{�c(m) : T1(1/a)m− T2(1/a)m = �}

= a inf{�c((1/a)m) : T1(1/a)m− T2(1/a)m = �}
= a ◦
�c(�).

If a ≤ 0 and m̃(A× B) : = m(B× A) (A,B ∈ B1) then by the symmetry
of c we get

�c(a�) = inf{�c(m) : T2(−1/a)m− T1(−1/a)m = �}
= inf{�c(m̃) : T1(−1/a)m̃− T2(−1/a)m̃ = �}
= |a| ◦

�c(�).

Let us prove now that
◦
�c is a sub-additive function. Let �1, �2 ∈

M0. For m1, m2 ∈ M2 with T1mi − T2mi = �i (i = 1, 2), let m = m1 +
m2. Then we have �c(m) = �c(m1) + �c(m2) and T1m− T2m = �1 +
�2, hence,

◦
�c(�1 + �2) ≤ ◦

�c(�1) + ◦
�c(�2). �

In the next theorem we give a sufficient condition for
◦
�c(P1, P2) : = ◦

�c(P1 − P2) P1, P2 ∈ P1 (4.7.44)

to be a simple metric in P1. In the proof we shall make use of
Zolotarev’s semimetric �F. Namely, for a given class F of bounded
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continuous function f : U → R, we define

�F(P1, P2) = sup
f∈F

∣∣∣∣∫
U
fd(P1 − P2)

∣∣∣∣ Pi ∈ P(U)

Clearly, �F is a simple semimetric. Moreover, if the class F is ‘rich
enough’ to preserve the implication �F(P1, P2) = 0 ⇐⇒ P1 = P2, we
have that �F is a simple metric.

Theorem 4.7.2.
(i) For any c ∈ CS(U2),

◦
�c(P1, P2) defined by equality (4.7.44) is a semi-

metric in P1.
(ii) Further, if the class Fc : = {f : U → R, |f (x) − f (y)| ≤
c(x, y) ∀x, y ∈ U} contains the class G of all functions

f (x) : = fk,C(x) : = max{0, 1/k − d(x, C)} x ∈ U
(k is an integer greater than some fixed k0, C is a closed non-empty

set) then
◦
�c is a simple metric in P1.

Proof.
(i) The proof follows immediately from Lemma 4.7.2 and the defini-
tion of semimetric (see Definition 2.3.1).
(ii) For any m ∈ M2 such that T1m− T2m = P1 − P2 and for any f ∈
Fc we have∣∣∣∣∫

U
fd(P1 − P2)

∣∣∣∣= ∣∣∣∣∫
U2
f (x) − f (y)m(dx,dy)

∣∣∣∣
≤
∫
U2

|f (x) − f (y)|m(dx,dy) ≤ �c(m);

hence, the Zolatarev’s metric �Fc (P1, P2) is a lower bound for
◦
�c(P1, P2). On the other hand, by assumption, �Fc ≥ �G. Thus assum-

ing
◦
�c(P1, P2) = 0 we get 0 ≤ �G(P1, P2) ≤ �Fc (P1, P2) ≤ ◦

�c(P1, P2) =
0. Next, for any closed non-empty set C we have

P1(C) < k

∫
U
fk,CdP1 ≤ k�G(P1, P2) + k

∫
U
fk,CdP2 ≤ P2(C1/k).
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Letting k → ∞ we get P1(C) ≤ P2(C) and hence, by the symmetry,
P1 = P2. �

Remark 4.7.2. ObviouslyFd ⊇ G and hence
◦
�d is a simple metric

in P1. However, if p > 1 then
◦
�dp is not a metric in P1 as is shown

in the following example. Let U = [0, 1], d(x, y) = |x − y|. Let P1 be
a law concentrated on the origin and P2 a law concentrated on 1.
For any n = 1, 2, . . . consider a measure m(n) ∈ M2 with total mass
m(n)(U2) = 2n+ 1 and

m(n)
({

i

n
,
i

n

})
= 1 i = 0, . . . , n

m(n)
({

i

n
,

(i + 1)
n

})
= 1 i = 0, . . . , n− 1

Then obviously, T1m
(n) − T2m

(n) = P1 − P2 and∫
U×U

|x − y|pm(n)(dx,dy) =
n−1∑
i=0

(
1
n

)p
= n1−p

Hence, if p > 1 then

◦
�d(P1, P2) ≤ inf

n>0

∫
U2

|x − y|pm(n)(dx,dy) = 0

and thus
◦
�dp(P1, P2) = 0.

Definition 4.7.1. The simple semimetric
◦
�c (see equality (4.7.44)) is

said to be the minimal norm w.r.t. the functional �c.

Obviously, for any c ∈ CS,

◦
�c(P1, P2) ≤ �̂c(P1, P2) : = inf{�c(P) : P ∈ P2, TiP = Pi, i = 1, 2}

P1, P2 ∈ P1. (4.7.45)

Hence, for each minimal metric of the type �̂c we can construct an

estimate from below by means of
◦
�c, but what is more important,

130



4.7 TECHNICAL APPENDIX

◦
�c is a simple semimetric even though �c is not a probability semidistance.
For instance, let ch(x, y) : = d(x, y)h(max(d(x, a), d(y, a))), where h is
a non-decreasing non-negative continuous function on [˛,∞) for

some ˛ > 0. Then, as in Theorem 4.7.2, we conclude that �ch ≤ ◦
�ch

and �ch(P1, P2) = 0 ⇒ P1 = P2. Thus
◦
�ch is a simple metric, while if

h(t) = tp, p > 1, then �ch is not a p. distance. Further, we shall prove

that
◦
� admits the dual formula: for any laws P1 and P2 on a s.m.s.

(U, d), with finite
∫
d(x, a)h(d(x, a))(P1 + P2)(dx),

◦
�ch(P1, P2) = sup

{∣∣∣∣∫
U
fd(P1 − P2)

∣∣∣∣ : f : U → R,

|f (x) − f (y)| ≤ ch(x, y) ∀x, y ∈ U
}
. (4.7.46)

From equality (4.7.46) it follows that if U = R and d(x, y) = |x − y|,
then

◦
�c may be represented explicitly as an average metric with

weight h(· − a) between d.f.s

◦
�ch(P1, P2) = ◦

�ch(F1, F2) : =
∫ ∞

−∞
|F1(x) − F2(x)|h(|x − a|)dx

(4.7.47)

where Fi is the d.f. of Pi.

4.7.3 Examples of compound distances

In this section, we provide examples of compound distances. We
also discuss the links with some of the simple distances considered
in section 4.7.2 as they arise as minimal distances with respect to
compound distances.

Example 4.7.10. (Average compound distances). Let (U, d) be a s.m.s.
and H ∈ H (see Example 2.3.1). Then

LH(P) : =
∫
U2
H(d(x, y))P(dx,dy) P ∈ P2 (4.7.48)
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is a compound distance with parameter KH (see (2.3.3)), and will
be called H-average compound distance. If H(t) = tp, p > 0 and p′ =
min(1, 1/p) then

Lp(P) : = [LH(P)]p
′
P ∈ P2 (4.7.49)

is a compound metric in

P(p)
2 : =

{
P ∈ P2 :

∫
U2
dp(x, a)[P(dx,dy) + P(dy,dx)] < ∞

}
.

In the space

X
(p)(U) : = {X ∈ X(U) : Edp(X, a) < ∞}

the metric Lp is the usual p-average metric

Lp(X,Y) : = [Edp(X,Y)]p
′

0 < p < ∞. (4.7.50)

In the limit cases p = 0, p = ∞ we shall define the compound metrics

L0(P) : = P

⎛⎝ ⋃
x /= y

(x, y)

⎞⎠ P ∈ P2 (4.7.51)

and

L∞(P) : = inf{ε > 0 : P(d(x, y) > ε) = 0} P ∈ P2 (4.7.52)

that on X have the forms

L0(X,Y) : = EI{X /= Y} = Pr(X /= Y) X,Y ∈ X (4.7.53)

and

L∞(X,Y) : = ess sup d(X,Y) : = inf{ε > 0 : Pr(d(X,Y) > ε) = 0}.
(4.7.54)

Example 4.7.11. (Ky Fan distance and Ky Fan metric). The Ky Fan metric
K in X(R) was defined by Equality (2.2.7) and we shall extend that
definition considering the space P2(U) for a s.m.s. (U, d). We define
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the Ky Fan metric in P2(U) as follows:

K(P) : = inf{ε > 0 : P(d(x, y) > ε) < ε} P ∈ P2

and on X(U) by K(X,Y) = K(PrX,Y). In this way K takes the form of
the distance in probability in X = X(U)

K(X,Y) : = inf{ε > 0 : Pr(d(X,Y) > ε) < ε} X,Y ∈ X. (4.7.55)

A possible extension of the metric structure of K is the Ky Fan distance:

KFH(P) : = inf{ε > 0 : P(H(d(x, y)) > ε) < ε} (4.7.56)

for each H ∈ H. It is easy to check that KFH is a compound distance
with parameter KKF : = KH (see (2.3.3)). A particular case of the Ky
Fan distance is the parametric family of Ky Fan metrics

K�(P) : = inf{ε > 0 : P(d(x, y) > �ε) < ε}. (4.7.57)

For each � > 0

K�(X,Y) : = inf{ε > 0 : Pr(d(X,Y) > �ε) < ε} X,Y ∈ X
metrizes the convergence ‘in probability’ in X(U), i.e.

K�(Xn, Y) → 0 ⇐⇒ Pr(d(Xn, Y) > ε) → 0 for any ε > 0.

In the limit cases,

lim
�→0

K� = L0 lim
�→∞

�K� = L∞ (4.7.58)

we get, however, average compound metrics (see equalities (4.7.51)–
(4.7.54)) that induce convergence, stronger than convergence in
probability, i.e.,

L0(Xn, Y) → 0 ⇒
/⇐Xn → Y ‘in probability’

and

L∞(Xn, Y) → 0 ⇒
/⇐Xn → Y ‘in probability’
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Example 4.7.12. (Birnbaum–Orlicz compound distances). Let U = R,
d(x, y) = |x − y|. For each p ∈ [0,∞] consider the following com-
pound metrics in X(R):

�p(X1, X2) : =
[∫ ∞

−∞
�p(t;X1, X2)dt

]p′

0 < p < ∞p′ : = min(1, 1/p)

(4.7.59)

�∞(X1, X2) : = sup
t∈R

�(t;X1, X2) (4.7.60)

�0(X12, X2) : =
∫ ∞

−∞
I{t : �(t;X1, X2) /= 0}dt

where

�(t;X1, X2) : = Pr(X1 ≤ t < X2) + Pr(X2 ≤ t < X1). (4.7.61)

If H ∈ H then

�H(X1, X2) : =
∫ ∞

−∞
H(�(t;X1, X2))dt (4.7.62)

is a compound distance with K�H
= KH . The functional �H will be

called a Birnbaum–Orlicz compound average distance and

RH(X1, X2) : = H(�∞(X1, X2)) = sup
t∈R

H(�(t;X1, X2)) (4.7.63)

will be called a Birnbaum–Orlicz compound uniform distance.

Each example 3.3.i. (i = 1, 2, 3) is closely related to the corresponding
example 3.2.i. In fact, it can be demonstrated that �H is a minimal
distance (see Definition 4.3.2) w.r.t. LH for any convex H ∈ H, i.e.,

�H = L̂H. (4.7.64)

Analogously, the simple metrics �p (see (4.7.23)–(4.7.26)), the
Prokhorov metric π� (see (4.7.34)), and the Prokhorov distance πH

134



4.7 TECHNICAL APPENDIX

(see (4.7.36)) are minimal with respect to theLp-metric, Ky Fan metric
K� and Ky Fan distance KFH , i.e.,

�p = L̂p (p ∈ [0,∞]) π� = K̂� (� > 0) πH = K̂FH. (4.7.65)

Finally, the Birnbaum–Orlicz metric and distance θp and θH (see
equations (4.7.40) and (4.7.38)) and the Birnbaum–Orlicz uniform
distance ρH (see equation (4.7.39)) are minimal with respect to their
‘compound versions’ �p, �H and RH , i.e.,

θp = �̂p (p ∈ [0,∞]) θH = �̂H H = R̂H. (4.7.66)

The equalities (4.7.64) to (4.7.66) represent the main relationships
between simple and compound distances (resp., metrics) and serve
as a framework for TPM.

Analogous relationships exist between primary and compound
distances. For example, the primary distance

MH,1(˛, ˇ) : = H(|˛− ˇ|) (4.7.67)

(see (4.7.2)) is a primary minimal distance (see Definition 4.2.2) w.r.t.
the p. distance H(L1) (H ∈ H), i.e.,

MH,1(˛, ˇ) : =
inf

{
H(L1(P)) :

∫
U2
d(x, a)P(dx,dy) = ˛,

∫
U2
d(a, y)P(dx,dy) = ˇ

}
.

(4.7.68)

4.7.4 Examples of moment functions

In this section, we provide examples of functionals which can be
used to bound compound semidistances. Finally, we summarize the
relationship between all bounds.

Note that, by definition, a maximal distance need not be a distance.
We prove the following theorem.

Theorem 4.7.3. If (U, d) is an u.m. s.m.s. and � is a compound dis-
tance with parameterK� then �̆ is a moment function andK�̆ = K�.
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Moreover, the following stronger version of the TI(4) is valid:

�̆(P1, P3) ≤ K�[�̂(P1, P2) + �̆(P2, P3)] P1, P2, P3 ∈ P1 (4.7.69)

where �̂ is the minimal metric w.r.t. �.

Proof. We shall prove inequality (4.7.69) only. For each ε > 0 define
laws P12, P13 ∈ P2 such that

T1P12 = P1 T2P12 = P2 T1P13 = P1 T2P13 = P3

and

�̂(P1, P2) ≥ �(P12) − ε, �̆(P1, P3) ≤ �(P13) + ε.

As in Theorem 4.3.1, let us define a law Q ∈ P3 (cf. (4.3.5)) having
marginalsT12Q = P12,T13Q = P13. By Definitions 2.4.1, 4.3.2 and 4.4.3
we have

�̆(P1, P3) ≤�(T13Q) + ε ≤ K�[�(P12) + �(P23)] + ε

≤K�[�̂(P1, P2) + ε+ �̆(P2, P3)] + ε.

Letting ε → 0, we get equation (4.7.69). �

Definition 4.7.2. The moment functions �̆ will be called a maximal
distance with parameter K�̆ = K� and if K� = 1, then �̆ will be called
maximal metric.

As before, we note that a maximal distance (resp. metric) may fail to
be distance (resp. metric). (The ID property may fail.)

Corollary 4.7.1. If (U, d) is an u.m. s.m.s. and� is a compound metric
on P2 then

|�̆(P1, P3) − �̆(P2, P3)| ≤ �̂(P1, P2) (4.7.70)

for all P1, P2, P3 ∈ P1.
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Remark 4.7.3. By the triangle inequality TI(4) we have

|�̆(P1, P3) − �̆(P2, P3)| ≤ �̆(P1, P2). (4.7.71)

Inequality (4.7.70) thus gives us refinement of the triangle inequality
for maximal metrics.

We shall further investigate the following problem, which is related
to a description of the minimal and maximal distances.

Problem 4.7.1. If c is a non-negative continuous function on U2 and

�c(P) : =
∫
U2
c(x, y)P(dx,dx) P ∈ P2 (4.7.72)

then what are the best possible inequalities of the type

�(P1, P2) ≤ �c(P) ≤  (P1, P2) (4.7.73)

when the marginals TiP = Pi, i = 1, 2 are fixed?

If c(x, y) = H(d(x, y)),H ∈ H then�c = LH (see equation (4.7.48)) and
the best possible lower and upper bounds for LH(P) (with fixed Pi =
TiP (i = 1, 2)) are given by the minimal distance �(P1, P2) = L̂(P1, P2)
and the maximal distance  (P1, P2) = L̆H(P1, P2).

Remark 4.7.4. In particular, for any convex non-negative func-
tion  on R and c(x, y) =  (x − y) (x, y ∈ R), the functionals of L̂H
and L̆H have the following explicit forms:

L̂H(P1, P2): =
∫ 1

0
H(F−1

1 (t) − F−1
2 (t))dt

L̆H(P1, P2): =
∫ 1

0
H(F−1

1 (t) − F−1
2 (1 − t))dt

where F−1
i is the generalized inverse function (4.7.28) w.r.t. the

d.f. Fi.
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Another example of a moment function that is an upper bound for
LH (H ∈ H) is given by

�H,0(P1, P2) : = KH

∫
U
H(d(x, 0))(P1 + P2)(dx) (4.7.74)

where 0 is a fixed point of U. In fact, since H ∈ H then H(d(x, y)) ≤
KH[H(d(x, 0)) +H(d(y, 0))] for all x, y ∈ U and hence

LH(P) ≤ �H,0(P1, P2). (4.7.75)

One can easily improve inequality (4.7.75) by the following in-
equality

LH(P) ≤ �H(P1, P2) : = inf
a∈U

�H,a(P1, P2). (4.7.76)

The upper bounds �H,a, �H of LH depend on the sum P1 + P2 only.
Hence, if P is an unknown law in P2 and we know only the sum
of marginals P1 + P2 = T1P + T2P, then the best improvement of
inequality (4.7.76) is given by

LH(P) ≤ L(s)
H (P1 + P2) (4.7.77)

where

L(s)
H (P1 + P2) : = sup{LH(P) : T1P + T2P = P1 + P2}. (4.7.78)

Remark 4.7.5. Following Remark 4.4, we have that if (X,Y) is
a pair of dependent U-valued r.v.s, and we know only the sum
of distributions PrX + PrY, then L(s)

1 (PrX + PrY) is the best possible
improvement of the triangle inequality (4.4.7). It can be demon-
strated that in the particular caseU = R, d(x, y) = |x − y|, and p ≥ 1

L(s)
p (P1 + P2) =

(∫ 1

0
|V−1(t) − V−1(1 − t)|pdt

)1/p

whereV−1 is the generalized inverse (see equation (4.7.28)) ofV(t) =
1
2 (F1(t) + F2(t)), t ∈ R and Fi, is the d.f. of Pi (i = 1, 2). For additional
details, see Rachev (1991).
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For more general cases we shall use the following definition.

Definition 4.7.3. For any compound distance �, the functional

(s)
�(P1, P2) : = sup{�(P) : T1P + T2P = P1 + P2}

will be called the �-upper bound with marginal sum fixed.

Let us consider another possible improvement of Minkovski’s
inequality (4.4.3). Suppose we need to estimate from above (in the
best possible way) the value L(X,Y) (p > 0), having available only
the moments

mp(X) : = [Edp(X, 0)]p
′
p′ : = min(1, 1/p) (4.7.79)

and mp(Y). Then the problem consists in evaluating the quantity

 p(a1, a2): = sup

{
Lp(P) : P∈P2(U),

(∫
U
dp(x, 0)TiP(dx)

)p′

= ai, i=1, 2

}
p′ = min(1, 1/p)

for each ai ≥ 0 and a2 ≥ 0.
Obviously,  p is a moment function. It is possible to obtain an

explicit representation of p(a1, a2). For additional details, see Rachev
(1991).

Definition 4.7.4. For any p. distance �, the function

(m,p)
� (a1, a2): =sup

{
�(P) : P ∈ P2(U),

(∫
U d

p(x, 0)TiP(dx)
)p′

= ai, i=1, 2
}

where a1 ≥ 0, a2 ≥ 0, p > 0 is said to be the�-upper bound with fixed
pth marginal moments a1 and a2.
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Hence,
(m,1)
L (a1, a2) is the best possible improvement of the triangle

inequality (4.4.7) when we know only the ‘marginal’ moments

a1 = Ed(X, 0) a2 = Ed(Y, 0).

We shall investigate improvements of inequalities of the type

Ed(X, 0) − Ed(Y, 0) ≤ Ed(X,Y) ≤ Ed(X, 0) + Ed(Y, 0)

for dependent r.v.s X and Y. We make the following definition.

Definition 4.7.5. For any p. distance �,
(i) the functional

�
(m,p)

(a1, a2): = inf

{
�(P) : P ∈ P2(U),

[∫
U
dp(x, 0)TiP(dx)

]p′

= ai, i=1, 2

}

where a1 ≥ 0, a2 ≥ 0, p > 0 is said to be the �-lower bound with fixed
marginal pth moments a1 and a2;
(ii) the functional

�(a1 + a2;m, p): =sup

{
�(P) : P ∈ P2(U),

[∫
U
dp(x, 0)T1P(dx)

]p′

+
[∫

U
dp(x, 0)T2P(dx)

]p′

= a1 + a2

}

where a1 ≥ 0, a2 ≥ 0, p > 0 is said to be the �-upper bound with fixed
sum of marginal pth moments a1 + a2;

(iii) the functional

�(a1 − a2;m, p): =inf

{
�(P) : P ∈ P2(U),

[∫
U
dp(x, 0)T1P(dx)

]p′

−
[∫

U
dp(x, 0)T2P(dx)

]p′

= a1 − a2

}

where a1 ≥ 0, a2 ≥ 0, p > 0 is said to be the �-lower bound with fixed
difference of marginal p. moments a1 − a2.
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Figure 4.3: Lower and upper bounds for �(P) (P ∈ P2) of a compound
distance � when different kinds of marginal characteristics of P are fixed.
The arrow → indicates inequality of the type ≤.

Knowing explicit formulae for
(m,p)
� and �

(m,p)
(see Rachev (1991)), we

can easily determine�(a1 + a2;m, p) and�(a1 − a2;m, p) by using the
representations

�(a;m, p) = sup
{

(m,p)
� (a1, a2) : a1 ≥ 0, a2 ≥ 0, a1 + a2 = a

}
and

�(a;m, p) = inf

{
�

(m,p)
(a1, a2) : a1 ≥ 0, a2 ≥ 0, a1 − a2 = a

}

Let us summarize the bounds for�we have obtained up to now. For
any compound distance � (see Figure 4.3), the maximal distance �̆
(see Definition 4.7.2) is not greater than the moment distance

(m,p)
� (a1, a2) : = sup

{
�(P1, P2) :

[∫
U
dp(x, 0)Pi(dx)

]p′

= ai, i = 1, 2

}
.

(4.7.80)

As we have seen, all compound distances � can be estimated from

above by means of �̆,
(s)
�,

(m,p)
� ,�(·;m, p) and in addition, the following

inequality holds

� ≤ �̆ ≤ (s)
� ≤ �(·;m, p), �̆ ≤ (m,p)

� . (4.7.81)

The p. distance � can be estimated from below by means of
the minimal metric �̂ (see Definition 4.3.2), the co-minimal met-
ric �� (see Definition 4.3.3), the primary minimal distance �̃h (see
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Definition 4.2.2), as well as for such� as� = �c (see equation (4.7.45))

by means of minimal norms
◦
� (see Definition 4.7.1).

Thus

�(·;m, p) ≤ �̃h ≤ �̂ ≤ �� ≤ �,
◦
�c ≤ �c (4.7.82)

and moreover, we can compute the values of �̃h by using the values
of the minimal distances �, since

�̃h(a1, a2) = (˜̂�)h(a1, a2) : = inf{�̂(P1, P2) : hPi = ai, i = 1, 2}.
(4.7.83)

Also, if c(x, y) = H(d(x, y)), H ∈ H, then �c is a p. distance and
◦
�c ≤ �̂c ≤ �. (4.7.84)

The inequalities (4.7.80)–(4.7.84) are represented in the scheme on
Figure 4.3. The double arrows are interpreted in the following way.

The functional
(s)
� dominates �̆, but

(s)
� and

(m,p)
� are not generally

comparable.
As an example illustrating the list of bounds in Figure 4.3 let us

consider the case p = 1 and�(X,Y) = Ed(X,Y). Then for a fixed point
0 ∈ U

(∗) �(a1 + a2;m, 1) = sup{Ed(X,Y) : Ed(X, 0) + Ed(Y, 0) = a1 + a2}
a1 + a2 ≥ 0 (4.7.85)

(∗∗)
(m,1)
� (a1, a2) = sup{Ed(X,Y) : Ed(X, 0) = a1, Ed(Y, 0) = a2}

a1 ≥ 0 a2 ≥ 0 (4.7.86)

(∗ ∗ ∗)
(s)
�(P1 + P2) = sup{Ed(X,Y) : PrX + PrY = P1 + P2}

P1, P2 ∈ P1 (4.7.87)

(∗ ∗ ∗∗) �̆(P1, P2) = sup{Ed(X,Y) : PrX = P1,PrY = P2}

P1, P2 ∈ P1 (4.7.88)
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and each of these functionals gives the best possible refinement of
the inequality

Ed(X,Y) ≤ Ed(X, 0) + Ed(Y, 0)

under the respective conditions

(∗) Ed(X, 0) + Ed(Y, 0) = a1 + a2

(∗∗) Ed(X, 0) = a1 Ed(Y, 0) = a2

(∗ ∗ ∗) PrX + PrY = P1 + P2

(∗ ∗ ∗ ∗) PrX = P1, PrY = P2.

Analogously, the functionals

(i) �(a1 − a2;m, 1) = inf{Ed(X,Y) : Ed(X, 0) − Ed(Y, 0) = a1 − a2}

a1, a2 ∈ R
(4.7.89)

(ii) �
(m,1)

(a1, a2) = inf{Ed(X,Y) : Ed(X, 0) = a1, Ed(Y, 0) = a2}
a1 ≥ 0 a2 ≥ 0 (4.7.90)

(iii)
◦
�(P1, P2) = inf{˛Ed(X,Y) : for some ˛ > 0, X ∈ X, Y ∈ X

such that ˛(PrX − PrY) = P1 − P2 P1, P2 ∈ P1

(4.7.91)

(iv) �̂(P1, P2) = inf{Ed(X,Y) : PrX = P1,PrY = P2}
P1, P2 ∈ P1 (4.7.92)

(v) ��(P1, P2) = inf{Ed(X,Y) : PrX = P1,PrY = P2, �(X,Y) < ˛}

(P1, P2 ∈ P1, � is a p. distance in X(U))

(4.7.93)
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describe the best possible refinement of the inequality

Ed(X,Y) ≥ Ed(X, 0) − Ed(Y, 0)

under the respective conditions,

(i) Ed(X, 0) − Ed(Y, 0) = a1 − a2

(ii) Ed(X, 0) = a1 Ed(Y, 0) = a2

(iii) ˛(PrX − PrY) = P1 − P2 for some ˛ > 0
(iv) PrX = P1 PrY = P2

(v) PrX = P1 PrY = P2 �(X,Y) < ˛.

Remark 4.7.6. If �(X,Y) = Ed(X,Y), then
◦
� = �̂, hence, in this

case,

�̂(P1, P2) = inf{Ed(X,Y) : PrX − PrY = P1 − P2}. (4.7.94)

Notes

1. See Chapter 2 for definitions and discussion.
2. Technically, it is said that the metric � metrizes the convergence in dis-

tribution if a sequence of random variablesX1, . . . , Xn, . . . converges in
distribution to the random variable X, if and only if �(Xn,X) → 0 as
n → ∞.
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Chapter 5

Risk and Uncertainty

The goals of this chapter are the following:

• To introduce measures of dispersion quantifying the notion of
uncertainty of a random variable describing financial return.

• To describe links between measures of dispersion and probability
metrics.

• To introduce the notion of risk measure and consider as examples
the well-known value-at-risk (VaR) and the more general class of
coherent risk measures.

• To consider links between risk measures and dispersion measures
and consistency between risk measures and stochastic orders.

• To demonstrate that all deviation measures arise from probability
quasi-metrics.

Notation introduced in this chapter:

Notation Description

�X The standard deviation of a random variable X
MADX The mean absolute deviation of a random variable X
�

+/−
X The positive/negative semi-standard deviation of a random

variable X

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
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5.1 INTRODUCTION

Notation Description

D(X) The dispersion measure of a random variable X
VaR�(X) The VaR of a random variable X at tail probability �
�(X) A general risk measure of a random variable X

Important terms introduced in this chapter:

Term Concise explanation

dispersion measure A statistic calculating whether there is high or low
variability around the mean of the distribution.

deviation measure A sub-additive and translation invariant disper-
sion measure.

risk measure A general functional quantifying the notion of risk
of a random variable describing financial return.

coherent risk measure A risk measure which is monotonic, positively
homogeneous, sub-additive and translation
antivariant.

5.1 Introduction

There has been a major debate on the differences and common fea-
tures of risk and uncertainty. Both notions are related but they do
not coincide. Risk is often argued to be a subjective phenomenon
involving exposure and uncertainty.1 That is, generally, risk may arise
whenever there is uncertainty.

While risk is an essential factor in all human decision making, in
this chapter we consider it only in the context of investment man-
agement. In our context, exposure is identified with monetary loss.
Thus, investment risk is related to the uncertain monetary loss to
which a manager may expose a client. Subjectivity appears because
two managers may define the same investment as having different
risk – it is a question of personal predisposition.

A major activity in many financial institutions is to recognize the
sources of risk, then manage and control them. This is possible only
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CHAPTER 5 RISK AND UNCERTAINTY

if risk is quantified. If we can measure the risk of a portfolio, then
we can identify the financial assets which constitute the main risk
contributors, rebalance the portfolio, and, in this way, minimize the
potential loss by minimizing the portfolio risk. Even though the
recognition that risk involves exposure and uncertainty is illumi-
nating, it appears insufficient in order for risk to be quantified. It
merely shows that both uncertainty and monetary loss are essential
characteristics. For example, if an asset will surely lose 30% of its
value tomorrow, then it is not risky even though money will be lost.
Uncertainty alone is not synonymous with risk either. If the price of
an asset will certainly increase between 5% and 10% tomorrow, then
there is uncertainty but no risk as there is no monetary loss. As a
result, risk is qualified as an asymmetric phenomenon in the sense that
it is related to loss only.

Concerning uncertainty, it is our assumption that it is an intrin-
sic feature of the future values of traded assets on the market. If
we consider two time instants, the present and a future one, then
the inherent uncertainty materializes as a probability distribution
of future prices or returns: that is, these are random variables as of
the present instant. Investment managers do not know the proba-
bilistic law exactly but can infer it, to a degree, from the available
data – they approximate the unknown law by assuming a paramet-
ric model and by calibrating its parameters. Uncertainty relates to
the probable deviations from the expected price or return where the
probable deviations are described by the unknown law. Therefore, a
measure of uncertainty should be capable of quantifying the proba-
ble positive and negative deviations. In this aspect, any uncertainty
measure is symmetric. As an extreme case, consider a variable char-
acterized by no uncertainty whatsoever. It follows that this variable
is non-random and we know its future value with certainty.

A classical example of an uncertainty measure is variance. It equals
the average squared deviation from the mean of a distribution – it
captures both the upside and the downside deviations from the mean
of the distribution. Another measure is the standard deviation, which
is the square root of the variance. It is more understandable as it is
measured in the same units as the random variable. For instance, if
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the random variable describes prices, then the standard deviation
is measured in dollars; if the random variable describes percentage
return, then the standard deviation is measured in percentage points.
There are many other measures of uncertainty besides standard devi-
ation and we will discuss them in this chapter.

Besides the essential features of risk discussed above, there are
other characteristics. For example, investment risk may be relative. In
benchmark tracking problems, it is reasonable to demand a smaller
risk of the strategy relative to a benchmark: that is, smaller potential
loss but relative to the loss of the benchmark. If there are multiple
benchmarks, then there are multiple relative risks to take into account
and strategy construction becomes a multi-dimensional, or a multi-
criterion, problem.

Depending on the sources of risk, a financial institution may face
market, credit, or operational risk.2 Market risk describes the portfolio
exposure to the moves of certain market variables. There are four
standard market risk variables – equities, interest rates, exchange
rates, and commodities. A financial instrument is dependent on those
market factors and its price fluctuates as the underlying market fac-
tors move. Credit risk arises due to a debtor’s failure to satisfy the
terms of a borrowing arrangement. Operational risk is defined as the
risk of loss resulting from inadequate or failed internal processes,
people, and systems. Its contribution to total portfolio risk varies
from firm to firm and its management falls under the responsibility
of internal auditors.

Apparently, a true functional definition of investment risk is out
of reach. Nevertheless, financial institutions have made a lot of effort
to model it. Generally, a risk model consists of two parts. First, prob-
abilistic models are constructed for the underlying sources of risk,
such as market or credit risk factors, and the portfolio loss distri-
bution is described by means of the probabilistic models. Second,
risk is quantified by means of a risk measure which associates a real
number to the portfolio loss distribution. It is important to recognize
that both steps are crucial. Non-realistic probabilistic models may
compromise the risk estimate just as an inappropriate choice for the
risk measure may do.
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CHAPTER 5 RISK AND UNCERTAINTY

Due to the lack of a functional definition of risk, no perfect risk
measure exists. A risk measure captures only some of the charac-
teristics of risk and, in this sense, every risk measure is incomplete.
Nonetheless, we believe that it is reasonable to search for risk mea-
sures which are ideal for the particular problem under investigation.

In this chapter, we provide several examples of widely used dis-
persion measures that quantify the notion of uncertainty. A few
of their basic features can be summarized into axioms leading to
an axiomatic construction of dispersion measures and deviation
measures, which are convex dispersion measures. The notion of
a probability metric is related to the notion of dispersion. In fact,
we demonstrate that probability metrics can be used to generate
dispersion measures.

Measures of dispersion are inadequate for quantifying risk. We
discuss in detail value-at-risk (VaR), its properties, estimation meth-
ods, and why it fails to be a true risk measure.

An axiomatic construction of risk measures is possible by set-
ting key characteristics as axioms. We describe this approach in the
section devoted to coherent risk measures and illustrate the defining
axioms depending on whether the random variable describes return
or payoff. It turns out that the “coherent” properties very much
depend on the interpretation of the random variable. If a risk mea-
sure is coherent for return distributions, it may not be coherent for
payoff distributions.

Finally, we stress the importance of consistency of a true risk
measure with the second-order stochastic dominance as it concerns
risk-averse investors.

5.2 Measures of Dispersion

Measures of dispersion can be constructed by means of different
descriptive statistics. They calculate how observations in a dataset
are distributed, whether there is high or low variability around the
mean of the distribution. Intuitively, if we consider a non-random
quantity, then it is equal to its mean with probability 1 and there is
no fluctuation whatsoever around the mean.
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5.2 MEASURES OF DISPERSION

In this section, we provide several descriptive statistics widely
used in practice and we give a generalization which axiomatically
describes measures of dispersion.

5.2.1 Standard deviation

Standard deviation is, perhaps, the most widely used measure of
uncertainty. It is calculated as the square root of variance, which itself
can be regarded as a measure of uncertainty. The standard deviation
is usually denoted by �X ,3 where X stands for the random variable
we consider:

�X =
√
E(X − EX)2 (5.2.1)

in which E stands for mathematical expectation. For a discrete dis-
tribution, equation (5.2.1) changes to

�X =
(

n∑
k=1

(xk − EX)2pk

)1/2

where xk, k = 1, . . . , n are the outcomes, pk, k = 1, . . . , n are the
probabilities of the outcomes, and

EX =
n∑
k=1

xkpk

is the mathematical expectation. The standard deviation is always a
non-negative number; if it is equal to zero, then the random vari-
able is equal to its mean with probability 1 and, therefore, it is
non-random. This conclusion holds for an arbitrary distribution.

In order to see why the standard deviation can measure uncer-
tainty, consider the following simple example. Suppose that X
describes the outcomes in a game in which one wins $1 or $3 with
probabilities equal to 1/2. The mathematical expectation of X, the
expected win, is $2,

EX = 1(1/2) + 3(1/2) = 2.
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Figure 5.1: The standard normal density and the probabilities of the inter-
vals EX ± �X , EX ± 2�X , and EX ± 3�X , where X ∈ N(0, 1), as a percentage
of the total mass.

The standard deviation equals $1,

�X =
(

(1 − 2)2 1
2

+ (3 − 2)2 1
2

)1/2

= 1.

In this equation, both the positive and the negative deviations from
the mean are taken into account. In fact, all possible values of the
random variable X are within the limits EX ± �X . That is why it
is also said that the standard deviation is a measure of statistical
dispersion, i.e. how widely spread the values in a dataset are.

The interval EX ± �X covers all the possible values of X only in
a few isolated examples. Suppose that X has the normal distribu-
tion with mean equal to a, X ∈ N(a, �X). Then, the probability of
the interval a± �X is 0.683. That is, when sampling from the corre-
sponding distribution, 68.3% of the simulations will be in the interval
(a− �X, a+ �X). The probabilities of the intervals a± 2�X and a± 3�X
are 0.955 and 0.997, respectively. Figure 5.1 provides an illustration
for the standard normal case.

The probabilities in this example are specific for the normal dis-
tribution only. Actually, in the general case when the distribution of
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Table 5.1 The values pk = 1 − 1/k2 provide a lower bound for the
probability P(X ∈ EX ± k�X) when the distribution of X is unknown.

k 1.4 2 3 4 5 6 7
pk 0.5 0.75 0.889 0.94 0.96 0.97 0.98

the random variable X is unknown, we can obtain bounds on the
probabilities by means of Chebyshev’s inequality,

P(|X − EX| > x) ≤ �2
X

x2 , (5.2.2)

provided that the random variable X has a finite second moment,
E|X|2 < ∞. With the help of Chebyshev’s inequality, we calculate
that the probability of the interval EX ± k�X , k = 1, 2, . . . exceeds
1 − 1/k2,

P(|X − EX| ≤ k�X) ≥ 1 − 1/k2.

If we choose k = 2, we compute that P(X ∈ EX ± 2�X) is at least 0.75.
Table 5.1 contains the corresponding bounds on the probabilities
computed for several choices of k.

5.2.2 Mean absolute deviation

Even though the standard deviation is widely used, it does not pro-
vide the only way to measure uncertainty. In fact, there are important
cases where it is inappropriate – there are distributions for which the
standard deviation is infinite. An example of an uncertainty measure
also often used, which may be finite when the standard deviation
does not exist, is the mean absolute deviation (MAD). This measure is
defined as the average deviation in absolute terms around the mean
of the distribution,

MADX = E|X − EX|, (5.2.3)

153



CHAPTER 5 RISK AND UNCERTAINTY

where X is a random variable with finite mean. For a discrete distri-
bution, equation (5.2.3) becomes

MADX =
n∑
k=1

|xk − EX|pk,

where xk, k = 1, . . . , n, are the outcomes and pk, k = 1, . . . , n, are the
corresponding probabilities. It is clear from the definition that both
the positive and the negative deviations are taken into account in
the MAD formula. Similar to the standard deviation, the MAD is a
non-negative number and if it is equal to zero, then X is equal to its
mean with probability 1.

The analysis made for the standard deviation can be repeated for
the MAD without any modification. Therefore, the MAD and the
standard deviation are merely two alternative measures estimating
the uncertainty of a random variable. There are distributions, for
which one of the quantities can be expressed from the other. For
example, if X has a normal distribution, X ∈ N(a, �2

X), then

MADX = �X

√
2
�
.

Thus, for the normal distribution case, the MAD is just a scaled
standard deviation.

5.2.3 Semi-standard deviation

The semi-standard deviation is a measure of dispersion which differs
from the standard deviation and the MAD in that it takes into account
only the positive or only the negative deviations from the mean.
Therefore, it is not symmetric. The positive and the negative semi-
standard deviations are defined as,

�+
X = (E(X − EX)2

+)1/2

�−
X = (E(X − EX)2

−)1/2
(5.2.4)

154



5.2 MEASURES OF DISPERSION

where
(x − EX)2

+ equals the squared difference between the outcome x
and the mean EX if the difference is positive, (x −
EX)2

+ = max(x − EX, 0)2

(x − EX)2
− equals the squared difference between the outcome x

and the mean EX if the difference is negative, (x −
EX)2

− = min(x − EX, 0)2.

Thus, �+
X takes into account only the positive deviations from the

mean and it may be called an upside dispersion measure. Similarly, �−
X

takes into account only the negative deviations from the mean and
it may be called a downside dispersion measure.

As with the standard deviation, both �−
X and �+

X are non-negative
numbers which are equal to zero if and only if the random variable
equals its mean with probability 1.

If the random variable is symmetric around the mean, then the
upside and the downside semi-standard deviations are equal. For
example, if X has a normal distribution, X ∈ N(a, �2

X), then both
quantities are equal and can be expressed by means of the standard
deviation,

�−
X = �+

X = �X√
2
.

If the distribution of X is skewed,4 then �−
X /= �+

X . Positive skewness
corresponds to larger positive semi-standard deviation, �−

X < �+
X .

Similarly, negative skewness corresponds to larger negative semi-
standard deviation, �−

X > �+
X .

5.2.4 Axiomatic description

Besides the examples considered in section 5.2, measures of dis-
persion also include interquartile range and can be based on central
absolute moments. The interquartile range is defined as the difference
between the 75% and the 25% quantile. The central absolute moment
of order k is defined as

mk = E|X − EX|k
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and an example of a dispersion measure based on it is

(mk)1/k = (E|X − EX|k)1/k.

The common properties of the dispersion measures we have
considered can be synthesized into axioms. In this way, a dispersion
measure is called any functional satisfying the axioms. Rachev et al.
(2008) provide the following set of general axioms. We denote the
dispersion measure of a random variable X by D(X).

Positive shift D(X + C) ≤ D(X) for allX and constantsC ≥ 0.
Positive homogeneity D(0) = 0 and D(�X) = �D(X) for all X and all

� > 0.
Positivity D(X) ≥ 0 for all X, with D(X) > 0 for non-

constant X.

According to the positive shift property, adding a positive constant
does not increase the dispersion of a random variable. According
to the positive homogeneity and the positivity properties, the dis-
persion measure D is equal to zero only if the random variable is a
constant. This property is very natural for any measure of dispersion.
Recall that it holds for the standard deviation, MAD, and semi-
standard deviation – all examples we considered in the previous
sections.

An example of a dispersion measure satisfying these properties is
the colog measure defined by

colog(X) = E(X logX) − E(X)E(logX).

whereX is a positive random variable. The colog measure is sensitive
to additive shifts and has applications in finance as it is consistent
with the preference relations of risk-averse investors.

5.2.5 Deviation measures

Rockafellar et al. (2006) provide an axiomatic description of dis-
persion measures which arises as a special case of our approach in
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section 5.2.4. The axioms of Rockafellar et al. (2006) define convex dis-
persion measures called deviation measures. An interesting link exists
between deviation measures and risk measures, which we illustrate
in section 5.5 in this chapter.

Besides the axioms given in section 5.2.4, the deviation measures
satisfy the property

Sub-additivity D(X + Y) ≤ D(X) +D(Y) for all X and Y.

and the positive shift property is replaced by

Translation invariance D(X + C) = D(X) for all X and constants
C ∈ R.

As a consequence of the translation invariance axiom, the devia-
tion measure is influenced only by the difference X − EX. If X = EX

in all states of the world, then the deviation measure is a constant
and, therefore, it is equal to zero because of the positivity axiom.
Conversely, if D(X) = 0, then X = EX in all states of the world. The
positive homogeneity and the sub-additivity axioms establish the
convexity property of D(X).

Apparently not all deviation measures are symmetric: that is, it is
possible to haveD(X) /= D(−X) if the random variableX is not sym-
metric. This is not a drawback of the construction. Quite the opposite:
this is an advantage because an investment manager is more attentive
to the negative deviations from the mean. Examples of asymmetric
deviation measures include the semi-standard deviation, �−

X defined
in equation (5.2.4). Deviation measures which depend only on the
negative deviations from the mean are called downside deviation
measures. As a matter of fact, symmetric deviation measures can
easily be constructed. The quantity D̃(X) is a symmetric deviation
measure if we define it as

D̃(X) := 1
2

(D(X) +D(−X)),

where D(X) is an arbitrary deviation measure.
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A downside deviation measure possesses several of the character-
istics of a risk measure but it is not a risk measure. Here is an example.
Suppose that we have initially in our portfolio a common stock, X,
with a current market value of $95 and an expected return of 0.5% in a
month. Let us choose one particular deviation measure,D1, and com-
puteD1(rX) = 20%, where rX stands for the portfolio return. Assume
that we add to our portfolio a risk-free government bond, B, worth
$95 with a face value of $100 and a one-month maturity. The return
on the bond equals rB = $5/$95 = 5.26% and is non-random. Our
portfolio now consists of equal dollar amounts of the common stock
and the bond and its return equals rp = rX/2 + rB/2. Using the pos-
itive homogeneity and the translation invariance axioms from the
definition, we obtain D1(rp) = D1(rX)/2 = 10%. Indeed, the uncer-
tainty of the portfolio return rp decreases twice, since the share of
the risky stock decreases twice – this is what the deviation mea-
sure is informing us about. Intuitively, the risk of rp decreases more
than twice if compared to rX because half of the new portfolio earns
a sure profit of 5.26%. This effect is due to the translation invari-
ance which makes the deviation measure insensitive to non-random
profit.

Examples of deviation measures include the standard deviation,
the MAD, and the semi-standard deviation.

5.3 Probability Metrics and Dispersion Measures

Probability metrics were introduced in Chapter 2. They are func-
tionals which are constructed to measure distances between random
quantities. Thus, every probability metric involves two random vari-
ables X and Y, and the distance between them is denoted by �(X,Y)
where � stands for the probability metric.

Suppose that � is a compound probability metric.5 In this case,
if �(X,Y) = 0, it follows that the two random variables are coinci-
dent in all states of the world. Therefore, the quantity �(X,Y) can be
interpreted as a measure of relative deviation between X and Y. A
positive distance,�(X,Y) > 0, means that the two variables fluctuate
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with respect to each other, and zero distance, �(X,Y) = 0, implies
that there is no deviation of any of them relative to the other.

This idea is closely related to the notion of dispersion but it is
much more profound because we obtain the notion of dispersion
measures as a special case by considering the distance between X
and the mean of X, �(X,EX). In fact, the functional �(X,EX) pro-
vides a very general notion of a dispersion measure as it arises as
a special case from a probability metric which represents the only
general way of measuring distances between random quantities. In
the appendix to this chapter, we demonstrate how the family of sym-
metric deviation measures arises from probability metrics. Stoyanov
et al. (2008) consider similar questions and provide a more general
treatment.

5.4 Measures of Risk

As we noted in the introduction, risk is related to uncertainty but
it is not synonymous with it. Therefore, a risk measure may share
some of the features of a dispersion measure but is, generally, a
different object.

From a historical perspective, Markowitz (1952) was the first to
recognize the relationship between risk and reward and introduced
standard deviation as a proxy for risk. The standard deviation is
not a good choice for a risk measure because it penalizes symmetri-
cally both the negative and the positive deviations from the mean.
It is an uncertainty measure and cannot account for the asymmet-
ric nature of risk: that is, risk concerns losses only. The deficiencies
of the standard deviation as a risk measure were acknowledged by
Markowitz, who was the first to suggest the semi-standard devia-
tion as a substitute (Markowitz, 1959). In section 5.2.5, we gave an
example illustrating why the semi-standard deviation, as well as any
other deviation measure, cannot be a true risk measures.

In this section, we provide several examples of risk measures.
We consider VaR, and we comment on its properties and different
calculation methods. Where possible, the definitions and equations
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are geometrically interpreted, making the ideas more intuitive and
understandable. We also consider the more general family of coher-
ent risk measures, which includes the average value-at-risk (AVaR)
and the spectral risk measures as particular representatives. Finally,
we address the question of consistency of a risk measure with a
stochastic dominance order and remark on the relationship between
risk measures and uncertainty measures.

5.4.1 Value-at-risk

A risk measure which has been widely accepted since the 1990s is
value-at-risk (VaR). In the late 1980s, it was integrated by JP Morgan
on a firmwide level into its risk-management system. In this system,
they developed a service called RiskMetrics which was later spun off
into a separate company called the RiskMetrics Group. It is usually
thought that JP Morgan invented the VaR measure. In fact, similar
ideas had been used by large financial institutions in computing their
exposure to market risk. The contribution of JP Morgan was that the
notion of VaR was introduced to a wider audience.

In the mid-1990s, the VaR measure was approved by regulators
as a valid approach to calculating capital reserves needed to cover
market risk. The Basel Committee on Banking Supervision released
several amendments to the requirements for banking institutions
allowing them to use their own internal systems for risk estima-
tion. In this way, capital reserves, which financial institutions are
required to keep, could be based on the VaR numbers computed by
an in-house risk management system. Generally, regulators demand
that the capital reserve equal the VaR number multiplied by a factor
between 3 and 4. Thus, regulators link the capital reserves for market
risk directly to the risk measure.

VaR is defined as the minimum level of loss at a given, sufficiently
high, confidence level for a predefined time horizon. The recom-
mended confidence levels are 95% and 99%. Suppose that we hold
a portfolio with a 1-day 99% VaR equal to $1 million. This means
that over the horizon of 1 day, the portfolio may lose more than $1
million with probability equal to 1%.
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Figure 5.2: VaR at 95% confidence level of a random variable X. The top
plot shows the density ofX, the marked area equals the tail probability, and
the bottom plot shows the distribution function.

The same example can be constructed for percentage returns. Sup-
pose that the current value of a portfolio we hold is $10 million. If the
1-day 99% VaR of the return distribution is 2%, then over the time
horizon of 1 day, we lose more than 2% ($200,000) of the portfolio
present value with probability equal to 1%.

Denote by (1 − �) 100% the confidence level parameter of the VaR.
As we explained, losses larger than the VaR occur with probability
�. The probability �, we call tail probability. Depending on the inter-
pretation of the random variable, VaR can be defined in different
ways. Formally, VaR at confidence level (1 − �) 100% (tail probabil-
ity �) is defined as the negative of the lower �-quantile of the return
distribution,

VaR�(X) = − inf
x

{x|P(X ≤ x) ≥ �} = −F−1
X (�) (5.4.1)

where � ∈ (0, 1) and F−1
X (�) is the inverse of the distribution function.

If the random variable X describes random returns, then the VaR
number is given in terms of a return figure. The definition of VaR is
illustrated in Figure 5.2.
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If X describes random payoffs, then VaR is a threshold in dollar
terms below which the portfolio value falls with probability �,

VaR�(X) = inf
x

{x|P(X ≤ x) ≥ �} = F−1
X (�) (5.4.2)

where � ∈ (0, 1) and F−1
X (�) is the inverse of the distribution function

of the random payoff. VaR can also be expressed as a distance to the
current value when considering the profit distribution. The random
profit is defined asX − P0 whereX is the payoff and P0 is the current
value. VaR of the random profit equals

VaR�(X − P0) = − inf
x

{x|P(X − P0 ≤ x) ≥ �} = P0 − VaR�(X)

in whichVaR�(X) is defined according to (5.4.2), sinceX is interpreted
as a random payoff. In this case, the definition of VaR is essentially
given by equation (5.4.1).

According to the definition in equation (5.4.1), VaR may become a
negative number. If VaR�(X) is a negative number, then this means
that at tail probability � we do not observe losses but profits. Losses
happen with even smaller probability than �. If for any tail proba-
bility VaR�(X) is a negative number, then no losses can occur and,
therefore, the random variable X bears no risk as no exposure is
associated with it. In this chapter, we assume that random variables
describe either random returns or random profits and we adopt the
definition in equation (5.4.1).

We illustrate one aspect in which VaR differs from the deviation
measures and all uncertainty measures. As a consequence of the
definition, if we add to the random variable X a non-random profit
C, the resulting VaR can be expressed by VaR of the initial variable
in the following way:

VaR�(X + C) = VaR�(X) − C. (5.4.3)

Thus, adding a non-random profit decreases the risk of the portfolio.
Furthermore, scaling the return distribution by a positive constant �
scales the VaR by the same constant,

VaR�(�X) = �VaR�(X). (5.4.4)
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It turns out that these properties characterize not only VaR. They
are identified as key features of a risk measure. We will come back
to them in section 5.4.4.

Consider again the example developed in section 5.2.5. Initially,
the portfolio we hold consists of a common stock with random
monthly return rX . We rebalance the portfolio so that it becomes
an equally weighted portfolio of the stock and a bond with a non-
random monthly return of 5.26%, rB = 5.26%. Thus, the portfolio
return can be expressed as

rp = rX(1/2) + rB(1/2) = rX/2 + 0.0526/2.

Using equations (5.4.3) and (5.4.4), we calculate that if VaR�(rX) =
12%, then VaR�(rp) ≈ 3.365% which is by far less than 6% – half of
the initial risk. Recall from section 5.2.5 that any deviation mea-
sure would indicate that the dispersion (or the uncertainty) of
the portfolio return rp would be twice as small as the uncertainty
of rX .

A very important remark has to be made with respect to the per-
formance of VaR and, as it turns out, of any other risk measure. It
is heavily dependent on the assumed probability distribution of the
variableX. An unrealistic hypothesis may result in the underestima-
tion or overestimation of true risk. If we use VaR to build reserves
in order to cover losses in times of crises, then underestimation may
be fatal and overestimation may lead to inefficient use of capital. An
inaccurate model is even more dangerous in an optimal portfolio
problem in which we minimize risk subject to some constraints, as
it may adversely influence the optimal weights and therefore not
reduce the true risk.

Even though VaR has been largely adopted by financial institu-
tions and approved by regulators, it turns out that VaR has important
deficiencies. While it provides an intuitive description of how much
a portfolio may lose, generally, it should be abandoned as a risk
measure. The most important drawback is that, in some cases, the
reasonable diversification effect that every portfolio manager should
expect to see in a risk measure is not present: that is, a portfolio’s VaR
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may be greater than the sum of the VaRs of the constituents,

VaR�(X + Y) > VaR�(X) + VaR�(Y), (5.4.5)

in which X and Y stand for the random payoff of the instruments in
the portfolio. This shows that VaR cannot be a true risk measure.

We give a simple example which shows that VaR may satisfy
(5.4.5). Suppose that X denotes a bond which either defaults with
probability 4.5% and we lose $50 or does not default, in which case
the loss is equal to zero. Let Y be the same bond but assume that
the defaults of the two bonds are independent events. The VaR of
the two bonds at 95% confidence level (5% tail probability) is equal
to zero:

VaR0.05(X) = VaR0.05(Y) = 0.

Being the 5% quantile of the payoff distribution in this case, VaR
fails to recognize losses occurring with probability smaller than 5%.
A portfolio of the two bonds has the following payoff profile: it loses
$100 with probability of about 0.2%, loses $50 with probability of
about 8.6%, and the loss is zero with probability 91.2%. Thus, the
corresponding 95% VaR of the portfolio equals $50 and clearly,

$50 = VaR0.05(X + Y) > VaR0.05(X) + VaR0.05(Y) = 0.

What are the consequences of using a risk measure which may
satisfy property (5.4.5)? It is going to mislead portfolio managers that
there is no diversification effect in the portfolio and they may make
the irrational decision to concentrate it only into a few positions. As
a consequence, the portfolio risk actually increases.

Besides being sometimes incapable of recognizing the diversifi-
cation effect, another drawback is that VaR is not very informative
about losses beyond the VaR level. It only reports that losses larger
than the VaR level occur with probability equal to � but it does not
provide any information about the likely magnitude of such losses,
for example.

Nonetheless, VaR is not a useless concept to be abandoned alto-
gether. For example, it can be used in risk-reporting only as a
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characteristic of the portfolio return (payoff) distribution, since it
has a straightforward interpretation. The criticism of VaR is focused
on its wide application by practitioners as a true risk measure which,
in view of the deficiencies described above, is not well grounded and
should be reconsidered.

5.4.2 Computing portfolio VaR in practice

In this section, we provide three approaches for portfolio VaR cal-
culation which are used in practice. We assume that the portfolio
contains common stocks, which is only to make the description easier
to grasp; this is not a restriction of any of the approaches.

Suppose that a portfolio contains n common stocks and we are
interested in calculating the daily VaR at 99% confidence level.
Denote the random daily returns of the stocks by X1, . . . , Xn and
by w1, . . . , wn the weight of each stock in the portfolio. Thus, the
portfolio return rp can be calculated as

rp = w1X1 + w2X2 + . . .+ wnXn.

The portfolio VaR is derived from the distribution of rp. The three
approaches vary in the assumptions they make.

The approach of RiskMetrics
The approach of the RiskMetrics Group is centered on the assump-
tion that the stock returns have a multivariate normal distribution.
Under this assumption, the distribution of the portfolio return is also
normal. Therefore, in order to calculate the portfolio VaR, we only
have to calculate the expected return of rp and the standard deviation
of rp. The 99% VaR will appear as the negative of the 1% quantile of
the N(Erp, �2

rp
) distribution.

The portfolio expected return can be directly expressed through
the expected returns of the stocks,

Erp = w1EX1 + w2EX2 + . . .+ wnEXn =
n∑
k=1

wkEXk, (5.4.6)
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where E denotes mathematical expectation. Similarly, the variance
of the portfolio return �2

rp
can be computed through the variances of

the stock returns and their covariances,

�2
rp

= w2
1�

2
X1

+ w2
2�

2
X2

+ . . .+ w2
n�

2
Xn

+
∑
i /= j

wiwjcov(Xi,Xj),

in which the last term appears because we have to sum up the covari-
ances between all pairs of stock returns. There is a more compact way
of writing down the expression for �2

rp
using matrix notation,

�2
rp

= w′�w, (5.4.7)

in which w = (w1, . . . , wn) is the vector of portfolio weights and� is
the covariance matrix of stock returns,

� =

⎛⎜⎜⎜⎜⎜⎝
�2
X1

�12 . . . �1n

�21 �2
X2

. . . �2n

...
...

. . .
...

�n1 �n2 . . . �2
Xn

⎞⎟⎟⎟⎟⎟⎠ ,

in which �ij, i /= j, is the covariance between Xi and Xj, �ij =
cov(Xi,Xj). As a result, we obtain that the portfolio return has a nor-
mal distribution with mean given by equation (5.4.6) and variance
given by equation (5.4.7).

The standard deviation is the scale parameter of the normal dis-
tribution and the mean is the location parameter. Due to the normal
distribution properties, if rp ∈ N(Erp, �2

rp
), then

rp − Erp

�rp
∈ N(0, 1).

Thus, because of the properties (5.4.3) and (5.4.4) of the VaR, the 99%
portfolio VaR can be represented as

VaR0.01(rp) = q0.99�rp − Erp (5.4.8)
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where the standard deviation of the portfolio return �rp is computed
from equation (5.4.7), the expected portfolio return Erp is given in
(5.4.6), and q0.99 is the 99% quantile of the standard normal distribu-
tion.

Note that q0.99 is a quantity independent of the portfolio composi-
tion; it is merely a constant which can be calculated in advance. The
parameters which depend on the portfolio weights are the standard
deviation of portfolio returns �rp and the expected portfolio return.
As a consequence, VaR under the assumption of normality is sym-
metric even though, by definition, VaR is centered on the left tail
of the distribution: that is, VaR is asymmetric by construction. This
result appears because the normal distribution is symmetric around
the mean.

The approach of RiskMetrics can be extended for other types of
distributions. Lamantia et al. (2006a) and Lamantia et al. (2006b) pro-
vide such extensions and comparisons for the Student’s t and stable
distributions.

The historical method
The historical method does not impose any distributional assump-
tions; the distribution of portfolio returns is constructed from
historical data. Hence, sometimes the historical simulation method
is called a non-parametric method. For example, the 99% daily VaR of
the portfolio return is computed as the negative of the empirical 1%
quantile of the observed daily portfolio returns. The observations
are collected from a predetermined time window such as the most
recent business year.

While the historical method seems to be more general as it is free of
any distributional hypotheses, it has a number of major drawbacks.

(a) It assumes that the past trends will continue in the future. This is
not a realistic assumption because extreme events may be expe-
rienced in the future, for instance, which have not happened in
the past.

(b) It treats the observations as independent and identically dis-
tributed (i.i.d.), which is not realistic. The daily returns data
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exhibit clustering of the volatility phenomenon, autocorrela-
tions and so on, which are sometimes a significant deviation
from the i.i.d. assumption.

(c) It is not reliable for estimation of VaR at very high confidence
levels. A sample of one year of daily data contains 250 observa-
tions, which is a rather small sample for the purpose of the 99%
VaR estimation.

The hybrid method
The hybrid method is a modification of the historical method in which
the observations are not regarded as i.i.d. but certain weights are
assigned to them depending on how close they are to the present. The
weights are determined using the exponential smoothing algorithm.
The exponential smoothing accentuates the most recent observations
and seeks to take into account time-varying volatility phenomena.

The algorithm of the hybrid approach consists of the following
steps.

(a) Exponentially declining weights are attached to historical
returns, starting from the current time and going back in time.
Let rt−k+1, . . . , rt−1, rt be a sequence of k observed returns on a
given asset, where t is the current time. The i-th observation is
assigned a weight

	i = c∗�t−i,

where 0 < � < 1, and c = 1−�
1−�k is a constant chosen such that the

sum of all weights is equal to one,
∑
	i = 1.

(b) Similarly to the historical simulation method, the hypothetical
future returns are obtained from the past returns and sorted in
increasing order.

(c) The VaR measure is computed from the empirical cumulative
distribution function (c.d.f.), in which each observation has a
probability equal to the weight 	i.

Generally, the hybrid approach is appropriate for VaR estimation
of heavy-tailed time series. It overcomes, to some degree, the first
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and the second deficiency of the historical method but it is also not
reliable for VaR estimation of very high confidence levels.

The Monte Carlo method
In contrast to the historical method, the Monte Carlo method requires
specification of a statistical model for the stock returns. The statistical
model is multivariate, hypothesizing both the behavior of the stock
returns on a stand-alone basis and their dependence. For instance,
the multivariate normal distribution assumes normal distributions
for the stock returns viewed on a stand-alone basis and describes
the dependencies by means of the covariance matrix. The multi-
variate model can also be constructed by specifying explicitly the
one-dimensional distributions of the stock returns, and their depen-
dence through a copula function.

The Monte Carlo method consists of the following basic steps:

Step 1. Selection of a statistical model. The statistical model should
be capable of explaining a number of observed phenomena
in the data, such as heavy tails, clustering of the volatility,
etc., which we think influence the portfolio risk.

Step 2. Estimation of the statistical model parameters. A sample of
observed stocks returns is used from a predetermined time
window: for instance, the most recent 250 daily returns.

Step 3. Generation of scenarios from the fitted model. Independent sce-
narios are drawn from the fitted model. Each scenario is a
vector of stock returns which depend on each other accord-
ing to the presumed dependence structure of the statistical
model.

Step 4. Calculation of portfolio risk. Compute portfolio risk on the
basis of the portfolio return scenarios obtained from the
previous step.

The Monte Carlo method is a very general numerical approach to
risk estimation. It does not require any closed-form expressions and,
by choosing a flexible statistical model, accurate risk numbers can
be obtained. A disadvantage is that the computed portfolio VaR is
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Table 5.2 The 99% VaR of the standard normal distribution computed
from a sample of scenarios. The 95% confidence interval is calculated from
100 repetitions of the experiment. The true value is VaR0.01(X) = 2.326.

Number of scenarios 99% VaR 95% confidence interval

500 2.067 [1.7515, 2.3825]
1,000 2.406 [2.1455, 2.6665]
5,000 2.286 [2.1875, 2.3845]

10,000 2.297 [2.2261, 2.3682]
20,000 2.282 [2.2305, 2.3335]
50,000 2.342 [2.3085, 2.3755]

100,000 2.314 [2.2925, 2.3355]

dependent on the generated sample of scenarios and will fluctuate
a little if we regenerate the sample. This side effect can be reduced
by generating a larger sample. An illustration is provided in the
following example.

Suppose that the daily portfolio return distribution is standard
normal and, therefore, at Step 4 of the algorithm we have scenarios
from the standard normal distribution. Under the assumption of
normality, we can use the approach of RiskMetrics and compute the
99% daily VaR directly from formula (5.4.8). Nevertheless, we will
use the Monte Carlo method to gain more insight into the deviations
of the VaR based on scenarios from the VaR computed according to
formula (5.4.8).

In order to investigate how the fluctuations of the 99% VaR
change about the theoretical value, we generate samples of different
sizes: 500, 1,000, 5,000, 10,000, 20,000, 50,000, and 100,000 scenarios.
The 99% VaR is computed from these samples and the numbers are
stored. We repeat the experiment 100 times. In the end, we have 100
VaR numbers for each sample size. We expect that as the sample
size increases, the VaR values will fluctuate less about the theoretical
value, which is VaR0.01(X) = 2.326, X ∈ N(0, 1).

Table 5.2 contains the result of the experiment. From the 100 VaR
numbers, we calculate the 95% confidence interval for the true value
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Figure 5.3: Boxplot diagrams of the fluctuation of the 99% VaR of the stan-
dard normal distribution based on scenarios. The horizontal axis shows the
number of scenarios and the boxplots are computed from 100 independent
samples.

given in the third column. The confidence intervals cover the theoret-
ical value 2.326 and also we notice that the length of the confidence
interval decreases as the sample size increases. This effect is best illus-
trated with the help of the boxplot diagrams6 shown in Figure 5.3. A
sample of 100,000 scenarios results in VaR numbers which are tightly
packed around the true value, while a sample of only 500 scenarios
may give a very inaccurate estimate.

This simple experiment shows that the number of scenarios in the
Monte Carlo method has to be carefully chosen. The approach we
used to determine the fluctuations of the VaR based on scenarios is
a statistical method called parametric bootstrap. Bootstrap methods in
general are powerful statistical methods which are used to compute
confidence intervals when the problem is not analytically tractable
but the calculations may be quite computationally intensive.

The true merits of the Monte Carlo method can only be real-
ized when the portfolio contains complicated instruments such as
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derivatives. In this case, it is no longer possible to use a closed-
form expression for the portfolio VaR (and any risk measure in
general) because the distribution of the portfolio return (or pay-
off) becomes quite arbitrary. The Monte Carlo method provides the
general framework to generate scenarios for the risk-driving fac-
tors, then revaluates the financial instruments in the portfolio under
each scenario, and, finally, estimates portfolio risk on the basis of the
computed portfolio returns (or payoffs) in each state of the world.

While it may seem a straightforward approach, the practical
implementation is a very challenging endeavor from both software
development and financial modeling points of view. The portfolios
of large financial institutions often contain products which require
yield curve modeling, development of fundamental and statistical
factor models, and, on top of that, a probabilistic model capable of
describing the heavy tails of the risk-driving factor returns, the auto-
correlation, clustering of the volatility, and the dependence between
these factors. Processing large portfolios is related to manipulation
of colossal data structures, which requires excellent skills of software
developers in order to be efficiently performed.

5.4.3 Back-testing of VaR

If we adopt VaR for analysis of portfolio exposure, then a reason-
able question is whether the VaR calculated according to any of the
methods discussed in the previous section is realistic. Suppose that
we calculate the 99% daily portfolio VaR. This means that according
to our assumption for the portfolio return (payoff) distribution, the
portfolio loses more than the 99% daily VaR with 1% probability. The
question is whether this estimate is correct: that is, does the portfolio
really lose more than this amount with 1% probability? This question
can be answered by back-testing of VaR.

Generally, the procedure consists of the following steps.

Step 1. Choose a time window for the back-testing. Usually the
time window is the most recent one or two years.

Step 2. For each day in the time window, calculate the VaR number.
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Figure 5.4: The observed daily returns of S&P 500 index between Decem-
ber 31, 2002 and December 31, 2003 and the negative of VaR. The marked
observation is an example of an exceedance.

Step 3. Check if the loss on a given day is below or above the VaR
number computed the day before. If the observed loss is
larger, then we say that there is a case of an exceedance. Figure
5.4 provides an example.

Step 4. Count the number of exceedances. Check if there are too
many or too few of them by verifying if the number of
exceedances belong to the corresponding 95% confidence
interval.

If in Step 4 we find out that there are too large a number of
exceedances, then the VaR numbers produced by the model are too
optimistic. Losses exceeding the corresponding VaR happen too fre-
quently. If capital reserves are determined on the basis of VaR, then
there is a risk of being incapable of covering large losses. Conversely,
if we find out that there are too small a number of exceedances, then
the VaR numbers are too pessimistic. This is also an undesirable
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situation. Note that the actual size of the exceedances is immaterial,
we only count them.

The confidence interval for the number of exceedances is con-
structed on the basis of the indicator-type events “we observe an
exceedance,” “we do not observe an exceedance” on a given day.
If we consider the 99% VaR, then the probability of the first event,
according to the model, is 1%. Let us associate a number with each
of the events similar to a coin-tossing experiment. If we observe
an exceedance on a given day, then we say that the number 1 has
occurred, otherwise 0 has occurred. If the back-testing time window
is two years, then we have a sequence of 500 zeros and ones and the
expected number of exceedances is 5. Thus, finding the 95% confi-
dence interval for the number of exceedances reduces to finding an
interval around 5, such that the probability of the number of ones
belonging to this interval is 95%.

If we assume that the corresponding events are independent, then
there is a complete analogue of this problem in terms of coin tossing.
We toss independently 500 times an unfair coin with probability of
success equal to 1%. What is the range of the number of success
events with 95% probability? In order to find the 95% confidence
interval, we can resort to the normal approximation to the binomial
distribution. The formula is

left bound = N�− F−1(1 − 0.05/2)
√
N�(1 − �)

right bound = N�+ F−1(1 − 0.05/2)
√
N�(1 − �)

where N is the number of indicator-type events, � is the tail prob-
ability of the VaR, and F−1(t) is the inverse distribution function of
the standard normal distribution. In the example,N = 500, � = 0.01,
and the 95% confidence interval for the number of exceedances is
[0, 9]. Similarly, if we are back-testing the 95% VaR, under the same
circumstances the confidence interval is [15, 34].

Note that the statistical test based on the back-testing of VaR at
a certain tail probability cannot answer the question if the distribu-
tional assumptions for the risk-driving factors are correct in general.
For instance, if the portfolio contains only common stocks, then we
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presume a probabilistic model for stock returns. By back-testing the
99% daily VaR of portfolio return, we verify if the probabilistic model
is adequate for the 1% quantile of the portfolio return distribution:
that is, we are back-testing if a certain point in the left tail of the
portfolio return distribution is sufficiently accurately modeled. This
should not be confused with statistical tests such as the Kolmogorov
test or the Kolmogorov–Smirnov test, which concern accepting or
rejecting a given distributional hypothesis.

5.4.4 Coherent risk measures

Even though VaR has an intuitive interpretation and has been widely
adopted as a risk measure, it does not always satisfy the important
property that the VaR of a portfolio should not exceed the sum of the
VaRs of the portfolio positions. This means that VaR is not always
capable of representing the diversification effect.

This fact raises an important question. Can we find a set of desir-
able properties that a risk measure should satisfy? An answer is
given by Artzner et al. (1998). They provide an axiomatic definition
of a functional which they call a coherent risk measure. The axioms
follow with remarks given below each axiom.7 We denote the risk
measure by the functional �(X), assigning a real-valued number to
a random variable. Usually, the random variable X is interpreted
as a random payoff and the motivation for the axioms in Artzner
et al. (1998) follows this interpretation. In the remarks below each
axiom, we provide an alternative interpretation which holds if X is
interpreted as a random return.

The monotonicity property

Monotonicity �(Y) ≤ �(X), if Y ≥ X in almost sure sense.

Monotonicity states that if investment A has random return (pay-
off) Y which is not less than the return (payoff) X of investment B
at a given horizon in all states of the world, then the risk of A is
not greater than the risk of B. This is quite intuitive but it really
does matter whether the random variables represent random return
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or profit because an inequality in almost sure sense between ran-
dom returns may not translate into the same inequality between the
corresponding random profits and vice versa.

Suppose that X and Y describe the random percentage returns on
two investments A and B and let Y = X + 3%. Apparently, Y > X

in all states of the world. The corresponding payoffs are obtained
according to the equations

Payoff(X) = IA(1 + X)

Payoff(Y) = IB(1 + Y) = IB(1 + X + 3%)

where IA is the initial investment in opportunity A and IB is the
initial investment in opportunity B. If the initial investment IA is
much larger than IB, then Payoff(X) > Payoff(Y) irrespective of the
inequality Y > X. In effect, investment A may seem less risky than
investment B in terms of payoff but in terms of return, the converse
may hold.

The positive homogeneity property

Positive homogeneity �(0) = 0, �(�X) = ��(X), for all X and all � > 0.

The positive homogeneity property states that scaling the return
(payoff) of the portfolio by a positive factor scales the risk by the same
factor. The interpretation for payoffs is obvious – if the investment
in a position doubles, so does the risk of the position. We give a sim-
ple example illustrating this property when X stands for a random
percentage return.

Suppose that today the value of a portfolio is I0 and we add a
certain amount of cash C. The value of our portfolio becomes I0 + C.
The value tomorrow is random and equals I1 + C in which I1 is the
random payoff. The return of the portfolio equals

X = I1 + C − I0 − C

I0 + C
= I1 − I0

I0

(
I0

I0 + C

)
= h

I1 − I0
I0

= hY
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where h = I0/(I0 + C) is a positive constant. The axiom positive
homogeneity property implies that �(X) = h�(Y): that is, the risk of
the new portfolio will be the risk of the portfolio without the cash
but scaled by h.

The sub-additivity property

Sub-additivity �(X + Y) ≤ �(X) + �(Y), for all X and Y.

IfX andY describe random payoffs, then the sub-additivity property
states that the risk of the portfolio is not greater than the sum of the
risks of the two random payoffs.

The positive homogeneity property and the sub-additivity prop-
erty imply that the functional is convex

�(�X + (1 − �)Y) ≤ �(�X) + �((1 − �)Y)

= ��(X) + (1 − �)�(Y)

where � ∈ [0, 1]. If X and Y describe random returns, then the ran-
dom quantity �X + (1 − �)Y stands for the return of a portfolio
composed of two financial instruments with returnsX and Y having
weights � and 1 − �, respectively. Therefore, the convexity property
states that the risk of a portfolio is not greater than the sum of the
risks of its constituents, meaning that it is the convexity property
which is behind the diversification effect that we expect in the case
of X and Y denoting random returns.

The invariance property

Invariance �(X + C) = �(X) − C, for all X and C ∈ R.

The invariance property has various labels. Originally, it was called
translation invariance while in other texts it is called cash invariance.8

If X describes a random payoff, then the invariance property sug-
gests that adding cash to a position reduces its risk by the amount
of cash added. This is motivated by the idea that the risk measure
can be used to determine capital requirements. As a consequence,
the risk measure �(X) can be interpreted as the minimal amount of
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cash necessary to make the position free of any capital requirements,

�(X + �(X)) = 0.

The invariance property has a different interpretation when X

describes random return. Suppose that the random variable X

describes the return of a common stock and we build a long-only
portfolio by adding a government bond yielding a risk-free rate rB.
The portfolio return equals wX + (1 − w)rB, where w ∈ [0, 1] is the
weight of the common stock in the portfolio. Note that the quantity
(1 − w)rB is non-random by assumption. The invariance property
states that the risk of the portfolio can be decomposed as

�(wX + (1 − w)rB) = �(wX) − (1 − w)rB
= w�(X) − (1 − w)rB

(5.4.9)

where the second equality appears because of the positive homo-
geneity property. In effect, the risk measure admits the following
interpretation: Assume that the constructed portfolio is equally
weighted, i.e. w = 1/2, then the risk measure equals the level of the
risk-free rate such that the risk of the equally weighted portfolio con-
sisting of the risky asset and the risk-free asset is zero. The investment
in the risk-free asset will be, effectively, the reserve investment.

Alternative interpretations are also possible. Suppose that the
present value of the position with random percentage return X is
I0. Assume that we can find a government security earning return r∗B
at the horizon of interest. Then we can ask the question in the oppo-
site direction: How much should we reallocate from I0 and invest in
the government security in order to hedge the risk �(X)? The needed
capital C should satisfy the equation

I0 − C

I0
�(X) − C

I0
r∗B = 0

which is merely a re-statement of equation (5.4.9) with the additional
requirement that the risk of the resulting portfolio should be zero.

178



5.5 RISK MEASURES AND DISPERSION MEASURES

The solution is

C = I0
�(X)

�(X) + r∗B
.

Note that if in the invariance property the constant is non-negative,
C ≥ 0, then it follows that �(X + C) ≤ �(X). This result is in agree-
ment with the monotonicity property as X + C ≥ X. In fact, the
invariance property can be regarded as an extension of the mono-
tonicity property when the only difference between X and Y is in
their means.

According to the discussion in the previous section, VaR is not
a coherent risk measure because it may violate the sub-additivity
property.

An example of a coherent risk measure is the average VaR (AVaR),
defined as the average of the VaRs which are larger than the VaR at a
given tail probability �. The accepted notation isAVaR�(X), in which
� stands for the tail probability level. A larger family of coherent risk
measures is the family of spectral risk measures, which includes the
AVaR as a representative. The spectral risk measures are defined as
weighted averages of VaRs. The AVaR and the spectral risk measures
will be considered in detail in Chapter 6.

5.5 Risk Measures and Dispersion Measures

In the introduction to this chapter, we remarked that there is a certain
relationship between risk and uncertainty. While the two notions are
different, without uncertainty there is no risk. Having this in mind,
it is not surprising that there are similarities between the axioms
behind the deviation measures in section 5.2.5 and the axioms behind
the coherent risk measures in section 5.4.4. Both classes, the devia-
tion measures and the coherent risk measures, are not the only classes
capable of quantifying statistical dispersion and risk respectively.9

Nevertheless, they describe basic features of uncertainty and risk
and, in effect, we may expect that a relationship between them
exists.10
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Inspecting the defining axioms, we conclude that the common
properties are the sub-additivity property and the positive homo-
geneity property. The specific features are the monotonicity property
and the invariance property of the coherent risk measures and the
translation invariance and positivity of deviation measures. The link
between them concerns a subclass of the coherent risk measures
called strictly expectation-bounded risk measures and a subclass of the
deviation measures called lower-range-dominated deviation measures.

A coherent risk measure �(X) is called strictly expectation bounded
if it satisfies the condition

�(X) > −EX (5.5.1)

for all non-constant X, in which EX is the mathematical expectation
ofX. IfX describes the portfolio return distribution, then the inequal-
ity in (5.5.1) means that the risk of the portfolio is always greater than
the negative of the expected portfolio return. A coherent risk measure
satisfying this condition is the AVaR, for example.

A deviation measure D(X) is called lower range dominated if it sat-
isfies the condition

D(X) ≤ EX (5.5.2)

for all non-negative random variables, X ≥ 0. A deviation measure
which is lower range dominated is, for example, the downside semi-
standard deviation �−

X defined in (5.2.4).
The relationship between the two subclasses is a one-to-one cor-

respondence between them established through the equations

D(X) = �(X − EX) (5.5.3)

and

�(X) = D(X) − E(X). (5.5.4)

That is, if �(X) is a strictly expectation-bounded coherent risk mea-
sure, then through the formula in (5.5.3) we obtain the correspond-
ing lower-range-dominated deviation measure and, conversely,
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through the formula in (5.5.4), we obtain the corresponding strictly
expectation-bounded coherent risk measure.

In effect, there is a deviation measure behind each strictly
expectation-bounded coherent risk measure. Consider the AVaR, for
instance. Since it satisfies the property in (5.5.1), according to the
relationship discussed above, the quantity

D�(X) = AVaR�(X − EX)

represents the deviation measure underlying the AVaR risk measure
at tail probability �. In fact, the quantity D�(X), as well as any other
lower-range-dominated deviation measure, is obtained by comput-
ing the risk of the centered random variable. The definition of AVaR
and different calculation methods are provided in Chapter 6.

5.6 Risk Measures and Stochastic Orders

In section 3.3 of Chapter 3, we considered stochastic dominance rela-
tions. The second-order stochastic dominance (SSD), for example,
states that X dominates Y with respect to SSD when all risk-averse
investors prefer X to Y. Suppose that we estimate the risk of X and
Y through a risk measure �. If all risk-averse investors prefer X to
Y, then does it follow that �(X) ≤ �(Y)? This question describes the
issue of consistency of a risk measure with the SSD order. Intuitively,
a realistic risk measure should be consistent with the SSD order, since
there is no reason to assume that an investment with higher risk as
estimated by the risk measure will be preferred by all risk-averse
investors.

Note that the monotonicity property of the coherent risk measures
implies consistency with first-order stochastic dominance (FSD). The
condition that X ≥ Y in all states of the world translates into the
following inequality in terms of the c.d.f.s:

FX(x) ≤ FY(x), ∀x ∈ R,
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which, in fact, characterizes the FSD order.11 As a result, if all non-
satiable investors prefer X to Y, then any coherent risk measure will
indicate that the risk of X is below the risk of Y.

Concerning the more important SSD order, the consistency ques-
tion is more involved. The defining axioms of the coherent risk
measures cannot guarantee consistency with the SSD order. There-
fore, if we want to use a coherent risk measure in practice, we have
to verify separately the consistency with the SSD order.

DeGiorgi (2005) shows that the AVaR, and spectral risk mea-
sures in general, are consistent with the SSD order. Note that if the
AVaR, for example, is used to measure the risk of portfolio return
distributions, then the corresponding SSD order concerns random
variables describing returns. Similarly, if the AVaR is applied to
random variables describing payoff, then the SSD order concerns
random payoffs. SSD orders involving returns do not coincide with
SSD orders involving payoffs (see section 3.3.6 in Chapter 3 for fur-
ther details).

5.7 Summary

In this chapter, we described different approaches to quantifying
risk and uncertainty. We discussed in detail the following disper-
sion measures: standard deviation, mean absolute deviation, upside
and downside semi-standard deviations, an axiomatic description
of dispersion measures, and the family of deviation measures. We
also discussed in detail the following risk measures: value-at-risk
and the family of coherent risk measures.

We emphasized that a realistic statistical model for risk estimation
includes two essential components: (1) a realistic statistical model for
the financial asset return distributions and their dependence, capable
of accounting for empirical phenomena and (2) a true risk measure
capable of describing the essential characteristics of risk.

We explored a link between risk measures and dispersion
measures through two subclasses of coherent risk measures and
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deviation measures. Behind every such coherent risk measure, we
can find a corresponding deviation measure and vice versa. The
intuitive connection between risk and uncertainty materializes quan-
titatively in a particular form.

Finally, we emphasized the importance of consistency of risk
measures with the SSD order. In the appendix to this chapter, we
demonstrate a relationship between probability quasi-metrics and
deviation measures.

5.8 Technical Appendix

In this appendix, we provide an example of a class of risk measures
more general than the coherent risk measures described in the chap-
ter. Then we demonstrate that all symmetric deviation measures are
generated from probability metrics.

5.8.1 Convex risk measures

In the chapter, we noted that the sub-additivity and the positive
homogeneity properties of coherent risk measures guarantee that
they are convex. The convexity property is the essential feature
describing the diversification effect when the random variables are
interpreted as portfolio returns. Thus, it is possible to postulate con-
vexity directly and obtain the larger class of convex risk measures.

A risk measure � is said to be a convex risk measure if it satisfies
the following properties:

Monotonicity �(Y) ≤ �(X), if Y ≥ X in almost sure sense.
Convexity �(�X + (1 − �)Y) ≤ ��(X) + (1 − �)�(Y), for all X, Y

and � ∈ [0, 1].
Invariance �(X + C) = �(X) − C, for all X and C ∈ R.

The remarks from section 5.4.4 concerning the interpretation of the
axioms of coherent risk measures depending on whetherX describes
payoff or return are valid for the convex risk measures as well. The
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convex risk measures are more general than the coherent risk mea-
sures because every coherent risk measure is convex but not vice
versa. The convexity property does not imply positive homogene-
ity. Föllmer and Schied (2002) provide more details on convex risk
measures and their relationship with preference relations.

5.8.2 Probability metrics and deviation measures

In this section, we demonstrate that the symmetric deviation
measures12 arise from probability metrics equipped with two addi-
tional properties – translation invariance and positive homogeneity.
In fact, not only the symmetric but all deviation measures can be
described with the general method of probability metrics by extend-
ing the framework.

We briefly repeat the definition of a probability semimetric given
in Chapter 2. The probability semimetric is denoted by �(X,Y), in
which X and Y are random variables. The properties which �(X,Y)
should satisfy are the following:

Property 1. �(X,Y) ≥ 0 for any X,Y and �(X,Y) = 0 if X = Y in
almost sure sense.

Property 2. �(X,Y) = �(Y,X) for any X,Y.
Property 3. �(X,Y) ≤ �(X,Z) + �(Z,Y) for any X,Y,Z.

A probability metric is called translation invariant and positively
homogeneous if, besides properties 1, 2, and 3, it satisfies also

Property 4. �(X + Z,Y + Z) = �(Y,X) for any X,Y,Z.
Property 5. �(aX, aY) = a�(X,Y) for any X,Y and a > 0.

Property 4 is the translation invariance axiom and Property 5 is
the positive homogeneity axiom.

Note that translation invariance and positive homogeneity have a
different meaning depending on whether probability metrics or dis-
persion measures are concerned. To avoid confusion, we enumerate
the axioms of symmetric deviation measures given in section 5.2.5
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of this chapter. A symmetric deviation measure D(X) satisfies the
following axioms:

Property 1*. D(X + C) = D(X) for all X and constants C ∈ R.
Property 2*. D(X) = D(−X) for all X.
Property 3*. D(0) = 0 and D(�X) = �D(X) for all X and all � > 0.
Property 4*. D(X) ≥ 0 for all X, with D(X) > 0 for non-constant X.
Property 5*. D(X + Y) ≤ D(X) +D(Y) for all X and Y.

We will demonstrate that the functional

�D(X,Y) = D(X − Y) (5.8.1)

is a probability semimetric satisfying properties 1 through 5 if D
satisfies properties 1* through 5*. Furthermore, the functional

D�(X) = �(X − EX, 0) (5.8.2)

is a symmetric deviation measure if � is a probability metric satisfy-
ing properties 2 through 5.

Demonstration of equation (5.8.1)
We show that properties 1 through 5 hold for�D defined in equation
(5.8.1).

Property 1.�D(X,Y) ≥ 0 follows from the non-negativity ofD, Prop-
erty 4*. Further on, if X = Y in almost sure sense, then X − Y = 0
in almost sure sense and �D(X,Y) = D(0) = 0 from Property 3*.

Property 2. A direct consequence of Property 2*.
Property 3. Follows from Property 5*:

�(X,Y) = D(X − Y) = D(X − Z+ (Z− Y))

≤ D(X − Z) +D(Z− Y) = �(X,Z) + �(Z,Y)

Property 4. A direct consequence of the definition in (5.8.1).
Property 5. Follows from Property 3*.
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Demonstration of equation (5.8.2)
We show that properties 1* through 5* hold for D� defined in equa-
tion (5.8.2).

Property 1*. A direct consequence of the definition in (5.8.2).
Property 2*. Follows from Property 4 and Property 2.

D�(−X) = �(−X + EX, 0) = �(0, X − EX)

= �(X − EX, 0) = D�(X)

Property 3*. Follows from Property 1 and Property 5. D�(0) =
�(0, 0) = 0 and

D�(�X) = ��(X − EX, 0) = �D�(X)

Property 4*. Follows because � is a probability metric. If D�(X) = 0,
then X − EX is equal to zero almost surely, which means that X is
a constant in all states of the world.

Property 5*. Arises from Property 3 and Property 4.

D(X + Y) = �(X − EX + Y − EY, 0) = �(X − EX,−Y + EY)

≤ �(X − EX, 0) + �(0,−Y + EY)

= �(X − EX, 0) + �(Y − EY, 0)

= D(X) +D(Y)

Conclusion
Equation (5.8.2) shows that all symmetric deviation measures arise
from the translation invariant, positively homogeneous probability
metrics.

Note that because of the properties of the deviation measures, �D
is a semimetric and cannot become a metric. This is becauseD is not
sensitive to additive shifts and this property is inherited by �D,

�D(X + a, Y + b) = �D(X,Y),

where a and b are constants. In effect, �D(X,Y) = 0 implies that the
two random variables differ by a constant, X = Y + c in all states of
the world.
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Due to the translation invariance property, equation (5.8.2) can be
equivalently re-stated as

D�(X) = �(X,EX). (5.8.3)

In fact, as we remarked in the chapter, equation (5.8.3) represents a
very natural generic way of defining measures of dispersion. Starting
from equation (5.8.3) and replacing the translation invariance prop-
erty by the regularity property of ideal probability metrics given in
section 4.5 of Chapter 4, the sub-additivity property (Property 5*)
of D�(X) breaks down and a property similar to the positive shift
property given in the chapter holds instead of Property 1*,

D�(X + C) = �(X + C, EX + C) ≤ �(X,EX) = D�(X)

for all constants C. In fact, this property is more general than the
positive shift property as it holds for arbitrary constants.

5.8.3 Deviation measures and probability quasi-metrics

In this section, we demonstrate that the deviation measures arise
from probability quasi-metrics13 equipped with the two additional
properties of translation invariance and positive homogeneity given
in section 5.8.2.

Theorem 5.8.1. The functional �D defined as

�D(X,Y) = D(X − Y)

is a positively homogeneous, translation-invariant probability quasi-
semimetric if D is a deviation measure. Furthermore, the functional
D� defined as

D�(X) = �(X − EX, 0)

is a deviation measure if� is a a positively homogeneous, translation-
invariant probability quasi-metric.

The proof can be found in Stoyanov et al. (2008) but basically it
repeats the steps considered in section 5.8.2. The result in the theorem
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is more general than the one given in section 5.8.2 and includes it as
a special case.

Notes

1. Holton (2004) provides a thorough analysis of the notion of risk.
Knight (1921) started the debate about risk and uncertainty.

2. This distinction is made by the Basel Committee on Banking Super-
vision. The Basel Committee consists of representatives from central
banks and regulatory authorities of the G10 countries. It has issued
two banking supervision accords, Basel I and Basel II, with the pur-
pose of ensuring that financial institutions retain enough capital as a
protection against unexpected losses. In the two accords, a distinction
is made between market, credit, and operational risk, and a simple
methodology is provided for their quantification.

3. At times, we will use the notation �(X) instead of �X to accentu-
ate that the standard deviation is a functional of the underlying
distribution.

4. Symmetric random variables are described through their distribution
function: that is,X is symmetric (around zero) ifX has the same distri-

bution function as −X,X d= −X, where the notation d= means equality
in distribution. If the mean of the distribution is not zero, then the con-
dition of symmetry changes toX − EX

d= −(X − EX), and we say that
X is symmetric around the mean.

5. Chapter 4 provides more details on primary, simple, and compound
probability metrics.

6. A boxplot, or a box-and-whiskers diagram, is a convenient way of
depicting several statistical characteristics of the sample. The size of
the box equals the difference between the third and the first quartile
(75% quantile – 25% quantile), also known as the interquartile range.
The line in the box corresponds to the median of the data (50% quan-
tile). The lines extending out of the box are called whiskers and each of
them is long up to 1.5 times the interquartile range. All observations
outside the whiskers are labeled outliers and are depicted by a plus
sign.

7. Further remarks on this and other axiomatic constructions can be
found in Pflug and Roemisch (2007) and Heyde et al. (2009)
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8. This label can be found in Föllmer and Schied (2002).
9. The appendix to this chapter contains an example of a class of risk

measures which is more general than the coherent risk measures. This
is the class of convex risk measures.

10. The relationship is studied in Rockafellar et al. (2006).
11. Section 3.3 of Chapter 3 provides more details.
12. Deviation measures are described in section 5.2.5.
13. Probability quasi-semimetrics satisfy all properties of probability

semimetrics save for the symmetry property: see Chapter 2 for the
corresponding definition.
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Chapter 6

Average Value-at-Risk

The goals of this chapter are the following:

• To introduce formally the average value-at-risk (AVaR) measure.
• To provide closed-form expressions for AVaR for a few distribu-

tions widely used for modeling financial returns.
• To consider the problem of estimating AVaR from a sample.
• To discuss spectral risk measures and distortion risk measures

which include AVaR as a special case.
• To explain the important place of AVaR as a building block

because any other distortion risk measure can be represented as
an appropriate weighted average of AVaRs.

Notation introduced in this chapter:

Notation Description

AVaR�(X) The AVaR of a random variable X at tail probability �
��(X) The spectral risk measure of a random variable X with a

risk-aversion function �
�H(X) The distortion risk measure of a random variable X
mn� (X) The tail moment of order n of a random variable X at tail

probability �

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
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Notation Description

�n� (X) The absolute central tail moment of order n of a random
variable X at tail probability �

MTL�(X) The median tail loss of a random variable X at tail proba-
bility �

AVaR
(n)
� (X) The AVaR of order n of a random variable X at tail proba-

bility �
ETL�(X) The expected tail loss of a random variable X at tail prob-

ability �
RV˛ The set of monotonic functions regularly varying at infin-

ity with index ˛

Important terms introduced in this chapter:

Term Concise explanation

heavy-tailed distribution A probability distribution the tails of which
decay faster than the tails of the
exponential distribution.

robust estimator An estimator which is not excessively
influenced by small departures from the
model assumptions (e.g. by presence of
outliers in the data).

6.1 Introduction

The value-at-risk (VaR) measure has been adopted as a standard risk
measure in the financial industry. Nonetheless, it has a number of
deficiencies recognized by financial professionals. In Chapter 5, we
remarked that there is one very important property which does not
hold for VaR. This is the sub-additivity property which ensures that
the VaR measure cannot always account for diversification. There are
cases in which the portfolio VaR is larger than the sum of the VaRs
of the portfolio constituents. This shows that VaR cannot be used as
a true risk measure.

AVaR is a risk measure which is a superior alternative to VaR.
Not only does it lack the deficiencies of VaR, but it also has an
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intuitive interpretation. There are convenient ways for computing
and estimating AVaR which allows its application in optimal port-
folio problems. Moreover, it satisfies all axioms of coherent risk
measures and it is consistent with the preference relations of risk-
averse investors.

In this chapter, we explore in detail the properties of AVaR and
illustrate its superiority to VaR. We develop new geometric inter-
pretations of AVaR and the various calculation methods. We also
provide closed-form expressions for the AVaR of the normal distribu-
tion, Student’s t distribution, and a practical formula for Lévy stable
distributions. Finally, we describe different estimation methods and
remark on potential pitfalls.

Besides AVaR, we consider a more general family of risk measures
satisfying the axioms of coherent risk measures. This is the class of
spectral risk measures which contains AVaR as a special case. In
contrast to AVaR, spectral risk measures in general are harder to
work with. There are subtle conditions which have to be satisfied
in order for spectral risk measures to be a practical concept. Such
conditions are stated in the appendix to this chapter.

At the end of the chapter, we note an interesting link between prob-
ability metrics and risk measures. Having selected a risk measure, it
is possible to find a probability metric which ensures that random
variables closer to each other with respect to the probability metric
have similar risk profiles.

6.2 Average Value-at-Risk

In section 5.4.1 of Chapter 5, we noted that a disadvantage of
VaR is that it does not give any information about the severity of
losses beyond the VaR level. Consider the following example. Sup-
pose that X and Y describe the random returns of two financial
instruments with densities and distribution functions such as the
ones in Figure 6.1. The expected returns are 3% and 1%, respec-
tively. The standard deviations of X and Y are equal to 10%.1 The
cumulative distribution functions (c.d.f.s) FX(x) and FY(x) cross at
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Figure 6.1: The top plot shows the densities of X and Y and the bottom
plot shows their c.d.f.s. The 95% VaRs of X and Y are equal to 0.15 but X
has a thicker tail and is more risky.

x = −0.15 and FX(−0.15) = FY(−0.15) = 0.05. According to the def-
inition of VaR in equation (5.4.1), the 95% VaRs of both X and Y

are equal to 15%. That is, the two financial instruments lose more
than 15% of their present values with probability of 5%. In effect, we
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may conclude that their risks are equal because their 95% VaRs are
equal.

This conclusion is wrong because we pay no attention to the losses
which are larger than the 95% VaR level. It is visible in Figure 6.1 that
the left tail ofX is heavier than the left tail of Y.2 Therefore, it is more
likely that the losses of X will be larger than the losses of Y, on con-
dition that they are larger than 15%. Thus, looking only at the losses
occurring with probability smaller than 5%, the random return X is
riskier than Y. Note that both X and Y have equal standard devi-
ations. If we base the analysis on the standard deviation and the
expected return, we would conclude that not only is the uncertainty
ofX equal to the uncertainty ofY butX is actually preferable because
of the higher expected return. In fact, we realize that it is exactly
the opposite, which shows how important it is to ground the reason-
ing on a proper risk measure.

The disadvantage of VaR, that it is not informative about the mag-
nitude of the losses larger than the VaR level, is not present in the
risk measure known as average value-at-risk. In the literature, it is
also called conditional value-at-risk3 or expected shortfall but we will
use average value-at-risk (AVaR) as it best describes the quantity it
refers to.

The AVaR at tail probability � is defined as the average of the VaRs
which are larger than the VaR at tail probability �. Therefore, by
construction, the AVaR is focused on the losses in the tail which are
larger than the corresponding VaR level. The average of the VaRs is
computed through the integral

AVaR�(X) : = 1
�

∫ �

0
VaRp(X)dp (6.2.1)

whereVaRp(X) is defined in equation (5.4.1) in Chapter 5. As a matter
of fact, the AVaR is not well defined for all real-valued random vari-
ables but only for those with finite mean: that is, AVaR�(X) < ∞ if
E|X| < ∞. This should not be disturbing because random variables
with infinite mathematical expectation have limited application in
the field of finance. For example, if such a random variable is used
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Figure 6.2: Geometrically, AVaR�(X) is the height for which the area of
the drawn rectangle equals the shaded area closed between the graph of
the inverse c.d.f. and the horizontal axis for t ∈ [0, �]. The VaR�(X) value is
shown by a dash-dotted line.

for a model of stock returns, then it is assumed that the common
stock has infinite expected return, which is not realistic.

The AVaR satisfies all the axioms of coherent risk measures. One
consequence is that, unlike VaR, it is convex for all possible portfolios,
which means that it always accounts for the diversification effect.

A geometric interpretation of the definition in equation (6.2.1) is
provided in Figure 6.2. In this figure, the inverse c.d.f. of a random
variable X is plotted. The shaded area is closed between the graph
of F−1

X (t) and the horizontal axis for t ∈ [0, �] where � denotes the
selected tail probability. AVaR�(X) is the value for which the area
of the drawn rectangle, equal to �× AVaR�(X), coincides with the
shaded area, which is computed by the integral in equation (6.2.1).
The VaR�(X) value is always smaller than AVaR�(X). In Figure 6.2,
VaR�(X) is shown by a dash-dotted line and is indicated by an arrow.

Let us revisit the example developed at the beginning of this sec-
tion. We concluded that even though the VaRs at 5% tail probability
of both random variables are equal, X is riskier than Y because the
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Figure 6.3: The AVaRs of the return distributions from Figure 6.1 in line
with the geometric intuition. Even though the 95% VaRs are equal, the AVaRs
at 5% tail probability differ, AVaR0.05(X) > AVaR0.05(Y).

left tail of X is heavier than the left tail of Y: that is, the distribution
ofX is more likely to produce larger losses than the distribution of Y
on condition that the losses are beyond the VaR at the 5% tail prob-
ability. We apply the geometric interpretation illustrated in Figure
6.2 to this example. First, notice that the shaded area in Figure 6.2,
which concerns the graph of the inverse of the c.d.f., can also be iden-
tified through the graph of the c.d.f. This is done in Figure 6.3, which
shows a magnified section of the left tails of the c.d.f.s plotted in Fig-
ure 6.1. The shaded area appears as the intersection of the area closed
below the graph of the distribution function and the horizontal axis,
and the area below a horizontal line shifted at the tail probabil-
ity above the horizontal axis. In Figure 6.3, we show the area for
FX(x) at 5% tail probability. The corresponding area for FY(x) is
smaller because FY(x) ≤ FX(x) to the left of the crossing point of the
two c.d.f.s, which is exactly at 5% tail probability.

In line with the geometric interpretation, theAVaR0.05(X) is a num-
ber, such that if we draw a rectangle with height 0.05 and width equal
to AVaR0.05(X), the area of the rectangle (0.05 × AVaR0.05(X)) equals
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the shaded area in Figure 6.3. The same exercise for AVaR0.05(Y)
shows that AVaR0.05(Y) < AVaR0.05(X) because the corresponding
shaded area is smaller and both rectangles share a common height
of 0.05.

Besides the definition in equation (6.2.1), AVaR can be represented
through a minimization formula,4

AVaR�(X) = min
�∈R

(
� + 1

�
E(−X − �)+

)
(6.2.2)

where (x)+ denotes the maximum between x and zero, (x)+ =
max(x, 0) and X describes the portfolio return distribution. It turns
out that this formula has an important application in optimal port-
folio problems based on AVaR as a risk measure. In the appendix to
this chapter, we provide an illuminating geometric interpretation of
equation (6.2.2) which shows the connection to definition of AVaR.

How can we compute the AVaR for a given return distribution?
Throughout this section, we assume that the return distribution func-
tion is a continuous function (i.e., there are no point masses). Under
this condition, after some algebra and using the fact that VaR is
the negative of a certain quantile, we obtain that the AVaR can be
represented in terms of a conditional expectation,

AVaR�(X) = −1
�

∫ �

0
F−1
X (t)dt

= −E(X|X < −VaR�(X)),
(6.2.3)

which is called expected tail loss (ETL) and is denoted by ETL�(X). The
conditional expectation implies that the AVaR equals the average loss
provided that the loss is larger than the VaR level. In fact, the average
of VaRs in equation (6.2.1) equals the average of losses in equation
(6.2.3) only if the c.d.f. of X is continuous at x = VaR�(X). If there is
a discontinuity, or a point mass, the relationship is more involved.
The general formula is given in the appendix to this chapter.

Equation (6.2.3) implies that AVaR is related to the conditional loss
distribution. In fact, under certain conditions, it is the mathemati-
cal expectation of the conditional loss distribution, which represents
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only one characteristic of it. In section 6.10.1 in the appendix to this
chapter, we introduce several sets of characteristics of the condi-
tional loss distribution, which provide a more complete picture of
it. Also, in section 6.10.2, we introduce the more general concept of
higher-order AVaR.

For some continuous distributions, it is possible to calculate explic-
itly the AVaR through equation (6.2.3). We provide the closed-form
expressions for the normal distribution and Student’s t distribution.
In the next section, we give a semi-explicit formula for the class of
stable distributions.

(a) The normal distribution
Suppose thatX is distributed according to a normal distribution
with standard deviation �X and mathematical expectation EX.
The AVaR of X at tail probability � equals

AVaR�(X) = �X

�
√

2�
exp

(
− (VaR�(Y))2

2

)
− EX (6.2.4)

where Y has the standard normal distribution, Y ∈ N(0, 1).
(b) The Student’s t distribution

Suppose that X has Student’s t distribution with 	 degrees of
freedom, X ∈ t(	). The AVaR of X at tail probability � equals

AVaR�(X)=

⎧⎪⎪⎨⎪⎪⎩



(
	+1

2

)



(
	
2

) √
	

(	 − 1)�
√
�

(
1 + (VaR�(X))2

	

)1−	
2

, 	 > 1

∞, 	 = 1

where the notation 
(x) stands for the gamma function. It is not
surprising that for 	 = 1 the AVaR explodes because the Stu-
dent’s t distribution with one degree of freedom, also known as
the Cauchy distribution, has infinite mathematical expectation.5

Note that equation (6.2.4) can be represented in a more compact way,

AVaR�(X) = �XC� − EX, (6.2.5)
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where C� is a constant which depends only on the tail probability �.
Therefore, the AVaR of the normal distribution has the same struc-
ture as the normal VaR given in (5.4.8) in Chapter 5 – the difference
between the properly scaled standard deviation and the mathemati-
cal expectation. In effect, similar to the normal VaR, the normal AVaR
properties are dictated by the standard deviation. Even though AVaR
is focused on the extreme losses only, due to the limitations of the
normal assumption, it is symmetric.

Exactly the same conclusion holds for the AVaR of Student’s t dis-
tribution. The true merits of AVaR become apparent if the underlying
distributional model is skewed.

6.2.1 AVaR for stable distributions

A major criticism for assuming the normal distribution as a model
is that very often there are outliers in the data. These outliers cannot
be explained by the normal distribution. In contrast to the normal
distribution, the stable Paretian distributions are heavy-tailed and
they have the potential to describe the heavy tails and the asymmetry
of the empirical data.

The class of the stable distributions is defined by means of their
characteristic functions.6 With very few exceptions, no closed-form
expressions are known for their densities and distribution functions.
A random variable X is said to have a stable distribution if there
are parameters 0 < ˛ ≤ 2, � > 0, −1 ≤ ˇ ≤ 1, � ∈ R such that its
characteristic function ϕX(t) = EeitX has the following form:

ϕX(t) =

⎧⎪⎪⎨⎪⎪⎩
exp{−�˛|t|˛

(
1 − ǐ

t

|t| tan
(
�˛

2

))
+ i�t}, ˛ /= 1

exp{−�|t|
(

1 + ǐ
2
�

t

|t| ln (|t|)
)

+ i�t}, ˛ = 1

(6.2.6)

where t
|t| = 0 if t = 0. Zolotarev (1986) and Samorodnitsky and

Taqqu (1994) provide further details on the properties of stable dis-
tributions.

200



6.2 AVERAGE VALUE-AT-RISK

−5 −3 −1 0 1 3 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
α = 1.8
α = 1.4
α = 1
α = 0.8

Figure 6.4: The density functions of stable laws with parameters ˛ =
1.8, 1.4, 1, and 0.8, ˇ = 0.6, � = 1, � = 0.

The parameters appearing in equation (6.2.6) are the following:

˛ is called the index of stability or the tail exponent
ˇ is a skewness parameter
� is a scale parameter
� is a location parameter

Since stable distributions are uniquely determined by these four
parameters, the common notation is S˛(�, ˇ, �).

Figure 6.4 shows several stable densities with different tail expo-
nents and ˇ = 0.6. All densities are asymmetric but the skewness is
more pronounced when the tail exponent is lower. Figure 6.5 shows
several stable densities with different tail exponents and ˇ = 0. All
densities are symmetric.

The parameter˛determines how heavy the tails of the distribution
are. That is why it is also called the tail exponent. The lower the tail
exponent, the heavier the tails. If ˛ = 2, then we obtain the normal
distribution. Figure 6.5 illustrates the increase of the tail thickness
as ˛ decreases. Thicker tails indicate that the extreme events become
more frequent. Due to the important effect of the parameter ˛ on the
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Figure 6.5: The density functions of stable laws with parameters ˛ =
1.8, 1.4, 1, and 0.8, ˇ = 0, � = 1, � = 0.

properties of the stable distributions, they are often called ˛-stable or
alpha stable.

Apart from the appealing feature that the probabilistic properties
of only the stable distributions are close to the probabilistic prop-
erties of sums of i.i.d. random variables, there is another important
characteristic which is the stability property. According to the sta-
bility property, appropriately centered and normalized sums of i.i.d.
˛-stable random variables are again ˛-stable. This property is unique
to the class of stable laws.

Working with the class of stable distributions in practice is diffi-
cult because there are no closed-form expressions for their densities
and distribution functions. Thus, practical work relies on numerical
methods.

Stoyanov et al. (2006) give an account of the approaches to estimat-
ing AVaR of stable distributions. It turns out that there is a formula
which is not exactly a closed-form expression, such as the ones for
the normal and Student’s t AVaR stated in the chapter, but is suit-
able for numerical work. It involves numerical integration but the
integrand is nicely behaved and the integration range is a bounded
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interval. Numerical integration can be performed by standard tool-
boxes in many software packages, such as MATLAB. Moreover, there
are libraries freely available on the Internet. Therefore, numerical
integration itself is not a severe restriction for applying a formula in
practice. Since the formula involves numerical integration, we call it
a semi-analytic expression.

Suppose that the random variableX has a stable distribution with
tail exponent ˛, skewness parameter ˇ, scale parameter �, and loca-
tion parameter �, X ∈ S˛(�, ˇ, �). If ˛ ≤ 1, then AVaR�(X) = ∞. The
reason is that stable distributions with ˛ ≤ 1 have infinite mathemat-
ical expectation and the AVaR is unbounded.

If ˛ > 1 and VaR�(X) /= 0, then the AVaR can be represented as

AVaR�(X) = �A�,˛,ˇ − �

where the term A�,˛,ˇ does not depend on the scale and the location
parameters. In fact, this representation is a consequence of the posi-
tive homogeneity and the invariance property of AVaR. Concerning
the term A�,˛,ˇ,

A�,˛,ˇ = ˛

1 − ˛

|VaR�(X)|
��

∫ �/2

−�0

g(�) exp
(
−|VaR�(X)| ˛

˛−1 v(�)
)
d�

where

g(�) = sin(˛(�0 + �) − 2�)
sin ˛(�0 + �)

− ˛ cos2 �

sin2 ˛(�0 + �)
,

v(�) = (
cos˛�0

) 1
˛−1

(
cos �

sin ˛(�0 + �)

) ˛
˛−1 cos(˛�0 + (˛− 1)�)

cos �
,

in which �0 = 1
˛

arctan
(
ˇ tan �˛

2

)
,ˇ = −sign(VaR�(X))ˇ, andVaR�(X)

is the VaR of the stable distribution at tail probability �.
If VaR�(X) = 0, then the AVaR admits a very simple expression,

AVaR�(X) =
2


(
˛−1
˛

)
(� − 2�0)

cos �0

(cos˛�0)1/˛ .

in which 
(x) is the gamma function and �0 = 1
˛

arctan(ˇ tan �˛
2 ).
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It is possible to find expressions suitable for numerical work for
VaR and AVaR of the much more general class of infinitely divisible
distributions to which stable distributions belong. For more infor-
mation and how this approach can be applied to some classes of
tempered stable distributions, see Kim et al. (2009). Tempered stable
distributions have been successfully applied as a model for stock
returns in option pricing theory.

Besides the class of stable distributions, asymmetric versions of
the classical Student’s t distributions have been suggested as a model
for stock returns (see, for example, Rachev and Mittnik (2000)). An
approach for numerical calculation of VaR and AVaR for an asym-
metric Student’s t model is developed in Dokov et al. (2008).

6.3 AVaR Estimation from a Sample

Suppose that we have a sample of observed portfolio returns and
we are not aware of their distribution. Provided that we do not
impose any distributional model, the AVaR of portfolio return
can be estimated from the sample of observed portfolio returns.
Denote the observed portfolio returns by r1, r2, . . . , rn at time instants
t1, t2, . . . , tn. The numbers in the sample are given in order of obser-
vation.

Denote the sorted sample by r(1) ≤ r(2) ≤, . . . ,≤ r(n). Thus, r(1)

equals the smallest observed portfolio return and r(n) is the largest.
The AVaR of portfolio returns at tail probability � is estimated accord-
ing to the formula7

ÂVaR�(r) = −1
�

(
1
n

�n��−1∑
k=1

r(k) +
(
�− �n�� − 1

n

)
r(�n��)

)
(6.3.1)

where the notation �x� stands for the smallest integer larger than
x.8 The “hat” above AVaR denotes that the number calculated by
equation (6.3.1) is an estimate of the true value because it is based on
a sample. This is a standard notation in statistics.
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We demonstrate how equation (6.3.1) is applied in the follow-
ing example. Suppose that the sorted sample of portfolio returns is
−1.37%, −0.98%, −0.38%, −0.26%, 0.19%, 0.31%, and 1.91%, and our
goal is to calculate the portfolio AVaR at 30% tail probability. In this
case, the sample contains 7 observations and �n�� = �7 × 0.3� = 3.
According to equation (6.3.1), we calculate

ÂVaR0.3(r) = − 1
0.3

(
1
7

(−1.37% − 0.98%) + (0.3 − 2/7)(−0.38%)
)

= 1.137%.

Formula (6.3.1) can be applied not only to a sample of empirical
observations. We may want to work with a statistical model for which
no closed-form expressions for AVaR are known. Then we can sim-
ply sample from the distribution and apply formula (6.3.1) to the
generated simulations.

Besides formula (6.3.1), there is another method for calculation of
AVaR. It is based on the minimization formula (6.2.2) in which we
replace the mathematical expectation by the sample average,

ÂVaR�(r) = min
�∈R

(
� + 1

n�

n∑
i=1

max(−ri − �, 0)

)
. (6.3.2)

Even though it is not obvious, equations (6.3.1) and (6.3.2) are com-
pletely equivalent.

The minimization formula in equation (6.3.2) is appealing because
it can be calculated through the methods of linear programming.
It can be restated as a linear optimization problem by introducing
auxiliary variables d1, . . . , dn, one for each observation in the sample,

min
�,d

� + 1
n�

n∑
k=1

dk

subject to −rk − � ≤ dk, k = 1, n

dk ≥ 0, k = 1, n

� ∈ R.

(6.3.3)
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The linear problem (6.3.3) is obtained from (6.3.2) through standard
methods in mathematical programming. We briefly demonstrate the
equivalence between them. Let us fix the value of � to �∗. Then the
following choice of the auxiliary variables yields the minimum in
(6.3.3). If −rk − �∗ < 0, then dk = 0. Conversely, if it turns out that
−rk − �∗ ≥ 0, then −rk − �∗ = dk. In this way, the sum in the objective
function becomes equal to the sum of maxima in equation (6.3.2).

Applying (6.3.3) to the sample in the example above, we obtain
the optimization problem,

min
�,d

� + 1
7 × 0.3

7∑
k=1

dk

subject to 0.98% − � ≤ d1

−0.31% − � ≤ d2

−1.91% − � ≤ d3

1.37% − � ≤ d4

0.38% − � ≤ d5

0.26% − � ≤ d6

−0.19% − � ≤ d7

dk ≥ 0, k = 1, 7

� ∈ R.

The solution to this optimization problem is the number 1.137%
which is attained for � = 0.38%. In fact, this value of � coincides
with the VaR at 30% tail probability and this is not by chance but
a feature of the problem which is demonstrated in the appendix to
this chapter. We verify that the solution of the problem is indeed the
number 1.137% by calculating the objective in equation (6.3.2) for
� = 0.38%,

AVaR�(r) = 0.38% + 0.98% − 0.38% + 1.37% − 0.38%
7 × 0.3

= 1.137%.

Thus, we obtain the number calculated through equation (6.3.1).
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6.4 Computing Portfolio AVaR in Practice

The ideas behind the approaches of VaR estimation can be applied
to AVaR. We revisit the four methods from section 5.4.2 of Chapter 5,
focusing on the implications for AVaR. We assume that there are
n common stocks with random returns described by the random
variables X1, . . . , Xn. Thus, the portfolio return is represented by

rp = w1X1 + . . .+ wnXn

where w1, . . . , wn are the weights of the common stocks in the port-
folio.

6.4.1 The multivariate normal assumption

We noted in section 5.4.2 of Chapter 5 that if the stock returns are
assumed to have a multivariate normal distribution, then the portfo-
lio return has a normal distribution with variance w′�w, where w is
the vector of weights and � is the covariance matrix between stock
returns. The mean of the normal distribution is

Erp =
n∑
k=1

wkEXk

where E stands for the mathematical expectation. Thus, under this
assumption the AVaR of portfolio return at tail probability � can be
expressed in closed-form through equation (6.2.4),

AVaR�(rp) =
√
w′�w
�
√

2�
exp

(
− (VaR�(Y))2

2

)
− Erp

= C�
√
w′�w− Erp

(6.4.1)

where C� is a constant independent of the portfolio composition
and can be calculated in advance. In effect, due to the limitations
of the multivariate normal assumption, the portfolio AVaR appears
symmetric and is representable as the difference between the prop-
erly scaled standard deviation of the random portfolio return and
portfolio expected return.
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6.4.2 The historical method

As we noted in section 5.4.2 of Chapter 5, the historical method is
not related to any distributional assumptions. We use the historically
observed portfolio returns as a model for the future returns and apply
formula (6.3.1) or (6.3.2).

The historical method has several drawbacks as mentioned in
section 5.4.2. We emphasize that it is very inaccurate for low tail
probabilities, such as 1% or 5%. Even with one year of daily returns,
which amounts to 250 observations, in order to estimate the AVaR at
1% probability, we have to use the three smallest observations, which
is quite insufficient. What makes the estimation problem even worse
is that these observations are in the tail of the distribution: that is,
they are the smallest ones in the sample. The implication is that when
the sample changes, the estimated AVaR may change a lot because
the smallest observations tend to fluctuate a lot.

6.4.3 The hybrid method

According to the hybrid method described in section 5.4.2 of
Chapter 5, different weights are assigned to the observations by
which the more recent observations get a higher weight. The ratio-
nale is that the observations far back in the past have less impact on
the portfolio risk at the present time.

The hybrid method can be adapted for AVaR estimation. The
weights assigned to the observations are interpreted as probabilities
and, thus, the portfolio AVaR can be estimated from the resulting
discrete distribution according to the formula

ÂVaR�(r) = −1
�

⎛⎝ k�∑
j=1

pjr(j) +
⎛⎝�−

k�∑
j=1

pj

⎞⎠ r(k�+1)

⎞⎠ (6.4.2)

where r(1) ≤ r(2) ≤ . . . ≤ r(km) denotes the sorted sample of portfolio
returns or payoffs and p1, p2, . . . , pkm stand for the probabilities of the
sorted observations: that is, p1 is the probability of r(1). The number
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k� in equation (6.4.2) is an integer satisfying the inequalities,

k�∑
j=1

pj ≤ � <
k�+1∑
j=1

pj.

Equation (6.4.2) follows directly from the definition of AVaR9 under
the assumption that the underlying distribution is discrete without
the additional simplification that the outcomes are equally proba-
ble. In the appendix to this chapter, we demonstrate the connection
between equation (6.4.2) and the definition of AVaR in equation
(6.2.1).

6.4.4 The Monte Carlo method

The basic steps of the Monte Carlo method are described in
section 5.4.2 of Chapter 5. They are applied without modification.
Essentially, we assume and estimate a multivariate statistical model
for the stock returns distribution. Then we sample from it, and we
calculate scenarios for portfolio return. On the basis of these sce-
narios, we estimate portfolio AVaR using equation (6.3.1), in which
r1, . . . , rn stands for the vector of generated scenarios.

Similar to the case of VaR, an artifact of the Monte Carlo method
is the variability of the risk estimate. Since the estimate of portfolio
AVaR is obtained from a generated sample of scenarios, by regen-
erating the sample, we will obtain a slightly different value. We
illustrate the variability issue by a simulation example, similar to
the one developed for VaR in section 6.3.7.

Suppose that the portfolio daily return distribution is the standard
normal law, rp ∈ N(0, 1). By the closed-form expression in equation
(6.2.4), we calculate that the AVaR of the portfolio at 1% tail proba-
bility equals

AVaR0.01(rp) = 1

0.01
√

2�
exp

(
−2.3262

2

)
= 2.665.

In order to investigate how the fluctuations of the 99% AVaR change
about the theoretical value, we generate samples of different sizes:
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Table 6.1 The 99% AVaR of the standard normal distribution computed
from a sample of scenarios. The 95% confidence interval is calculated from
100 repetitions of the experiment. The true value is AVaR0.01(X) = 2.665.

Number of scenarios AVaR at 99% 95% confidence interval

500 2.646 [2.2060, 2.9663]
1,000 2.771 [2.3810, 2.9644]
5,000 2.737 [2.5266, 2.7868]

10,000 2.740 [2.5698, 2.7651]
20,000 2.659 [2.5955, 2.7365]
50,000 2.678 [2.6208, 2.7116]

100,000 2.669 [2.6365, 2.6872]

500, 1,000, 5,000, 10,000, 20,000, 50,000, and 100,000 scenarios. The
99% AVaR is computed from these samples using equation 6.3.1
and the numbers are stored. We repeat the experiment 100 times.
In the end, we have 100 AVaR numbers for each sample size. We
expect that as the sample size increases, the AVaR values will fluc-
tuate less about the theoretical value, which is AVaR0.01(X) = 2.665,
X ∈ N(0, 1).

Table 6.1 contains the result of the experiment. From the 100 AVaR
numbers, we calculate the 95% confidence interval reported in the
third column. The confidence intervals cover the theoretical value
2.665 and also we notice that the length of the confidence interval
decreases as the sample size increases. This effect is illustrated in
Figure 6.6 with boxplot diagrams. A sample of 100,000 scenarios
results in AVaR numbers which are tightly packed around the true
value while a sample of only 500 scenarios may give a very inaccurate
estimate.

By comparing Table 6.1 to Table 5.2 in section 5.4.2 of Chapter 5,
we notice that the lengths of the 95% confidence intervals for AVaR
are larger than the corresponding confidence intervals for VaR. This
result is not surprising. Given that both quantities are at the same tail
probability of 1%, the AVaR has larger variability than the VaR for a
fixed number of scenarios because the AVaR is the average of terms
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Figure 6.6: Boxplot diagrams of the fluctuation of the AVaR at 1% tail
probability of the standard normal distribution based on scenarios. The hor-
izontal axis shows the number of scenarios and the boxplots are computed
from 100 independent samples.

fluctuating more than the 1% VaR. This effect is more pronounced
the more heavy tailed the distribution is.

6.4.5 Kernel methods

Both the Monte Carlo and the historical method rely on the natu-
ral sample AVaR estimator in equation (6.3.1). An advantage of this
estimator is its computational simplicity. A disadvantage appears
when considering the question of differentiability of portfolio AVaR
with respect to portfolio weights.10 It can be demonstrated that the
sample AVaR in (6.3.1) is piece-wise linear with respect to portfolio
weights and, therefore, is not everywhere differentiable. As a conse-
quence, in order to be able to calculate derivatives, we need a smooth
approximation to portfolio AVaR.

The reason for lack of differentiability can be explained on an intu-
itive level by looking at the way the formula in (6.3.1) is derived. It
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is derived by using the empirical quantile function in the definition
of AVaR and that function is a step function. If it were smooth, then
portfolio AVaR would be everywhere differentiable with respect to
portfolio weights.

If we view the empirical c.d.f. as a step approximation to the the-
oretical c.d.f., then one way to deal with this issue is to consider a
smooth approximation to the theoretical c.d.f. Such a smooth approx-
imation can be constructed with the help of kernel functions. Since
our discussion is about computing portfolio AVaR, we consider the
multivariate case directly.

A kernel function, or simply a kernel, is a function K(u) : Rn → R+

satisfying the following property:∫
Rn

K(u)du = 1.

Therefore, a kernel is nothing more than a density function of an
n-dimensional random variable. Since we use kernel functions to
compute AVaR, we need to impose one additional assumption,∫

Rn

uK(u)du < ∞,

which is analogous to the condition that the random variable should
have a finite mean in order for its AVaR to be finite.

We consider kernel functions equipped with the property that
the kernel of any linear combination of the n-dimensional random
variable remain the same parametric family. This technical require-
ment has a very straightforward interpretation. If we assume an
n-dimensional kernel for the stock returns and we calculate, for
example, the c.d.f. of portfolio returns, then we obtain a kernel
approximation of the portfolio returns c.d.f. in which the kernel
belongs to the same parametric family.

One example of a kernel satisfying all conditions is the density of
the multivariate normal distribution and, in general, the densities
of any multivariate elliptical distribution with a finite mean. In fact,
in this case the kernel can be expressed as K(u) = K1(u′u), in which
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K1 : R+ → R+. In the multivariate normal case, for example, K1(t) =
(2�)−d/2e−t/2.

We choose the multivariate normal density as a kernel function,
even though all results can be re-stated for any of the elliptical
kernels. Denote by X1, . . . , XN a sample of N observations on a
n-dimensional random vector X. We assume that the random vector
describes the returns of n stocks. The kernel density estimator of the
density function fX(x), x ∈ Rn, has the form

f̂X(x) = 1
N

N∑
k=1

1
det(H)

K(H−1(x − Xk)),

where H is a matrix called a bandwidth matrix. If we assume a multi-
variate normal kernel, then the kernel density estimator equals

f̂w′X(y) = 1
N

N∑
k=1

1√
2�hw

exp

(
(y − w′Xk)2

2hw

)
,

where hw = w′�w, in which � = H′H. The smoothness of the kernel
estimate is inherited by the corresponding smoothness of the ker-
nel itself. As a result, the kernel estimator is infinitely many times
differentiable.

Starting from the expression of f̂w′X(y), we can compute a kernel
estimator of the portfolio returns c.d.f.

F̂w′X(y) = 1
N

N∑
k=1



(
y − rk√
hw

)
,

where  is the c.d.f. of the standard normal distribution.
A comparison between a kernel estimate of a c.d.f. and the sample

c.d.f. is shown in Figure 6.7. The empirical c.d.f. is a step function
with jumps, while the kernel estimate is a smooth function. Looking
at Figure 6.7, the effect of the kernel function can be explained in
the following way. The point masses at the observations are “spread
out” in a small interval around the observed value. In what way the
probability mass gets spread out is determined by the form of the
kernel function. The size of the interval depends on the bandwidth
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Figure 6.7: A kernel estimate of the c.d.f. compared to the empirical c.d.f.

parameter. The smaller the parameter is, the smaller the interval is
and, at the limit, the kernel estimate coincides with the empirical
c.d.f.

We can construct an estimator of AVaR through the kernel esti-
mator of the portfolio returns c.d.f. We provide the formula without
proof in the text, but the proof, as well as additional information
about the estimator, can be found in the appendix to this chapter.
The kernel estimator of AVaR equals

AVaRH� (w′X) = − 1
N�

N∑
k=1

(
rk

(
qw� − rk√
hw

)
−

√
hwg

(
qw� − rk√
hw

))
,

(6.4.3)

where  and g are the c.d.f. and the density of the standard normal
distribution, rk = w′Xk is the k-th scenario for the portfolio return,
hw = (Hw)′(Hw), and qw� is the solution of the equation F̂w′X(y) = �.
The partial derivatives of AVaRH� (w′X) of any order with respect to
portfolio weights exist.
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We emphasize that kernel methods can be used to compute VaR
as well. Actually, the kernel estimator of VaR, VaRH� (w′X), appears
in (6.4.3) implicitly. It can be computed as

VaRH� (w′X) = qw� : F̂w′X(qw� ) = �. (6.4.4)

In order to compare the kernel estimators for VaR and AVaR
described in this chapter and the natural sample estimators, we
construct a numerical experiment. We generate a number of return
scenarios from a two-dimensional distribution and we compute the
resulting scenarios for all possible long-only portfolios,w1 + w2 = 1,
w1 ≥ 0, w2 ≥ 0. Then, we calculate VaRH� (w′X) and AVaRH� (w′X)
and also the corresponding sample estimators, and we compare them
plotted as functions of w1.

The plots are shown in Figures 6.8 and 6.9. The lack of differen-
tiability of empirical VaR is evident from the top plot on Figure 6.8.
The bottom plot contains a section of the top plot zoomed in. This
section shows more clearly what happens with VaRH� (w′X) near a
point where the sample VaR is not differentiable. It is evident that
the kernel estimate is a smooth function of portfolio weights.

In a similar way, Figure 6.9 compares AVaRH� (w′X) and sample
AVaR as functions of w1. The top plot indicates that the kernel esti-
mate is larger than the sample estimate for all portfolios. In the
appendix to this chapter, we demonstrate this inequality in a general
setting. The bottom plot in Figure 6.9 shows the region where both
functions attain their minimums. We can see that empirical AVaR is
a convex piece-wise linear function of portfolio weights. In contrast,
AVaRH� (w′X) is a smooth function, exactly as theory suggests.

The theory of kernel methods in statistics suggests that the choice
of a kernel function is not so important.11 The bandwidth matrix
estimation appears to be a much more significant factor.

There are a number of methods in the literature about bandwidth
matrix estimation:

(a) H = hI. Setting the smoothing parameter to be constant for
every variable implies the amount of smoothing in each
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ability as functions of w1, w1 + w2 = 1. The bottom plot shows a zoomed
section of the top plot.
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direction is the same. This is sensible only if the scales of all
variables are roughly constant.

(b) H = diag(h1, . . . , hn). This parametrization allows different
amounts of smoothing in each coordinate direction. This
approach would be a “practical” version of the approach in item
1; if sj is the scaling constant for the j-th variable, the approach
in item 1 is equivalent to using H = h× diag(s1, . . . , sd).

(c) H = h�̂1/2, where �̂ is an estimate of the covariance matrix. This
is the multivariate generalization of coordinate-wise scaling,
since it is equivalent to linearly transforming the data to have
unit estimated covariance (often called sphering the data), using
a constant bandwidth H = hI, and then transforming back to
the original scale. The idea is to use a kernel that has the same
general shape as the density.

Arguments from statistics can be used to provide a guideline for the
scaling coefficient h. For example, if the sample is generated from
a normal distribution and we use a normal kernel, then an optimal
choice for the bandwidth matrix is given by12

H =
(

4
d + 2

)1/(d+4)

�̂1/2n−1/(d+4).

6.5 Back-testing of AVaR

Suppose that we have selected a method for calculating the daily
AVaR of a portfolio. A reasonable question is how we can verify if
the estimates of daily AVaR are realistic.

In section 5.4.2 of Chapter 5, we considered the same issue in the
context of VaR and the solution was to carry out a back-testing of VaR.
Essentially, VaR back-testing consists of computing the portfolio VaR
for each day back in time using the information available up to that
day only. In this way, we have the VaR numbers back in time as if
we had used exactly the same methodology in the past. On the basis
of the VaR numbers and the realized portfolio returns, we can use
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statistical methods to assess whether the forecasted loss at the VaR
tail probability is consistent with the observed losses. If there are too
many observed losses larger than the forecasted VaR, then the model
is too optimistic. Conversely, if there are too few losses larger than
the forecasted VaR, then the model is too pessimistic.

Note that in the case of VaR back-testing, we are simply counting
the cases in which there is an exceedance: that is, when the size of
the observed loss is larger than the predicted VaR. The magnitude
of the exceedance is immaterial for the statistical test.

Unlike VaR, back-testing of AVaR is not straightforward and is a
much more challenging task. By definition, the AVaR at tail proba-
bility � is the average of VaRs larger than the VaR at tail probability
�. Thus, the most direct approach to test AVaR would be to perform
VaR back-tests at all tail probabilities smaller than �. If all these VaRs
are correctly modeled, then so is the corresponding AVaR.

One general issue with this approach is that it is impossible to
perform in practice. Suppose that we consider the AVaR at tail prob-
ability of 1%, for example. Back-testing VaRs deeper in the tail of the
distribution can be infeasible because the back-testing time window
is too short. The lower the tail probability, the larger time window we
need in order for the VaR test to be conclusive. Another general issue
is that this approach is too demanding. Even if the VaR back-testing
fails at some tail probability �1 below �, this does not necessarily mean
that the AVaR is incorrectly modeled because the test failure may be
due to purely statistical reasons and not to incorrect modeling.

These arguments illustrate why AVaR back-testing is a difficult
problem – we need the information about the entire tail of the return
distribution describing the losses larger than the VaR at tail probabil-
ity � and there may be too few observations from the tail upon which
to base the analysis. For example, in one business year, there are typ-
ically 250 trading days. Therefore, a one-year back-testing results in
250 daily portfolio returns, which means that if � = 1%, then there
are only 2 observations available from the losses larger than the VaR
at 1% tail probability.

As a result, in order to be able to back-test AVaR, we can assume
a certain “structure” of the tail of the return distribution which
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would compensate for the lack of observations. There are two general
approaches:

(a) Use the tails of the Lévy stable distributions13 as a proxy for the
tail of the loss distribution and take advantage of the practical
semi-analytic formula for the AVaR given in the appendix to
this chapter to construct a statistical test.

(b) Make the weaker assumption that the loss distribution belongs
to the domain of attraction of a max-stable distribution. Thus,
the behavior of the large losses can be approximately described
by the limit max-stable distribution and a statistical test can be
based on it.

The rationale of the first approach is that, generally, the Lévy stable
distribution provides a good fit to the stock returns data and, thus,
the stable tail may turn out to be a reasonable approximation. More-
over, from the generalized Central Limit Theorem we know that
stable distributions have domains of attraction which makes them
an appealing candidate for an approximate model.

The second approach is based on a weaker assumption. The family
of max-stable distributions arises as the limit distribution of prop-
erly scaled and centered maxima of i.i.d. random variables. If the
random variable describes portfolio losses, then the limit max-stable
distribution can be used as a model for the large losses (i.e., the ones
in the tail). Unfortunately, as a result of the weaker assumption, esti-
mators of poor quality have to be used to estimate the parameters
of the limit max-stable distribution, such as the Hill estimator. This
represents the basic trade-off in this approach.

6.6 Spectral Risk Measures

By definition, the AVaR at tail probability � is the average of the
VaRs larger than the VaR at tail probability �. It appears possible to
obtain a larger family of coherent risk measures by considering the
weighted average of the VaRs instead of simple average. Thus, the
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AVaR becomes just one representative of this larger family, which
is known as spectral risk measures. Acerbi (2004) provides a detailed
description of spectral risk measures.

Spectral risk measures are defined as,14

��(X) =
∫ 1

0
VaRp(X)�(p)dp, (6.6.1)

where �(p), p ∈ [0, 1] is the weighting function also known as the risk
spectrum or risk-aversion function. It has the following interpretation.
Consider a small interval [p1, p2] of tail probabilities with length p2 −
p1 = �p. The weight corresponding to this interval is approximately
equal to �(p1) ×�p. Thus, the VaRs at tail probabilities belonging to
this interval have approximately the weight �(p1) ×�p.

The risk-aversion function should possess some properties in
order for ��(X) to be a coherent risk measure. It should be:

Positive �(p) ≥ 0, p ∈ [0, 1].
Non-increasing Larger losses are multiplied by larger weights,

�(p1) ≥ �(p2), p1 ≤ p2.
Normed All weights should sum up to 1,

∫ 1
0 �(p)dp = 1.

If we compare equations (6.6.1) and (6.2.1), we notice that the AVaR at
tail probability � arises from a spectral risk measure with a constant
risk-aversion function for all tail probabilities below �. The left plot
in Figure 6.10 illustrates a typical risk-aversion function. The right
plot shows the graph of the risk-aversion function yielding the AVaR
at tail probability �.

It is possible to obtain formulae through which we can estimate the
spectral risk measures from a sample of observations. They are essen-
tially counterparts of (6.3.1) and (6.3.2): see Acerbi and Simonetti
(2002) for further details.

In section 5.4.2 of Chapter 5 and section 6.4 of this chapter, we
emphasized that if a sample is used to estimate VaR and AVaR,
then there is certain variability of the estimates. We illustrated it
through a Monte Carlo example for the standard normal distribution.
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Figure 6.10: Examples of risk-aversion functions. The right plot shows the
risk-aversion function yielding the AVaR at tail probability �.

Comparing the results, we concluded that the variability of AVaR is
larger than the VaR at the same tail probability because in the AVaR,
we average terms with larger variability. The heavier the tail, the
more pronounced this effect becomes.

When spectral risk measures are estimated from a sample, the
variability of the estimate may become a big issue. Note that due to
the non-increasing property of the risk-aversion function, the larger
losses, which are deeper in the tail of the return distribution, are
multiplied by a larger weight. The larger losses (VaRs at lower tail
probability) have higher variability and the multiplication by a larger
weight further increases the variability of the weighted average.
Therefore, a larger number of scenarios may turn out to be necessary
to achieve given stability of the estimate for spectral risk measures
than for AVaR. Ultimately, this is dependent on the choice of the
risk-aversion function and the assumed distribution of portfolio
return.

In fact, the distributional assumption for the random variableX is
very important because it may lead to unbounded spectral risk mea-
sures for some choices of the risk-aversion function. An infinite risk
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measure is not informative for decision makers and an unfortunate
combination of a distributional model and a risk-aversion function
cannot be identified by looking at the sample estimate of ��(X). In
practice, when��(X) is divergent in theory, we will observe high vari-
ability of the risk estimates when regenerating the simulations and
also non-decreasing variability of the risk estimates as we increase
the number of simulations. We can regard these effects as symp-
toms for a bad combination of a statistical model and a risk-aversion
function. The appendix to this chapter contains guidelines for avoid-
ing inappropriate choices of a risk-aversion function depending on
certain information about the probability distribution of X.

We would like to stress that this problem does not exist for AVaR
because a finite mean of X guarantees that the AVaR is well defined
on all tail probability levels. The problem for the spectral measures
of risk arises from the non-increasing property of the risk-aversion
function. Larger losses are multiplied by larger weights, which may
result in an unbounded weighted average.

6.7 Risk Measures and Probability Metrics

In Chapter 4, we introduced the notion of probability metrics
and remarked that they provide the only way of measuring dis-
tances between random quantities. It turns out that a small distance
between random quantities does not necessarily imply that selected
characteristics of those quantities will be close to each other. For
example, a probability metric may indicate that two distributions
are close to each other and, still, the standard deviations of the two
distributions may be arbitrarily different. As a very extreme case,
one of the distributions may even have an infinite standard devi-
ation. Thus, if we want small distances measured by a probability
metric to imply similar characteristics, the probability metric should
be carefully chosen.

A risk measure can be viewed as calculating a particular char-
acteristic of a random variable. Furthermore, there are problems in
finance in which the goal is to find a random variable closest to
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another random variable. For instance, such is the benchmark track-
ing problem which is at the heart of passive portfolio construction
strategies. Essentially, we are trying to construct a portfolio track-
ing the performance a given benchmark. In some sense, this can be
regarded as finding a portfolio return distribution which is closest
to the return distribution of the benchmark. Usually, the distance is
measured through the tracking error, which is the standard deviation
of the active return.

Suppose that we have found the portfolio tracking the benchmark
most closely with respect to the tracking error. Can we be sure that
the risk of the portfolio is close to the risk of the benchmark? Gener-
ally, the answer is affirmative only if we use the standard deviation as
a risk measure. Active return is refined as the difference between the
portfolio return rp and the benchmark return rb, rp − rb. The conclu-
sion that smaller tracking error implies that the standard deviation
of rp is close to the standard deviation of rb is based on the inequality,

|�(rp) − �(rb)| ≤ �(rp − rb).

The right part corresponds to the tracking error and, therefore,
smaller tracking error results in �(rp) being closer to �(rb).

In order to guarantee that small distance between portfolio return
distributions corresponds to similar risks, we have to find a suitable
probability metric. Technically, for a given risk measure we need to
find a probability metric with respect to which the risk measure is a
continuous functional,

|�(X) − �(Y)| ≤ �(X,Y),

where � is the risk measure and � stands for the probability metric.
We continue with examples of how this can be done for VaR, AVaR,
and the spectral risk measures.15

VaR
Suppose thatX andY describe the return distributions of two portfo-
lios. The absolute difference between the VaRs of the two portfolios
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at any tail probability can be bounded by,

|VaR�(X) − VaR�(Y)| ≤maxp∈(0,1) |VaRp(X) − VaRp(Y)|
= maxp∈(0,1) |F−1

Y (p) − F−1
X (p)|

= W(X,Y),

where W(X,Y) is the uniform metric between inverse distribution
functions defined in Chapter 2. If the distance between X and Y is
small, as measured by the metric W(X,Y), then the VaR of X is close
to the VaR of Y at any tail probability level �.

AVaR
Suppose thatX andY describe the return distributions of two portfo-
lios. The absolute difference between the AVaRs of the two portfolios
at any tail probability can be bounded by

|AVaR�(X) − AVaR�(Y)|≤ 1
�

∫ �
0 |F−1

X (p) − F−1
Y (p)|dp

≤ ∫ 1
0 |F−1

X (p) − F−1
Y (p)|dp

= �(X,Y),

where �(X,Y) is the Kantorovich metric defined in Chapter 2. If the
distance betweenX andY is small, as measured by the metric �(X,Y),
then the AVaR of X is close to the AVaR of Y at any tail probability
level �. Note that the quantity

��(X,Y) = 1
�

∫ �

0
|F−1
X (p) − F−1

Y (p)|dp

can also be used to bound the absolute difference between the AVaRs.
It is a probability semimetric giving the best possible upper bound
on the absolute difference between the AVaRs.

Spectral risk measures
Suppose that X and Y describe the return distributions of two port-
folios. The absolute difference between the spectral risk measures of
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the two portfolios for a given risk-aversion function can be bounded
by,

|��(X) − ��(Y)|≤
∫ 1

0
|F−1
X (p) − F−1

Y (p)|�(p)dp

= ��(X,Y),

where ��(X,Y) is a weighted Kantorovich metric. If the distance
between X and Y is small, as measured by the metric ��(X,Y), then
the risk of X is close to the risk of Y as measured by the spectral risk
measure ��.

6.8 Risk Measures Based on Distortion
Functionals

We introduced spectral risk measures as functionals computing a
weighted average of the VaRs at all possible tail probabilities. The
weighting function should satisfy certain conditions in order for
spectral risk measures to be coherent. Basically, the weights should
be positive and the deeper we go into the left tail of the return distri-
bution, the larger the weight should be. In a certain sense, the spectral
risk measure is a pessimistic model about the average loss.

In a similar but more general way, we can introduce a pessimistic
model about the average loss through the functional

�H(X) = −
∫ 1

0
F−1
X (p)dH(p), (6.8.1)

where H(p) : [0, 1] → [0, 1] is a bounded right continuous increas-
ing function, and F−1

X is the inverse c.d.f. of the random variable X
describing the return on a common stock. Functionals such as (6.8.1)
are also known as distortion functionals.16 From a more general view-
point, we can think ofH as a distribution function of a non-negative
probability measure on the interval [0, 1].

The pessimistic model about the average loss of X as introduced
in (6.8.1) can be a coherent risk measure if we assume that H(p) is
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a concave function. In this case we say that �H(X) is a distortion risk
measure.17

Spectral risk measures as defined in (6.6.1) arise from distortion
risk measures if H(p) is differentiable. Under this assumption, the
risk-aversion function �(p) = H′(p). It can be directly verified that
�(p) = H′(p) is a decreasing function due to the assumed concavity
of H(p) and satisfies all properties of risk-aversion functions stated
in section 6.6.

Among all distortion risk measures, AVaR has a very special place.
There is a representation result, according to which AVaR plays the
role of a building block. Every distortion risk measure �H(X) can be
viewed as a weighted average of AVaRs,

�H(X) =
∫ 1

0
AVaRp(X)dM(p), (6.8.2)

whereM is a monotonically increasing function and satisfiesM(0) =
0, andM(1) = 1. The proof of this representation result can be found
in Pflug and Roemisch (2007), for example.

6.9 Summary

In this chapter, we considered in detail the AVaR risk measure. We
noted the advantages of AVaR, described a number of methods for
its calculation and estimation, and remarked some potential pitfalls
including estimates variability and problems in AVaR back-testing.
We illustrated geometrically many of the formulae for AVaR calcu-
lation, which makes them more intuitive and easier to understand.

Besides the AVaR, we considered a more general family of coherent
risk measures – the spectral risk measures. The AVaR is a spectral risk
measure with a specific risk-aversion function. We emphasized the
importance of proper selection of the risk-aversion function to avoid
explosion of the risk measure.

We discussed the more general concept of distortion risk measures,
which include spectral risk measures as a special case. AVaR plays the
important role of a building block, since any distortion risk measure
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can be represented as an average of AVaRs at different tail probability
levels.

Finally, we demonstrated a connection between the theory of
probability metrics and risk measures. Basically, by choosing an
appropriate probability metric we can guarantee that if two port-
folio return distributions are close to each other, their risk profiles
are also similar.

6.10 Technical Appendix

In this appendix, we start with a more general view that better
describes the conditional loss distribution in terms of certain charac-
teristics in which AVaR appears as a special case. We continue with
the notion of higher-order AVaR, generating a family of coherent risk
measures. Next, we provide an intuitive geometric interpretation of
the minimization formula for the AVaR calculation. We also provide
a semi-analytic expression for the AVaR of stable distributions and
compare the expected tail loss measure to AVaR. Finally, we com-
ment on the proper choice of a risk-aversion function in spectral risk
measures which does not result in an infinite risk measure.

6.10.1 Characteristics of conditional loss distributions

In the chapter, we defined AVaR as a risk measure and showed how
it can be calculated in practice. While it is an intuitive and easy-to-
use coherent risk measure, AVaR represents the average of the losses
larger than the VaR at tail probability �, which is only one charac-
teristic of the distribution of extreme losses. We remarked that if
the distribution function is continuous, then AVaR coincides with
ETL, which is the mathematical expectation of the conditional loss
distribution. Besides the mathematical expectation, there are other
important characteristics of the conditional loss distribution. For
example, AVaR does not provide any information about how dis-
persed the conditional losses are around the AVaR value. In this
section, we state a couple of families of useful characteristics in which
AVaR appears as one example.
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Consider the following tail moment of order n at tail probability �,

mn� (X) = 1
�

∫ �

0
(F−1
X (t))ndt, (6.10.1)

where n = 1, 2, . . ., F−1
X (t) is the inverse c.d.f. of the random vari-

able X. If the distribution function of X is continuous, then the
tail moment of order n can be represented through the following
conditional expectation,

mn� (X) = E(Xn|X < VaR�(X)), (6.10.2)

where n = 1, 2, . . . In the general case, if the c.d.f. has a jump at
VaR�(X), a link exists between the conditional expectation and equa-
tion (6.10.1), which is similar to formula (6.10.12) for AVaR. In
fact, AVaR appears as the negative of the tail moment of order 1,
AVaR�(X) = −m1

�(X).
The higher-order tail moments provide additional information

about the conditional distribution of the extreme losses. We can make
a parallel with the way the moments of a random variable are used
to describe certain properties of it. In our case, it is the conditional
distribution that we are interested in.

In addition to the moments mn� (X), we introduce the central tail
moments of order n at tail probability �,

Mn
� (X) = 1

�

∫ �

0
(F−1
X (t) −m1

�(X))ndt, (6.10.3)

wherem1
�(X) is the tail moment of order 1. If the distribution function

is continuous, then the central moments can be expressed in terms
of the conditional expectation,

Mn
� (X) = E((X −m1

�(X))n|X < VaR�(X)).

The tail variance of the conditional distribution appears as M2
� (X)

and the tail standard deviation equals

(M2
� (X))1/2 =

(
1
�

∫ �

0
(F−1
X (t) −m1

�(X))2dt

)1/2

.
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There is a formula expressing the tail variance in terms of the tail
moments introduced in (6.10.2),

M2
� (X) =m2

�(X) − (m1
�(X))2

=m2
�(X) − (AVaR�(X))2.

This formula is similar to the representation of variance in terms of
the first two moments,

�2
X = EX2 − (EX)2.

The tail standard deviation can be used to describe the dispersion of
conditional losses around AVaR as it satisfies the general properties
of dispersion measures given in section 5.2.4 of Chapter 5. It can be
viewed as complementary to AVaR in the sense that if there are two
portfolios with equal AVaRs of their return distributions but differ-
ent tail standard deviations, the portfolio with the smaller standard
deviation is preferable.

Another central tail moment which can be interpreted is M3
� (X).

After proper normalization, it can be employed to measure the skew-
ness of the conditional loss distribution. In fact, if the tail probability
is sufficiently small, the tail skewness will be quite significant. In the
same fashion, by normalizing the central tail moment of order 4, we
obtain a measure of kurtosis of the conditional loss distribution.
In a similar way, we introduce the absolute central tail moments of
order n at tail probability �,

�n� (X) = 1
�

∫ �

0
|F−1
X (t) −m1

�(X)|ndt. (6.10.4)

The tail moments�n� (X) raised to the power of 1/n, (�n� (X))1/n, can be
applied as measures of dispersion of the conditional loss distribution
if the distribution is such that they are finite.

In the chapter, we remarked that the tail of the random variable
can be so heavy that AVaR becomes infinite. Even if it is theoretically
finite, it can be hard to estimate because the heavy tail will result
in the AVaR estimator having a large variability. Thus, under certain
conditions it may turn out to be practical to employ a robust estimator
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instead. The median tail loss (MTL), defined as the median of the
conditional loss distribution, is a robust alternative to AVaR. It has
the advantage of always being finite no matter the tail behavior of
the random variable. Formally, it is defined as

MTL�(X) = −F−1
X (1/2|X < −VaR�(X)), (6.10.5)

where F−1
X (p|X < −VaR�(X)) stands for the inverse distribution func-

tion of the c.d.f. of the conditional loss distribution

FX(x|X < −VaR�(X)) =P(X ≤ x|X < −VaR�(X))

=
{
P(X ≤ x)/�, x < −VaR�(X)

1, x ≥ −VaR�(X).

In effect, MTL, as well as any other quantile of the conditional loss
distribution, can be directly calculated as a quantile of the distribu-
tion of X,

MTL�(X) = −F−1
X (�/2) (6.10.6)

=VaR�/2(X),

where F−1
X (p) is the inverse c.d.f. of X and � is the tail probability

of the corresponding VaR in equation (6.10.5). Thus, MTL shares the
properties of VaR. Equation (6.10.7) shows that MTL is not a coherent
risk measure even though it is a robust alternative to AVaR, which is
a coherent risk measure.

In the universe of the three families of moments that we intro-
duced, AVaR is one special case providing only limited information.
It may be the only coherent risk measure among them, but the other
moments can be employed in addition to AVaR in order to gain more
insight into the conditional loss distribution. Furthermore, it could
appear that other reasonable risk measures can be based on some of
the moments. Thus, we believe that they all should be considered in
financial applications.
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6.10.2 Higher-order AVaR

By definition, AVaR is the average of VaRs larger than the VaR at
tail probability �. In the same fashion, we can pose the question of
what happens if we average all AVaRs larger than the AVaR at tail
probability �. In fact, this quantity is an average of coherent risk
measures and, therefore, is a coherent risk measure itself since it
satisfies all defining properties of coherent risk measures given in
section 5.4.4 of Chapter 5. We call it AVaR of order 1 and denote it
by AVaR(1)

� (X) because it is a derived quantity from AVaR. In this
section, we consider similar derived quantities from AVaR, which
we call higher-order AVaRs.

Formally, the AVaR of order 1 is represented in the following way:

AVaR(1)
� (X) = 1

�

∫ �

0
AVaRp(X)dp

whereAVaRp(X) is the AVaR at tail probability p. Replacing AVaR by
the definition given in equation (6.2.1), we obtain

AVaR
(1)
� (X) = −1

�

∫ �

0

(∫ 1

0
F−1
X (y)gp(y)dy

)
dp

= −1
�

∫ 1

0
F−1
X (y)

(∫ �

0
gp(y)dp

)
dy

where

gp(y) =
{

1/p, y ∈ [0, p]

0, y > p.

and after certain algebraic manipulations, we get the expression

AVaR(1)
� (X) =−1

�

∫ �

0
F−1
X (y) log

�

y
dy

=
∫ �

0
VaRy(X)��(y)dy. (6.10.7)

In effect, the AVaR of order 1 can be expressed as a weighted average
of VaRs larger than the VaR at tail probability � with a weighting
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function ��(y) equal to

��(y) =

⎧⎪⎨⎪⎩
1
�

log
�

y
, 0 ≤ y ≤ �

0, � < y ≤ 1.

The AVaR of order 1 can be viewed as a spectral risk measure with
��(y) being the risk-aversion function.

Similarly, we define the higher-order AVaR through the recursive
equation

AVaR(n)
� (X) = 1

�

∫ �

0
AVaR(n−1)

p (X)dp (6.10.8)

where AVaR(0)
p (X) = AVaRp(X) and n = 1, 2 . . . Thus, the AVaR of

order 2 equals the average of AVaRs of order 1 which are larger than
the AVaR of order 1 at tail probability �. The AVaR of order n appears
as an average of AVaRs of order n− 1.

The quantity AVaR(n)
� (X) is a coherent risk measure because it is

an average of coherent risk measures. This is a consequence of the
recursive definition in (6.10.8). It is possible to show that AVaR of
order n admits the representation

AVaR(n)
� (X) = 1

�

∫ �

0
VaRy(X)

1
n!

(
log

�

y

)n

dy (6.10.9)

and AVaR
(n)
� (X) can be viewed as a spectral risk measure with a

risk-aversion function equal to

�(n)
� (y) =

⎧⎪⎨⎪⎩
1
�n!

(
log

�

y

)n

, 0 ≤ y ≤ �

0, � < y ≤ 1.

As a simple consequence of the definition, the sequence of higher-
order AVaRs is monotonic,

AVaR�(X) ≤ AVaR(1)
� (X) ≤ . . . ≤ AVaR(n)

� (X) ≤ . . .

In the chapter, we remarked that if the random variableX has a finite
mean, E|X| < ∞, then AVaR is also finite. This is not true for spectral
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risk measures and the higher-order AVaR in particular. In line with
the general theory developed in section 6.10.6 in this appendix,
AVaR

(n)
� (X) is finite if all moments of X exist. For example, if the

random variableX has an exponential tail, thenAVaR(n)
� (X) < ∞ for

any n < ∞.

6.10.3 The minimization formula for AVaR

In this section, we provide a geometric interpretation of the mini-
mization formula (6.2.2) for AVaR. We restate equation (6.2.2) in the
following equivalent form,

AVaR�(X) = 1
�

min
�∈R

(�� + E(−X − �)+) (6.10.10)

where (x)+ = max(x, 0). Note the similarity between equation
(6.10.10) and the definition of AVaR in (6.2.1). Instead of the integral
of the quantile function in the definition of AVaR, a minimization for-
mula appears in (6.10.10). We interpreted the integral of the inverse
c.d.f. as the shaded area in Figure 6.2. Similarly, we will find the area
corresponding to the objective function in the minimization formula
and we will demonstrate that as � changes, there is a minimal area
which coincides with the area corresponding to the shaded area in
Figure 6.2. Moreover, the minimal area is attained for � = VaR�(X)
when the c.d.f. ofX is continuous atVaR�(X). In fact, all illustrations
in this section are based on the assumption that X has a continuous
distribution function.

Consider first the expectation in equation (6.10.10). Assuming that
X has a continuous c.d.f., we obtain an expression for the expectation
involving the inverse c.d.f.,

E(−X − �)+ =
∫
R

max(−x − �, 0)dFX(x)

=
∫ 1

0
max(−F−1

X (t) − �, 0)dt

= −
∫ 1

0
min(F−1

X (t) + �, 0)dt.
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Figure 6.11: The shaded area is equal to the expectation E(−X − �)+ in
which X has a continuous distribution function.

This representation implies that the expectation E(−X − �)+ equals
the area closed between the graph of the inverse c.d.f. and a line
parallel to the horizontal axis passing through the point (0,−�). This
is the shaded area on the right plot in Figure 6.11. The same area can
be represented in terms of the c.d.f. This is done on the left plot in
Figure 6.11.

Let us get back to equation (6.10.10). The tail probability � is
fixed. The product �× � equals the area of a rectangle with sides
equal to � and �. This area is added to E(−X − �)+. Figure 6.12
shows the two areas together. The shaded areas on the top and the
bottom plots equal �× AVaR�(X). The top plot shows the case in
which −� < −VaR�(X). Comparing the plot to Figure 6.11, we find
out that adding the marked area to the shaded area, we obtain the
total area corresponding to the objective in the minimization for-
mula, �� + E(−X − �)+. If −� > −VaR�(X), then we obtain a similar
case shown on the bottom plot. Again, adding the marked area
to the shaded area, we obtain the the total area computed by the
objective in the minimization formula. By varying �, the total area
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F
X
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θ
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Figure 6.12: The marked area is in addition to the shaded one. The marked
area is equal to zero if � = VaR�(X).

changes but it always remains larger than the shaded area unless
� = VaR�(X).

Thus, when � = VaR�(X) the minimum area is attained which
equals exactly �× AVaR�(X). According to equation (6.10.10), we
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have to divide the minimal area by � in order to obtain the AVaR.
As a result, we have demonstrated that the minimization formula in
equation (6.2.2) calculates the AVaR.

6.10.4 ETL vs AVaR

The expected tail loss and the average value-at-risk are two related
concepts. In the chapter, we remarked that ETL and AVaR coincide if
the portfolio return distribution is continuous at the corresponding
VaR level. However, if there is a discontinuity, or a point mass, then
the two notions diverge. Still, the AVaR can be expressed through
the ETL and the VaR at the same tail probability. In this section, we
illustrate this relationship and show why the AVaR is more appeal-
ing. Moreover, it will throw light on why equation (6.3.1) should be
used when considering a sample of observations.

The ETL at tail probability � is defined as the average loss provided
that the loss exceeds the VaR at tail probability �,

ETL�(X) = −E(X|X < −VaR�(X)). (6.10.11)

As a consequence of the definition, the ETL can be expressed in terms
of the c.d.f. and the inverse c.d.f. Suppose, additionally, that the c.d.f.
of X has a jump at −VaR�(X). In this case, the loss VaR�(X) occurs
with probability equal to the size of the jump and, because of the
strict inequality in (6.10.11), it will not be included in the average.

Figure 6.13 shows the graphs of the c.d.f. and the inverse c.d.f.
of a random variable with a point mass at −VaR�(X). If � splits the
jump of the c.d.f. as on the left plot in Figure 6.13, then the ETL at
tail probability � equals

ETL�(X) = −E(X|X < −VaR�(X))

= −E(X|X < −VaR�0 (X))

=ETL�0 (X).
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Figure 6.13: The c.d.f. and the inverse c.d.f. of a random variable X with
a point mass at −VaR�(X). The tail probability � splits the jump of the c.d.f.

In terms of the inverse c.d.f., the quantityETL�0 (X) can be represented
as

ETL�0 (X) = − 1
�0

∫ �0

0
F−1
X (t)dt.

The relationship between AVaR and ETL follows directly from the
definition of AVaR.18 Suppose that the c.d.f. of the random variable
X is as on the left plot in Figure 6.13. Then,

AVaR�(X) = −1
�

∫ �

0
F−1
X (t)dt

= −1
�

(∫ �0

0
F−1
X (t)dt+

∫ �

�0

F−1
X (t)dt

)
= −1

�

∫ �0

0
F−1
X (t)dt+ �− �0

�
VaR�(X).

where the last inequality holds because the inverse c.d.f. is flat in the
interval [�0, �] and the integral is merely the surface of the rectangle
shown on the right plot in Figure 6.13. The integral in the first sum-
mand can be related to the ETL at tail probability � and, finally, we
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arrive at the expression

AVaR�(X) = �0

�
ETL�(X) + �− �0

�
VaR�(X). (6.10.12)

Equation (6.10.12) shows that AVaR�(X) can be represented as a
weighted average between the ETL and the VaR at the same tail
probability as the coefficients in front of the two summands are pos-
itive and sum up to 1. In the special case in which there is no jump,
or if � = �1, then AVaR equals ETL.

Why is equation (6.10.12) important if in all statistical models we
assume that the random variables describing return or payoff dis-
tribution have densities? Under this assumption, not only are the
corresponding c.d.f.s continuous but they are also smooth. Equation
(6.10.12) is important because if the estimate of AVaR is based on
the Monte Carlo method, then we use a sample of scenarios which
approximate the nicely behaved hypothesized distribution. Even
though we are approximating a smooth distribution function, the
sample c.d.f. of the scenarios is completely discrete, with jumps at
the scenarios the size of which equals the 1/n, where n stands for the
number of scenarios.

In fact, equation (6.3.1) given in the chapter is actually equation
(6.10.12) restated for a discrete random variable. The outcomes are
the available scenarios which are equally probable. Consider a sam-
ple of observations or scenarios r1, . . . , rn and denote by r(1) ≤ r(2) ≤
. . . ≤ r(n) the ordered sample. The natural estimator of the ETL at tail
probability � is

ÊTL�(r) = − 1
�n�� − 1

�n��−1∑
k=1

r(k) (6.10.13)

where �x� is the smallest integer larger than x. Formula (6.10.13)
means that we average �n�� − 1 of the �n�� smallest observations
which is, in fact, the definition of the conditional expectation in
(6.10.11) for a discrete distribution. The VaR at tail probability � is
equal to the negative of the empirical quantile,

V̂aR�(r) = −r(�n��). (6.10.14)
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It remains to determine the coefficients in (6.10.12). Having in mind
that the observations in the sample are equally probable, we calculate
that

�0 = �n�� − 1
n

.

Plugging �0, (6.10.14), and (6.10.13) into equation (6.10.12), we obtain
(6.3.1) which is the sample AVaR.

Similarly, equation (6.4.2) also arises from (6.10.12). The assump-
tion is that the underlying random variable has a discrete distribution
but the outcomes are not equally probable. Thus, the corresponding
equation for the average loss on condition that the loss is larger than
the VaR at tail probability � is given by

ÊTL�(r) = − 1
�0

k�∑
j=1

pjr(j) (6.10.15)

where �0 = ∑k�
j=1 pj and k� is the integer satisfying the inequalities,

k�∑
j=1

pj ≤ � <
k�+1∑
j=1

pj.

The sum
∑k�

j=1 pj stands for the cumulative probability of the losses
larger than the the VaR at tail probability �. Note that equation
(6.10.15) turns into equation (6.10.13) when the outcomes are equally
probable. With these remarks, we have demonstrated the connection
between equations (6.3.1), (6.4.2), and (6.10.12).

The differences between ETL and AVaR are not without any
practical importance. In fact, ETL is not a coherent risk measure. Fur-
thermore, the sample ETL in (6.10.13) is not a smooth function of the
tail probability while the sample AVaR is smooth. This is illustrated
in Figure 6.14. The top plot shows the graph of the sample ETL and
AVaR with the tail probability varying between 1% and 10%. The
sample contains 100 independent observations on a standard nor-
mal distribution, X ∈ N(0, 1). The bottom plots shows the same but
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Figure 6.14: The graphs of the sample ETL and AVaR with tail probability
varying between 1% and 10%. The top plot is produced from a sample of
100 observations and the bottom plot from a sample of 250 observations. In
both cases, X ∈ N(0, 1).

the sample is larger. It contains 250 independent observations on a
standard normal distribution.

Both plots demonstrate that the sample ETL is a step function of
the tail probability while the AVaR is a smooth function of it. This is
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not surprising because, as � increases, new observations appear in
the sum in (6.10.13), producing the jumps in the graph of the sample
ETL. In contrast, the AVaR changes gradually as it is a weighted aver-
age of the ETL and the VaR at the same tail probability. Note that, as
the sample size increases, the jumps in the graph of the sample ETL
diminish. In a sample of 5,000 scenarios, both quantities almost over-
lap. This is because the standard normal distribution has a smooth
c.d.f. and the sample c.d.f. constructed from a larger sample better
approximates the theoretical c.d.f. In this case, as the sample size
approaches infinity, the AVaR becomes indistinguishable from the
ETL at the same tail probability.19

6.10.5 Kernel-based estimation of AVaR

In this section, we provide more details on the the results in sec-
tion 6.4.5. We start with a proof of the kernel-based estimator of
AVaR.

Proposition 6.10.1. Adopting the multivariate normal kernel, the
kernel estimator of the c.d.f. equals

F̂w′X(y) = 1
N

N∑
k=1



(
y − rk√
hw

)
, (6.10.16)

and the kernel estimator of the AVaR equals

AVaRH� (w′X) = − 1
N�

N∑
k=1

(
rk

(
qw� − rk√
hw

)
−

√
hwg

(
qw� − rk√
hw

))
,

(6.10.17)

where  and g are the c.d.f. and the density of the standard normal
distribution, rk = w′Xk is the k-th scenario for the portfolio return,
hw = (Hw)′(Hw), and qw� is the solution of the equation F̂w′X(y) = �.
Furthermore, the partial derivatives of AVaRH� (w′X) of any order
exist.
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Proof. The proof of (6.10.16) is obvious: we integrate the correspond-
ing expression for the density. The estimator of AVaR is obtained
starting from the conditional expectation and applying the substitu-
tion y = u� + rk:

AVaRH� (w′X) = − 1
N�

N∑
k=1

∫ qw�

−∞

y√
2��2

exp

(
− (y − rk)2

2�2

)
dy

= − 1
N�

N∑
k=1

∫ (qw� −rk)/�

−∞

u� + rk√
2�

exp

(
−u

2

2

)
du

= − 1
N�

N∑
k=1

Ik.

We write � instead of
√
hw to simplify the expressions. The result-

ing integrals Ik are easy to calculate:

Ik = rk
∫ (qw� −rk)/�

−∞

e−u
2/2

√
2�

du+ �√
2�

∫ (qw� −rk)/�

−∞
ue−u

2/2du

= rk
(
qw� − rk
�

)
− �√

2�
exp

(
− (qw� − rk)2

2�2

)

= rk
(
qw� − rk
�

)
− �g

(
qw� − rk
�

)
in which (x) is the cdf of the standard normal distribution and
g(x) = ′(x) is the density. Concerning the differentiability prop-
erty, it holds because the density function of the standard normal
is analytic. �

One can argue that it would be fine to start with the portfolio return
scenarios and reduce the problem to a univariate one. This would
be acceptable if we needed only an approximation to AVaR without
necessarily keeping the positive homogeneity and the sub-additivity
properties. However, we need these properties as they guarantee
convexity of the risk measure. In the following, we check the positive
homogeneity property, which indicates why it is important to choose
the bandwidth in the multivariate setting.
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Proposition 6.10.2. The kernel estimator of the AVaR in (6.10.17)
satisfies the positive homogeneity property,

AVaRH� (aw′X) = aAVaRH� (w′X),

where a > 0. Furthermore, the kernel approximation is a convex
function of portfolio weights.

Proof. This is straightforward to verify. Notice that haw = a2hw which
leads to F̂aw′X(y) = F̂w′X(y/a), taking advantage of the definition in
(6.10.16) and hence qaw� = aqw� . In effect,

AVaRH� (aw′X) = − 1
n�

n∑
k=1

(
ark

(
qw� − rk√
hw

)
− a

√
hwf

(
qw� − rk√
hw

))
= aAVaRH� (w′X)

The second statement holds from the general properties of AVaR
as the kernel approximation can be viewed as the AVaR of a lin-
ear combination of random variables with a multivariate density
function equal to the kernel estimate. Therefore, the convexity of
AVaRH� (w′X) follows as a consequence of the convexity of AVaR in
general. �

It can be demonstrated that the kernel estimator of AVaR is always
larger than the empirical and approaches it asymptotically.

Proposition 6.10.3. The following relations hold true:

ÂVaR�(w′X) ≤ AVaRH� (w′X)

and

lim
hw→0

AVaRH� (w′X) = ÂVaR�(w′X)

where ÂVaR� denotes the empirical estimator defined in (6.3.1). As
a consequence of the limit relation, the kernel estimator converges
almost surely to AVaR�(w′X) as n → ∞.
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Proof. The inequality follows due to the following relationship:

∫ qw�

−∞

y√
2��2

exp

(
− (y−rk)2

2�2

)
dy≤

∫ ∞

−∞

y√
2��2

exp

(
− (y − rk)2

2�2

)
dy = rk

The limit is a consequence of

∫ qw�

−∞

y√
2��2

exp

(
− (y − rk)2

2�2

)
dy −→

{
rk if rk < qw�

0 if rk ≥ qw�

since the normal c.d.f. approaches the Dirac delta function at rk. �

6.10.6 Remarks on spectral risk measures

In the chapter, we remarked that by selecting a particular risk-
aversion function, we can obtain an infinite risk measure for some
return distributions. The AVaR can also become infinite but all dis-
tributions for which this happens are not reasonable as a model
for financial assets returns because they have infinite mathemati-
cal expectation. This is not the case with the spectral risk measures.
There are plausible statistical models which, if combined with an
inappropriate risk-aversion function, result in an infinite spectral
risk measure.

In this section, we provide conditions which guarantee that if a
risk-aversion function satisfies them, then it generates a finite spec-
tral risk measure. These conditions can be divided into two groups
depending on what kind of information about the random variable
is used. The first group of conditions is based on information about
existence of certain moments and the second group contains more
precise conditions based on the tail behavior of the random variable.
This section is based on Stoyanov (2005).

Moment-based conditions
Moment-based conditions are related to the existence of a certain
norm of the risk-aversion function. We take advantage of the norms
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behind the classical Lebesgue spaces of functions denoted by

Lp([0, 1]) : =
{
f : ||f ||p =

∫ 1

0
|f (t)|pdt < ∞

}

where || · ||p denotes the corresponding norm. If p = ∞, then the
norm is the essential supremum, ||f ||∞ = ess supt∈[0,1]|f (t)|. If the
function f is continuous and bounded, then ||f ||∞ is simply the
maximum of the absolute value of the function.

The sufficient conditions for the finiteness of the spectral risk mea-
sure involve the quantity

I�(X) =
∫ 1

0
|F−1
X (p)�(p)|dp (6.10.18)

which is, essentially, the definition of the spectral risk measure but
the integrand is taken in absolute value. Therefore,

|��(X)| ≤ I�(X)

and, as a consequence, if the quantity I�(X) is finite, so is the spectral
risk measure ��(X). Formally, this is a sufficient condition for the
absolute convergence of the integral behind the definition of spectral
risk measures.

Moment-based conditions are summarized by the following
inequalities,

C · E|X| ≤ I�(X) ≤ (E|X|s)1/s ||�||r (6.10.19)

where 0 ≤ C < ∞ is a constant and 1/s+ 1/r = 1 with r, s > 1. Fur-
ther on, if r = 1 or s = 1, the second inequality20 in (6.10.19) changes
to

I�(X) ≤ supu∈[0,1] |F−1
X (u)|, if r = 1

I�(X) ≤ E|X| · ||�||∞, if s = 1.
(6.10.20)

As a consequence of equation (6.10.19), it follows that if the abso-
lute moment of order s exists, E|X|s < ∞, s > 1, then � ∈ Lr([0, 1])
is a sufficient condition for ��(X) < ∞. The AVaR�(X) has a special
place among ��(X) because if AVaR�(X) = ∞, then E|X| = ∞ and
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��(X) is not absolutely convergent for any choice of �. In the reverse
direction, if there exists � ∈ L1([0, 1]) such that I�(X) < ∞, then
AVaR�(X) < ∞.

The limit cases in inequalities (6.10.20) show that if X has a
bounded support, then all possible risk spectra are meaningful. In
addition, if we consider the space of all essentially bounded risk spec-
tra, then the existence of E|X| is a necessary and sufficient condition
for the absolute convergence of ��(X).

Conditions based on the tail behavior of X
More precise sufficient conditions can be derived assuming a partic-
ular tail behavior of the distribution function of X. A fairly general
assumption for the tail behavior is regular variation. A monotonic
function f (x) is said to be regularly varying at infinity with index ˛,
f ∈ RV˛, if

lim
x→∞

f (tx)
f (x)

= t˛. (6.10.21)

Examples of random variables with regularly varying distribution
functions include stable distributions, Student’s t distribution, and
Pareto distribution. Thus, it is natural to look for sufficient condi-
tions for the convergence of ��(X) in the general setting of regularly
varying tails. A set of such conditions is provided below.

Suppose that��(X) is the spectral measure of risk of a random vari-
able X such that E|X| < ∞ and P(−X > u) ∈ RV−˛. Let the inverse
of the risk spectrum �−1 ∈ RV−ı, if existing. Then

��(X) = ∞, if 1 < ı ≤ ˛/(˛− 1)

��(X) < ∞, if ı > ˛/(˛− 1)

The inverse of the risk-aversion function �−1 exists if we assume that
� is smooth because by assumption � is a monotonic function.

In some cases, we may not know explicitly the inverse of the risk-
aversion function, or the inverse may not be regularly varying. Then,
the next sufficient condition can be adopted. It is based on comparing
the risk-aversion function to a power function.
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Suppose that the same condition as above holds, the random vari-
ableX is such thatE|X| < ∞ andP(−X > u) ∈ RV−˛. If the condition

lim
x→0

�(x)xˇ = C

is satisfied with 0 < ˇ < ˛−1
˛

and 0 ≤ C < ∞, then ��(X) < ∞. If
˛−1
˛

≤ ˇ < 1 and 0 < C < ∞, then ��(X) = ∞.
This condition emphasizes that it is the behavior of the risk-

aversion function �(t) close to t = 0 that matters. This is reasonable
because in this range, the risk-aversion function defines the weights
of the very extreme losses and if the weights increase very quickly
as t → 0, then the risk measure may explode.

In fact, these conditions are more specific than assuming that a cer-
tain norm of the risk-aversion function is finite. It is possible to derive
them because of the hypothesized tail behavior of the distribution
function of X which is a stronger assumption than the existence of
certain moments.

Notes

1. In fact,X = 0.05
√

3Z+ 0.03 whereZ has Student’s t distribution with
4 degrees of freedom and Y has a normal distribution with standard
deviation equal to 0.1 and mathematical expectation equal to 0.01.
The coefficient of Z is chosen so that the standard deviation of X is
also equal to 0.1.

2. By comparing the c.d.f.s, we notice that the c.d.f. of X is “above”
the c.d.f. of Y to the left of the crossing point, FX(x) ≥ FY(x), x ≤
−0.15.

3. This term is adopted in Rockafellar and Uryasev (2002).
4. Equation (6.2.2) was first studied by Pflug (2000). A proof that equa-

tion (6.2.1) is indeed the AVaR can be found in Rockafellar and
Uryasev 2002.

5. As we remarked, AVaR�(X) can be infinite only if the mathemati-
cal expectation of X is infinite. Nevertheless, if this turns out to be an
issue, one can use instead of AVaR the median of the loss distribution,
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NOTES

provided that the loss is larger than VaR�(X), as a robust version of
AVaR. The median of the conditional loss is always finite and, there-
fore, the issue disappears but at the cost of violating the coherence
axioms. Section 6.10.1 in the appendix to this chapter provides more
details.

6. A characteristic function provides a third possibility (besides the
cumulative distribution function and the probability density func-
tion) to uniquely define a probability distribution. It is a mapping from
the set of real numbers R into the set of complex numbers C denoted
by ϕX(t) = EeitX which represents the so-called “Fourier transform” of
the distribution of the random variableX. Knowing the characteristic
function ϕX(t) is mathematically equivalent to knowing the proba-
bility density function fX(x) or the cumulative distribution function
FX(x).

7. This formula is a simple consequence of the definition of AVaR for
discrete distributions: see the appendix to this chapter. A detailed
derivation is provided by Rockafellar and Uryasev (2002).

8. For example, �3.1� = �3.8� = 4.
9. A formal proof can be found in Rockafellar and Uryasev (2002).

The reasoning in Rockafellar and Uryasev (2002) is based on the
assumption that the random variable describes losses, while in equa-
tion (6.4.2), the random variable describes the portfolio return or
payoff.

10. This question is important in investigating which stocks are the largest
contributors to portfolio AVaR but is not within the scope of this
chapter.

11. See, for example, van der Vaart (1998) and Simonoff (1996).
12. See, for example, Simonoff (1996) for more information about band-

width selection and kernel methods in general.
13. Section 6.2.1 of this chapter provides more details on the class of stable

distributions and its application as a model in finance.
14. In fact, the formal definition is more involved. See Acerbi (2004) for

further details.
15. The examples are based on Stoyanov et al. (2008).
16. For additional information on distortion functionals, see Pflug and

Roemisch (2007).
17. For additional information about application of distortion risk mea-

sures in optimal portfolio problems, see Sereda et al. (2009).

249



CHAPTER 6 AVERAGE VALUE-AT-RISK

18. Formal derivation of this relationship can be found, for example, in
Rockafellar and Uryasev (2002).

19. In fact, this is a consequence of the celebrated Glivenko–Cantelli the-
orem claiming that the sample c.d.f. converges almost surely to the
true c.d.f.

20. As a matter of fact, the right-hand side inequalities of both cases can
be unified as a consequence of the norm relationship ||fg||1 ≤ ||f ||r||g||s
where f ∈ Lr and g ∈ Ls and r and s are conjugate exponents: that is,
1/s+ 1/r = 1 and 1 ≤ r, s ≤ ∞. See, for example, Rudin (1970).
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Chapter 7

Computing AVaR through
Monte Carlo

The goals of this chapter are the following:
• To explore the accuracy of the Monte Carlo method in computing

the average value-at-risk (AVaR) measure, taking advantage of the
large-sample theory of the AVaR estimator.

• To consider the cases of both heavy-tailed return distribution
models and light-tail return models and their implications for
the approximation accuracy.

• To provide insight on the minimum sample size necessary to trust
the asymptotic distribution as a model for the approximation error.

• To consider the method of tail truncation as a method for improv-
ing precision.

Notation introduced in this chapter:
Notation Description

Xtr A truncated version of the random variable X
Zn,� A random variable describing the approximation error of the

Monte Carlo method
Ztrn,� A random variable describing the approximation error of the

Monte Carlo method for the truncated model

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
© 2011 Svetlozar T. Rachev, Stoyan V. Stoyanov and Frank J. Fabozzi

252



7.1 INTRODUCTION

Important terms introduced in this chapter:

Term Concise explanation

L(x) A function which is slowly varying at infinity
asymptotic
distribution

A probability distribution governing the proper-
ties of a statistical estimator as the sample size
increases indefinitely.

Central limit
theorem

A limit theorem describing the asymptotic behavior
of sums of independent and identically dis-
tributed random variables under the condition of
finite variance for the summands. The limit distri-
bution is the normal distribution.

Generalized central
limit theorem

The broadest generalization of the classical CLT
allowing for heavy-tailed summands with infinite
variance. The limit distribution is the class of sta-
ble distributions.

7.1 Introduction

We have already considered the question of how risk can be calcu-
lated. An important prerequisite is a measure of risk with suitable
properties. We discussed standard deviation, value-at-risk (VaR),
and the general family of coherent risk measures in Chapter 5 and
AVaR in Chapter 6, which arises as an important member of the
family of coherent risk measures.

The measure of risk by itself, however, is not sufficient for the prob-
lem of estimating the risk of a given portfolio. It has to be combined
with a probabilistic model for the risk factor returns, encapsulating
information about both their stand-alone and joint behaviors. A good
measure of risk used together with a unrealistic probabilistic model
can lead to bad decisions. We need the combination of a good mea-
sure of risk and a realistic multivariate model to compute portfolio
risk properly.

An acceptable probabilistic model has to take into account the phe-
nomena observed in empirical data, such as heavy-tailed behavior,
clustering of volatility, and short- and long-range dependence. The
dependence structure between risk drivers can be captured by means
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of a copula function. Building a realistic, multidimensional model is
a major topic which is beyond the scope of this chapter. We focus only
on the one-dimensional case in which computing the risk of a sin-
gle variable, a stock for example, is a much more tractable problem.
While this setting may seem simplified, we can always view the task
of computing total portfolio risk as a one-dimensional problem in
which portfolio returns are described by means of a one-dimensional
random variable.

In Chapter 6, we provided arguments indicating that AVaR is
a good choice for a risk measure. Therefore, in this chapter, we
explore how reliably AVaR can be calculated when it is combined
with a given one-dimensional probability model. However, we
do not discuss whether the model is adequate for a given time
series or how its parameters should be calibrated. Our assump-
tion is that the probability model has been already selected and
calibrated.

It was discussed earlier that only very rarely does there exist a
formula computing the AVaR of a given distribution. In Chapter 6,
we provided examples for the Gaussian distribution, Student’s
t distribution, stable Paretian distributions, and a few other classes.
If we are not aware of the exact distribution, or if it is hard to calcu-
late explicitly, but we can sample from it relatively easily, then there
is a general statistical numerical method we can take advantage of.
This is the Monte Carlo method and its application to the problem
of AVaR calculation is the main topic of this chapter.

In order to illustrate why the assumption that we may not know
explicitly the distribution of a random variable and yet be able to
sample from it makes sense in this context, consider the following
example. Suppose that we can fit good one-dimensional models to
the daily return time series of a given set of stocks which exhibit
different fat-tailed behavior using, for instance, the Student’s t dis-
tribution. Suppose also that the dependence model between them
is nicely captured by a given copula function. Thus, a multivariate
model can be constructed and sampled by combining the copula
and the one-dimensional models. The returns of a long-only port-
folio appear as a weighted average of the stock returns, but the
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distribution of the portfolio returns is impossible to derive in closed-
form. In fact, this is not too surprising because in a general real-world
situation, analytic tractability may not be possible.1 However, scenar-
ios from this analytically intractable distribution are easy to obtain.
We can first generate joint scenarios from the fitted multidimensional
model and then compute the corresponding scenarios for portfolio
returns by applying portfolio weights to the simulated stock returns.
In this way, we obtain a sample from the portfolio return distribution
without actually knowing it in closed-form.

By construction, AVaR computed through the Monte Carlo
method depends on the underlying scenarios. If the scenarios are
re-generated, the resulting AVaR will change. Therefore, from a the-
oretical viewpoint, the AVaR obtained in this way can be viewed as
a random variable itself. It is reasonable to expect that the true AVaR
should be close to, or even coincide with, the mean of this random
variable and its variance should diminish as the sample size increases
indefinitely. Non-strictly speaking, these properties are known as
unbiasedness and consistency of the AVaR estimator.

Certain characteristics of the estimator indicate how reliable the
method is. For example, we can compute a confidence interval and
assess if the accuracy is good enough. This, however, is again ana-
lytically intractable because we do not know the distribution of the
estimator in closed-form. As a result, one has to resort to approxi-
mations. There are two general methods:

• Parametric bootstrap: re-generate the sample a number of times
and compute AVaR each time. In this way, we obtain a sample
from the estimator.

• Asymptotic theory: take advantage of the central limit theorem
(CLT), or a generalization of it, to compute the asymptotic distri-
bution of the estimator. Use this distribution having re-adjusted
it for the number of scenarios we use.

Both approaches can be viewed as providing approximations. In
the bootstrap method, we rely on a sample drawn from the estima-
tor. However, the empirical cumulative distribution function (c.d.f.)
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is only an approximation of the true c.d.f. and, therefore, anything
computed on the basis of the sample is only an approximation. In
a similar vein, the asymptotic theory holds true for infinitely large
samples and it is, therefore, an approximation in the case of a finite
sample. The bootstrap method, however, relies on the assumption
that we can re-generate the sample easily, which may not be the case
when the portfolio contains complex derivatives, for example. Thus,
practical considerations may force us to use the asymptotic theory
rather than the computationally intensive bootstrap method. Num-
bers of scenarios such as 5,000 or 10,000 are typical choices. They are
high enough to be considered large sample cases and applying the
asymptotic theory is an acceptable approach.

In this chapter, we explore the asymptotic theory of the empirical
AVaR estimator. We provide answers to the following two general
questions:

• What is the asymptotic distribution of the empirical AVaR esti-
mator?

• For what sample size can the asymptotic distribution be regarded
as a good model for the approximation error of the Monte Carlo
method?

Both questions remain valid if VaR is selected as a risk measure
but they have much simpler answers in the case of VaR. We make
comparisons to VaR where appropriate.

7.2 An Illustration of Monte Carlo Variability

In Tables 5.2 and 6.1 in Chapters 5 and 6, respectively, we provided
the 95% confidence bounds of VaR and AVaR at the 1% tail probabil-
ity, computed through the bootstrap method assuming the returns
follow the standard normal distribution. Both tables show that the
confidence interval becomes smaller and smaller as the number of
simulations increases. This means that precision increases and if we
can run the calculations with an infinitely large sample, we expect
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Figure 7.1: Convergence of sample AVaR0.01(X) where X ∈ N(0, 1) to the
true value of 2.66.

that the result will be exactly the VaR and AVaR at 1% tail probability
of the standard normal distribution.

The first point that needs attention is if this is always true. That is,
the tables illustrate this property for the standard normal distribution
but what if we change the model to something different? This claim is
always true for VaR due to the celebrated Glivenko–Cantelli theorem
proving that the empirical c.d.f. converges almost surely to the c.d.f.
of a given random variable as the sample size increases indefinitely.
Therefore, the empirical quantile at any probability level converges
almost surely to the corresponding quantile of the distribution.

For AVaR, however, the claim is not always true. There are distri-
butions for which AVaR is infinite at any tail probability. For such
distributions, while the empirical AVaR for any finite sample is a
finite quantity, increasing the sample size does not lead to conver-
gence since the quantity we are trying to approximate is unbounded
by construction.

Figures 7.1 and 7.2 illustrate a case with convergence and a case
with lack of convergence. We generated two large samples of 20,000
scenarios from the standard normal distribution and the standard
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Figure 7.2: Lack of convergence of sample AVaR0.01(X) where X has the
standardized Cauchy distribution.

Cauchy distribution. Then, we estimated the sample AVaR at 1%
tail probability, starting from a small sub-sample and increasing the
sample size until all the 20,000 scenarios are used. We took advantage
of formula (6.3.1) from Chapter 6 to compute the sample AVaR. The
figures show the two sample AVaRs as a function of the number of
scenarios.

If X has a standard normal distribution, then AVaR0.01(X) = 2.66.
This is the value towards which the sample AVaR converges. In con-
trast, the AVaR of the Cauchy distribution is not bounded at any tail
probability and the sample AVaR does not converge to any value. The
AVaR is unbounded because the tails of the Cauchy distribution are
so heavy that even the mathematical expectation of this distribution
is infinite.

A condition which guarantees thatAVaR�(X) < ∞ arises from the
inequality

AVaR�(X) ≤ −Emin(X, 0). (7.2.1)

IfX describes the return of a common stock, then the right-hand side
can be interpreted as the average loss. Therefore, if the left tail of the

258



7.3 ASYMPTOTIC DISTRIBUTION, CLASSICAL CONDITIONS

return distribution is such that the average loss is a finite number,
then AVaR�(X) < ∞ for any � < 1. This sufficient condition is only
technical because, from a practical viewpoint, it makes no sense to
use a theoretical model predicting an infinite average loss. Therefore,
we can conclude that while in theory there may be distributions, the
AVaR of which is unbounded at any tail probability, they are not
appropriate for modeling returns of financial variables.

Even if purely technical, the condition in equation (7.2.1) is inter-
esting as it emphasizes the intuitive expectation that it is the left tail
of X that governs the properties of sample AVaR. We confirm this
expectation in the following sections when discussing the asymptotic
distribution of sample AVaR.

7.3 Asymptotic Distribution, Classical
Conditions

The accuracy of the Monte Carlo method can be illustrated with
the help of the bootstrap method. Such an example can be found in
Figure 6.6 and the corresponding 95% confidence bounds are avail-
able in Table 6.1. The bootstrap method is a numerical technique
allowing us to gain insight into the distribution of sample AVaR with
the number of scenarios fixed. The distribution of sample AVaR is
not known even for simple assumptions about X: for example, if
X has a normal distribution. For this reason, we may resort to this
numerical method to gain understanding about the accuracy of the
Monte Carlo method.

Another standard method in statistics is to consider the asymp-
totic distribution of the estimator using CLT-type arguments. Before
proceeding, let us summarize the properties discussed so far and
introduce some notation.

The sample AVaR is defined through the expression

ÂVaR�(X) = −1
�

∫ �

0
F−1
n (p)dp, (7.3.1)
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where F−1
n (p) denotes the inverse of the sample c.d.f. Fn(x) =

1
n

∑n
i=1 I{Xi ≤ x}, in which I{A} denotes the indicator function of the

event A, and X1, . . . , Xn is a sample of independent and identically
distributed (i.i.d.) copies of a random variable X. If we assume that
the random variable X describes the return distribution of a com-
mon stock, then the sample X1, . . . , Xn represents the Monte Carlo
simulations drawn from the distribution of X.

In the previous section, we noted that −E(min(X, 0)) < ∞ is a
sufficient condition. It can be demonstrated that it is actually nec-
essary and sufficient for AVaR�(X) < ∞. For this reason, by the
Glivenko–Cantelli theorem, the same condition becomes necessary
and sufficient for the following almost sure convergence:

ÂVaR�(X) a.s.−→ AVaR�(X) as n → ∞. (7.3.2)

In the introduction to this chapter, we noted that it is desirable that
the AVaR estimator be unbiased. For sample AVaR, this property does
not hold and the estimator is biased. It is possible to demonstrate that
the bias is negative and is of orderO(n−1). Therefore, we can consider
it negligible for the large-sample theory.2

In this section, we consider the asymptotic distribution of sample
AVaR assuming the classical condition that second moment of X is
finite, EX2 < ∞. From a technical viewpoint, this condition implies
that the tails of X do not decay too slowly. Under this assumption,
we can establish the following CLT-type result,3

Theorem 7.3.1. Suppose that X is a random variable with finite sec-
ond moment EX2 < ∞. Furthermore, suppose that the c.d.f. of X
is differentiable at x = q�, where q� is the �-quantile of X. Then, as
n → ∞,

√
n

��

(
ÂVaR�(X) − AVaR�(X)

)
w→ N(0, 1) (7.3.3)

where w→ denotes weak limit and

�2
� = 1

�2D(max(q� − X, 0)). (7.3.4)
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The condition that the c.d.f. be differentiable at q� is only technical
and is not restrictive. This condition is always satisfied for random
variables which have density functions.

The result in the theorem is asymptotic in the sense that it becomes
valid when the sample size increases indefinitely, n → ∞. Therefore,
for any finite n, the asymptotic distribution is only approximately
true. Nevertheless, we can apply the result in the theorem in the
following way. Suppose that we know the distribution of X which
has a finite second moment, and we fix n = 10,000. We can calculate
�� as it depends only on the distribution of X and the choice of tail
probability �. The 95% confidence interval for the true AVaR can be
calculated according to

ÂVaR�(X) − 1.96��√
n

≤ AVaR�(X) ≤ ÂVaR�(X) + 1.96��√
n
,

in which 1.96 is approximately the 97.5% quantile of the standard
normal distribution.

For some choices of X satisfying the conditions in the theorem, it
may be hard to calculate ��. In such cases, the standard approach is
to estimate it using the available scenarios. If more convenient, the
following equivalent representation in terms of conditional expecta-
tions can be used:

�2
� = q2

�

�
− 2q�

�
E(X|X ≤ q�) + 1

�
E(X2|X ≤ q�) − (q� − E(X|X ≤ q�))2

(7.3.5)

Thus, in order to estimate E(X|X ≤ q�), we average the scenarios
smaller than the corresponding sample quantile.

In showing how the theorem can be applied, we made one assump-
tion which we may not be ready to accept without questioning. We
assumed that n = 10,000 is sufficiently large in order to adopt the
asymptotic distribution for the true distribution of sample AVaR.
In the following sections, we demonstrate that for some popular
distribution models in finance this is not true (i.e., we need more
scenarios).
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CHAPTER 7 COMPUTING AVaR THROUGH MONTE CARLO

As far as the theory of probability is concerned, this question has
received a lot of attention. It was at the heart of the research which
led to results establishing the rate of convergence in the CLT. In our
context, a rate-of-convergence theorem would indicate how large n
should be in order to adopt the asymptotic distribution and make
a minimal error. The error, in this case, is computed in terms of a
probability metric between the distribution of the sample AVaR and
the asymptotic model.

In the current chapter, we do not consider this much more involved
area. We only demonstrate through a Monte Carlo study what
choices of n are sufficiently high so that the asymptotic model is
satisfactory for given choices for the distribution of X which are
popular in finance. We also discuss a technique which improves the
convergence rate and, thus, requires fewer scenarios for the same
level of precision.

7.4 Rate of Convergence to the Normal
Distribution

In this section, our goal is to investigate the effect of the tail behavior
of X on the rate of convergence in (7.3.1). We are also interested in
the question if the method of tail truncation improves convergence
and by how much. Generally, the tail truncation method consists of
“replacing” the tails of X with the tails of a thin-tailed distribution
“far away” from the center of the distribution of X: for example,
beyond the 0.1% and 99.9% quantiles. The tail truncation method
has applications in finance for modeling the distribution of stock
returns. A practical reason for adopting it is that a stock exchange
may close if a severe market crash occurs, limiting in this way the loss
that can be observed. This method also has application in derivatives
pricing with a heavy-tailed distributional assumption for the return
of the underlying.4

In the following sections, we start with the Student’s t distribution
and investigate the convergence rate in the limit relation (7.3.1) as
degrees of freedom increase. The Student’s t distribution has been
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widely applied as a model for stock returns and while there is a
closed-form expression for AVaR, we consider it in the context of
the Monte Carlo method because it may serve as a guideline for the
convergence rate of AVaR of other distributions with a similar tail
behavior, closed-form expressions of AVaR for which do not exist.

We address the same questions with a truncated Student’s t distri-
bution in which the truncation is done in the simplest possible way –
we set the values of the random variable which are beyond the 0.1%
and 99.9% quantiles to be equal to the corresponding quantiles. As
a result, small point masses appear at the 0.1% and 99.9% quantiles.
We also focus on the class of stable distributions and truncated stable
distributions, in which the same truncation technique is adopted as
in the case of Student’s t distribution.

7.4.1 The effect of tail thickness

The impact of the tail behavior on the rate of convergence in Theorem
7.3.1 is first studied when X has Student’s t distribution, X ∈ t(�),
with � ≥ 3. We impose the condition on the degrees of freedom
in order for the random variable to have a finite variance. Taking
advantage of the expression for the density

f�(x) =
�

(
�+1

2

)
�

(
�
2

) 1√
��

(
1 + x2

�

)− �+1
2

, x ∈ R,

it is possible to compute explicitly the variance in equation (7.3.4).
In fact, for this purpose the expression in (7.3.5) is more appropriate.
As a first step, we calculate the two conditional expectations:

E(X|X ≤ q�) = −1
�

�
(
�+1

2

)
�

(
�
2

) √
�

(� − 1)
√
�

(
1 + q2

�

�

) 1−�
2

, if � > 1.

(7.4.1)

E(X2|X ≤ q�) = q�E(X|X ≤ q�) + �

�(� − 2)
F�−2

(
q�

√
� − 2
�

)
, if � > 2.

(7.4.2)
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Table 7.1 The number of scenarios sufficient to accept the
normal distribution as an approximate model for
different values of � and �.

� � = 0.01 � = 0.05

3 70,000 17,000
4 60,000 9,000
5 50,000 7,000
6 23,000 4,500
7 14,000 4,200
8 13,000 4,100
9 12,000 4,000

10 12,000 3,900
15 11,000 3,850
25 10,000 3,800
50 10,000 3,750
∞ 10,000 3,300

Plugging these expressions5 in (7.3.5), we obtain the expression for
the variance �2

� .
Having obtained an expression for the variance allows us to use

the test of Kolmogorov and address the question of how many
simulations are needed in order to accept the hypothesis that the
distribution of the random variable on the left-hand side of the limit
relation (7.3.3),

Zn,� =
√
n

��

(
ÂVaR�(X) − AVaR�(X)

)
, (7.4.3)

is standard normal. If we accept the null hypothesis for a given value
of n, then the standard normal distribution can be used as an approx-
imate model and we can calculate not only confidence intervals but
also other characteristics based on it.

Table 7.1 shows the values ofn sufficient to accept the null hypothe-
sis in the test of Kolmogorov for different degrees of freedom and tail
probabilities. We chose � = 0.01 and � = 0.05 since these values are
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7.4 RATE OF CONVERGENCE TO THE NORMAL DISTRIBUTION

frequently used in the financial industry for VaR estimation. These
tail probabilities correspond to 99% and 95% VaR, respectively. The
numbers in the table are calculated by generating independently
2,000 samples of the given size, and then from each sample we
estimate (7.4.3). As a result, we obtain 2,000 scenarios from the dis-
tribution of the random variableZn,�. In this calculation,AVaR�(X) is
computed taking advantage of the closed-form expression provided
in Chapter 6.

In line with intuition, the numbers in Table 7.1 indicate that when
the tail is heavier, we need a larger sample in order for the asymptotic
law to be sufficiently close to the distribution of Zn,� in terms of
the Kolmogorov metric. Another expected conclusion is that as the
tail probability increases, a smaller sample turns out to be sufficient
because a smaller tail probability means that a larger part of the
sample is effectively used in the calculation.

In Table 7.2, we calculated the 95% confidence interval for AVaR
when the sample size changes from 250 to 10,000 scenarios. We gen-
erated 2,000 independent samples and then computed (7.4.3) for
each sample. Thus, the 95% confidence intervals are obtained from
2,000 scenarios of the random variable Zn,�. As n increases, the two
quantiles approach the corresponding quantiles of the standard nor-
mal distribution. Note that the largest n = 10,000 is generally below
the sample sizes for � = 0.01 given in Table 7.1. Nevertheless, the
relative discrepancies between the quantiles given in Table 7.2 and
the corresponding standard normal distribution quantiles are less
than 5% for � ≥ 6.6 The relative discrepancies between the quantiles
given in Table 7.3 and the corresponding standard normal distribu-
tion quantiles for n = 10,000 have the same magnitude. However, in
this case n = 10,000 is well above the sample sizes given in Table 7.1
for � = 0.05. As a result, we can conclude that even smaller samples
than the ones given in Table 7.1 can lead to 95% confidence intervals
obtained via resampling from the distribution of Zn,� being close to
the corresponding 95% confidence interval obtained from the limit
distribution, even though the Kolmogorov test fails for such sam-
ples. For instance, the relative deviation between the quantiles given
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in Table 7.2 forn = 5,000 and the corresponding standard normal dis-
tribution quantiles are below 7% for n ≥ 6, which is a small deviation
for all practical purposes.

As a result of this analysis, we can conclude that for the purposes
of building confidence intervals for AVaR�(X) when X ∈ t(�), with
� ≥ 6 and � = 0.01, 0.05, we can safely employ the asymptotic law
when the sample size we use for AVaR estimation contains more than
5,000 scenarios. If the Student’s t distribution is fitted to daily stock
returns time series, such values for � are very common.

Figure 7.3 illustrates the differences in the convergence rate when
X has a Student’s t distribution with � = 3, which corresponds to
heavier tails, and � = 10. Since high degrees of freedom imply more
light tails, smaller samples are sufficient for the density of (7.4.3) to
be closer to the standard normal density.

7.4.2 The effect of tail truncation

The stochastic stability of sample AVaR increases dramatically after
tail truncation. In this section, we repeat the calculations from the
previous section but when X has Student’s t distribution with the
left tail truncated at q0.1% quantile.

We adopt the simplest possible truncation method. The random
variable Xtr is said to be a truncated version of X at q0.1% quantile if

Xtr = XI{q0.1% ≤ X} + q0.1%I{X < q0.1%}

in which I{A} denotes the indicator of the event A, and q0.1% is the
corresponding quantile of X. The tail truncation introduces small
point masses at the two quantile levels.

The two conditional expectations in (7.3.5) can be related to the
corresponding conditional expectations of X. In the following, we
assume that the tail probability � is larger from the tail probability
of the left truncation point, � > 0.001. Under this assumption, the
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Figure 7.3: The density of (7.4.3) approaching the N(0, 1) density as the
sample size increases with � = 3 (top) and � = 10 (bottom).
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�-quantile of X is the same as the �-quantile of Xtr and, therefore,

E(Xtr|Xtr ≤ q�) = E(X|X ≤ q�)

− 0.001
�

E(X|X ≤ q0.1%) + 0.001q0.1%

�

(7.4.4)

E((Xtr)2|Xtr ≤ q�) = E(X2|X ≤ q�) − 0.001
�

E(X2|X ≤ q0.1%)

+ 0.001q2
0.1%

�

(7.4.5)

If we assume that X has Student’s t distribution, X ∈ t(�), then the
conditional expectations of X in equations (7.4.4) and (7.4.5) can be
computed according to formulae (7.4.1) and (7.4.2). Plugging the
expressions for the conditional expectations of Y in the expression
for �2

� , we obtain the variance of the asymptotic distribution. Further-
more, the AVaR of the truncated Student’s t distribution,AVaR�(Xtr),
can be calculated through equation (7.4.4), taking advantage of the
closed-form expression for AVaR�(X).

In the following, we investigate the convergence rate of

Ztrn,� =
√
n

��

(
ÂVaR�(Xtr) − AVaR�(Xtr)

)
, (7.4.6)

for different degrees of freedom to the standard normal distribution
and we compare the results to the ones in the previous section.

Table 7.4 is the counterpart of Table 7.1 for the truncated distribu-
tion. It is impressive how the sample size sufficient to accept the
null hypothesis in the Kolmogorov test decreases after tail trun-
cation. The most dramatic change is in the case � = 3. Now we
need only 12,000 scenarios compared to 70,000 in the non-truncated
case.

Tables 7.5 and 7.6 are the counterparts of Tables 7.2 and 7.3. The
relative deviation of the quantiles q2.5% and q97.5% of the random
variable Ztrn,� in (7.4.6) from those of the standard normal distribu-
tion are below 7% for all degrees of freedom and n = 10,000, and,
with a few exceptions, for n = 5,000. Compare Figure 7.4 and the
top plot in Figure 7.3 for an illustration of the improvement in the
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7.4 RATE OF CONVERGENCE TO THE NORMAL DISTRIBUTION

Table 7.4 The number of scenarios sufficient to accept the normal
distribution as an approximate model for different values of � and �.

� � = 0.01 � = 0.05

3 12,000 4,000
4 11,500 3,600
5 11,000 3,300
6 11,000 3,200
7 10,500 3,100
8 10,000 3,000
9 10,000 3,000

10 10,000 3,000
15 10,000 2,950
25 10,000 2,900
50 10,000 2,900
∞ 10,000 2,900

convergence rate. These results indicate that the asymptotic distri-
bution can be used to obtain a 95% confidence bound for the sample
AVaR for all degrees of freedom if the sample size contains more than
5,000 scenarios.

The increase of convergence rate when using the tail truncation
method comes at the cost of a bias which is introduced by truncating
the left tail. Rearranging equation (7.4.4), we obtain

AVaR�(X) − AVaR�(Xtr) = 0.001
�

E(X|X ≤ q0.1%) − 0.001q0.1%

�
> 0.

The magnitude of the bias depends on how heavy the tails of
X are. The heavier the tails, the larger the bias is and, therefore,
the larger the improvement in the convergence rate is. The bias
when X ∈ t(�) computed as a percentage of AVaR�(X) is provided in
Table 7.7.

7.4.3 Infinite variance distributions

A critical assumption behind the limit result in Theorem 7.3.1 is
the finite variance of X. To be more precise, the condition of finite
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Figure 7.4: The density of (7.4.6) approaching the N(0, 1) density as the
sample size increases with � = 3 and � = 0.01.

variance can be loosened to finite downside semi-variance,

Dmax(−X, 0) < ∞,

because it is the behavior of the left tail which is important. As a con-
sequence, the sample AVaR of distributions with infinite variance,
but finite downside semi-variance, may still follow Theorem 7.3.1.

However, there are infinite variance distributions for which

Dmax(−X, 0) = ∞
and, therefore, the limit result in Theorem 7.3.1 does not hold for
them. Such is the class of stable distributions.7

Stable distributions are introduced by their characteristic func-
tions and except for a couple of representatives, generally no
closed-form expressions for their densities and c.d.f.s are known.
If ˛ < 2, then X has infinite variance. If 1 < ˛ ≤ 2, then X has finite
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7.4 RATE OF CONVERGENCE TO THE NORMAL DISTRIBUTION

Table 7.7 The magnitude of the bias introduced through
the truncation method as a percentage of AVaR�(X),
X ∈ t(�).
� � = 0.01 � = 0.05

3 7.418% 2.682%
4 4.814% 1.569%
5 3.641% 1.122%
6 2.996% 0.891%
7 2.596% 0.754%
8 2.326% 0.665%
9 2.134% 0.602%
10 1.990% 0.556%
15 1.608% 0.437%
25 1.352% 0.359%
50 1.185% 0.311%
∞ 1.110% 0.289%

mean and the AVaR ofX can be calculated. In the calculations in this
section, we use the semi-analytic formula provided in section 6.2.1
of Chapter 6.

Even though we know that Theorem 7.3.1 does not hold for a stable
distribution with ˛ < 2, we simulate 2,000 draws from the random
variable in equation (7.4.3), in which �� is estimated from a gener-
ated sample by estimating the corresponding conditional moments.
In theory, the second conditional moment explodes but for any finite
sample its estimate is a finite number. Our goal is to see what hap-
pens when Theorem 7.3.1 does not hold. Figure 7.5 illustrates such a
divergent case in which˛ = 1.5 and � = 0.05. The lack of convergence
is quite obvious.

Stable distributions with ˛ < 2 in combination with a tail trun-
cation method have been proposed as a model for the returns of
the underlying in derivatives pricing. It is interesting to see how
much the simple truncation technique we applied in the previous
section can change Figure 7.5. With its left tail truncated according
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Figure 7.5: Lack of convergence, X has a stable distribution with X ∈
S1.5(1, 0, 0) and � = 0.05.

to our simple method, Theorem 7.3.1 holds. Figure 7.6 illustrates
this change. We observe a quick convergence rate, similar to the one
illustrated in Figure 7.4 for the Student’s t distribution. The bias intro-
duced by the tail truncation method in this case can be calculated in a
way similar to the one we employed for the Student’s t distribution.
If X ∈ S1.5(1, 0, 0), then the bias is 17.08% of AVaR�(X).

As a result, we can conclude that whenX has a standardized sym-
metric stable distribution with an index of stability of 1.5, then the
asymptotic distribution of sample AVaR is not the normal distribu-
tion. Nevertheless, as we increase the number of scenarios, the Monte
Carlo method provides estimates with an increasing accuracy, and,
with an infinitely large sample, we can calculate precisely the AVaR
of X at any tail probability. The normal distribution, however, does
not describe the approximation error.
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Figure 7.6: After tail truncation at q0.1% and q99.9%, there is a fast conver-
gence to N(0, 1), ˛ = 1.5 and � = 0.05.

7.5 Asymptotic Distribution, Heavy-tailed
Returns

In section 7.4.3, we demonstrated that the regularity conditionEX2 <

∞ in the limit theorem 7.3.1 is quite significant. We did this by find-
ing a random variable X for which the limit result in Theorem 7.3.1
does not hold even though AVaR�(X) < ∞. Intuition suggests that
for distributions with EX2 = ∞ but AVaR�(X) < ∞, there should
be a probability law governing the quality of approximation in the
Monte Carlo scheme which, apparently, cannot be the normal dis-
tribution. Efforts to find such a probability law should result in an
extension of Theorem 7.3.1 in which the condition of finite second
moment is relaxed and the probability law should contain the normal
distribution as a special case.
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CHAPTER 7 COMPUTING AVaR THROUGH MONTE CARLO

Without discussing the details, we mention that infinite variance
distributions have been proposed as plausible models for financial
data. Especially when high frequency returns are concerned, intra-
day stock returns for example, an infinite variance model may turn
out to be realistic.8

Since computing AVaR from a sample of scenarios reduces to
summation of a transformation of i.i.d. random variables, we can
look at the generalized CLT (GCLT) theorem and apply it to the
problem of finding a limit distribution of sample AVaR. GCLT
concerns summation of i.i.d. random variables and from a theo-
retical viewpoint it provides the most general result possible for
the limit distribution of such sums. It contains the CLT as a spe-
cial case. The limit distributions arising in the GCLT are the stable
distributions which we introduced in Chapter 6. An important con-
sequence of the GCLT is that there are no distributions other than
the family of stable laws which can govern the limit behavior of
sums of i.i.d. random variables. This is also known as the domains
of attraction property. Therefore, we can expect that resorting to
the GCLT, it would be possible to find a generalized version of
Theorem 7.3.1.

In order to state the more general limit result for sample AVaR, we
need to characterize the domains of attraction of stable distributions
as they are going to play an essential role. The characterization result
relies on the concept of slowly varying functions. A positive function
L(x) is said to be slowly varying at infinity if the following limit
relation is satisfied:

lim
x→∞

L(tx)
L(x)

= 1, ∀t > 0. (7.5.1)

We took advantage of this concept in the appendix to Chapter 6
to characterize tail behavior in order to study the problem under
which conditions spectral risk measures are bounded. In this case, it
characterizes the domains of attraction.9
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7.5 ASYMPTOTIC DISTRIBUTION, HEAVY-TAILED RETURNS

Theorem 7.5.1. Let X1, . . . , Xn be i.i.d. with c.d.f. F(x). There exist
an > 0, bn ∈ R, n = 1, 2, . . ., such that the distribution of

a−1
n [(X1 + . . .+ Xn) − bn]

converges as n → ∞ to S˛(1, ˇ, 0) if and only if both

(i) x˛[1 − F(x) + F(−x)] = L(x) is slowly varying at infinity.

(ii)
1 − F(x) − F(−x)
1 − F(x) + F(−x)

→ ˇ as x → ∞.

The sequence an must satisfy

lim
n→∞

nL(an)
a˛n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(�(1 − ˛) cos(�˛/2))−1 if 0 < ˛ < 1,

2/� if ˛ = 1,(
�(2−˛)
˛−1 | cos �˛

2 |
)−1

if 1 < ˛ < 2.

(7.5.2)

The sequence bn may be chosen as follows:

bn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if 0 < ˛ < 1,

nan

∫ ∞

−∞
sin(x/an)dF(x) if ˛ = 1,

n

∫ ∞

−∞
xdF(x) if 1 < ˛ < 2.

(7.5.3)

In all cases, the sequence an can be represented as an = n1/˛L0(n)
where L0(n) is a function slowly varying at infinity.

If the index ˛ characterizing the tails of the c.d.f. F(x) in condition
(i) satisfies ˛ ≥ 2, then the tail index of the limiting distribution
equals ˛∗ = 2. Thus, the relationship between the tail index of the
limiting distribution, which we denote by ˛∗, and the tail index
in condition (i) can be generalized as ˛∗ = min(˛, 2). If ˛ > 2, then
EX2

1 < ∞ and we are in the setting of the classical CLT. The cen-
tering and normalization can be done by choosing bn = nEX1 and
an = n1/2�X1 , where �X1 denotes the standard deviation of X1. The
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CHAPTER 7 COMPUTING AVaR THROUGH MONTE CARLO

case ˛ = 2 is more special because the variance of X1 is infinite and
an cannot be chosen in this fashion. Moreover, the proper normaliza-
tion cannot be obtained by computing the limit ˛ → 2 in equation
(7.5.2). Under the simpler assumptions that the function L(x) in con-
dition (i) equals a constant, Zolotarev and Uchaikin (1999) provide
the formula an = (n log n)1/2A1/2.

The generalized result providing the limit distribution of sample
AVaR is given below. A proof of it can be found in the appendix to
this chapter.

Theorem 7.5.2. Suppose that X is a random variable with c.d.f. F(x)
which satisfies the following conditions:

(a) x˛F(−x) = L(x) is slowly varying at infinity.

(b)
∫ 0

−∞
xdF(x) < ∞.

(c) F(x) is differentiable at x = q�, where q� is the �-quantile of X.

Then, there exist cn > 0, n = 1, 2 . . ., such that for any 0 < � < 1,

c−1
n

(
ÂVaR�(X) − AVaR�(X)

)
w→ S˛∗(1, 1, 0), (7.5.4)

in which w→ denotes weak limit, 1 < ˛∗ = min(˛, 2), and cn =
n1/˛∗−1L0(n)/� where L0 is slowly varying at infinity. Furthermore,
the cn are representable as cn = an/n� where an stands for the nor-
malizing sequence in Theorem 7.5.1 and must satisfy the condition
in equation (7.5.2).

If ˛ > 2 in condition (a), then
∫ 0
−∞ x

2dF(x) < ∞ and the limiting
distribution is the standard normal distribution. Thus, under this
condition we obtain the result in Theorem 7.3.1. In this case, the
normalizing sequence cn should be calculated usingd2

� = D(q� − X)+,

cn = n−1/2d�/� = n−1/2��,

where �� is defined in equation (7.3.4).
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Figure 7.7: Densities of the limiting stable distribution corresponding to
different tail behavior.

By definition, the AVaR is the negative of the average of the quan-
tiles of X beyond a reference quantile q�. For this reason, as we
noted already, it is only the behavior of the left tail of X which
matters and both assumptions (a) and (b) in Theorem 7.5.2 concern
the left tail only. Condition (c), just as in the more limited Theorem
7.3.1, is only technical. It is automatically satisfied if X has a density
function.

The limiting stable distribution is totally skewed to the right,ˇ = 1.
However, the observed skewness in the shape of the distribution
decreases as ˛ → 2 (see Figure 7.7). At the limit, when ˛ = 2, the
limiting distribution is Gaussian and is symmetric irrespective of
the value of ˇ. Therefore, the degree of the observed skewness in
the limiting distribution is essentially determined by the tail behav-
ior of X, or by the value of ˛, and is not influenced by any other
characteristic.
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CHAPTER 7 COMPUTING AVaR THROUGH MONTE CARLO

When � → 1, then AVaR approaches the mean of X (or the sample
average if we consider the sample AVaR),

lim
�→1

AVaR�(X) = EX.

Unfortunately, there is no such continuity in equation (7.5.4) unless
X has a finite variance. That is, generally it is not true that the weak
limit in equation (7.5.4) holds for the sample average letting � → 1.
The reason is that if � = 1, then both tails of the distribution ofXmat-
ter and the limiting stable distribution can have any ˇ ∈ [−1, 1]. The
condition DX < ∞ is sufficient to guarantee that the limiting distri-
bution is normal for any � ∈ (0, 1] and in this case there is continuity
in equation (7.5.4) as � → 1.

As an illustration of the singularity at � = 1, consider the following
example. Suppose that the right tail of X is heavier than the left tail
and, as a consequence,

∫ q�

−∞
x2dF(x) < ∞, for any � < 1,

but EX2 = ∞. Under this assumption, the limiting distribution of
the sample AVaR is normal for any � < 1. If � = 1, then the limiting
distribution becomes stable non-Gaussian due to the heavier right
tail. Thus, there is a change in the limiting distribution of the sample
AVaR with � < 1 and the sample average.

The result in (7.5.4) is not as easy to apply as the simpler result
in Theorem 7.3.1. Difficulties arise because it is harder to calculate
the normalizing sequence cn. If we assume that we know the dis-
tribution of X and we can calculate or estimate the slowly varying
function L0(n) for a given choice of n (e.g. n = 10,000), and also the
tail exponent ˛ ofX, then we can apply the result in (7.5.4) in the fol-
lowing way. The 95% confidence interval for AVaR can be computed
according to,

ÂVaR�(X) − q2.5%cn ≤ AVaR�(X) ≤ ÂVaR�(X) + q97.5%cn
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7.6 RATE OF CONVERGENCE, HEAVY-TAILED RETURNS

where cn = n1/˛∗−1L0(n)/� and q2.5% and q97.5% are the 2.5% and 97.5%
quantiles from the distribution S˛∗(1, 0, 0) where ˛∗ = min(˛, 2). The
two quantile levels can be computed by numerical inversion if the
c.d.f. of the stable distribution can be approximated using either
the fast Fourier transform method or the integral representations
of Zolotarev. For details on numerical work with stable distribu-
tions, see, for example, Stoyanov and Racheva-Iotova (2004) and the
references therein.

In the next section, we provide examples of how the normaliz-
ing sequence cn can be computed for two particular choices for the
distribution of X – stable Paretian and Student’s t distributions.

7.6 Rate of Convergence, Heavy-tailed Returns

The result in Theorem 7.5.2 provides the limiting distribution but
does not provide any insight on the rate of convergence. That is, it
does not give an answer to the question of how many scenarios are
needed in order for the distribution of the left-hand side in equation
(7.5.4) to be sufficiently close to the distribution of the right-hand side
in terms of a selected probability metric. In this section, we provide
illustrations of the stable limit theorem and the rate of convergence
assuming particular distributions of X.

7.6.1 Stable Paretian distributions

We remarked that stable Paretian distributions are stable distri-
butions with tail index ˛ < 2. This distinction is made since their
properties are very different from the properties of the normal dis-
tribution which appears as a stable distribution with ˛ = 2. For
example, in contrast to the normal distribution, stable Paretian dis-
tributions have heavy tails exhibiting power decay. In the field of
finance, stable Paretian distribution were proposed as a model for
stock returns and other financial variables.10

Denote by X the random variable describing the return of a given
stock. In this section, we assume that X ∈ S˛(�, ˇ, �) with 1 < ˛ < 2,

283



CHAPTER 7 COMPUTING AVaR THROUGH MONTE CARLO

ˇ /= 1, and our goal is to apply the result in Theorem 7.5.2 which
provides a tool for computing the confidence interval of the sample
AVaR of X on condition that the Monte Carlo method is used with a
large number of scenarios. Since by assumption ˛ > 1, guaranteeing
convergence of the sample AVaR to the theoretical AVaR in almost
sure sense. In the case of stable distributions, the quantity AVaR�(X)
can be calculated using a semi-analytic expression given in Stoyanov
et al. (2006).

In order to apply the result in Theorem 7.5.2, first we have to check
if the conditions are satisfied and then choose the scaling constants
cn. For this purpose, we use the following property of stable Paretian
distributions.11

Property 7.6.1. Let X ∈ S˛(�, ˇ, �) 0 < ˛ < 2. Then

lim
�→∞

�˛P(X > �) = C˛
1 + ˇ

2
�˛

lim
�→∞

�˛P(X < −�) = C˛
1 − ˇ

2
�˛

where

C˛ =
(∫ ∞

0
x−˛ sin(x)dx

)−1

=
{ 1−˛
�(2−˛) cos(�˛/2) ,˛ /= 1

2/�, ˛ = 1

This property provides the asymptotic behavior of the left tail of
the distribution. We further assume that ˇ /= 1 since in this case the
asymptotic behavior of the left tail is different.12 Condition (b) is
satisfied because of the assumption 1 < ˛ < 2 and, finally, condition
(c) is satisfied for any choice of 0 < � < 1 since all stable distribu-
tions have densities. Therefore, all assumptions are satisfied and the
result in Theorem 7.5.2 holds with ˛∗ = ˛ and the scaling constants
cn should be chosen in the following way:

cn = n1/˛−1
(

1 − ˇ

2

)1/˛ �

�
.
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Figure 7.8: The density of the sample AVaR as n increases with ˇ = 0.7
and � = 0.01.

Note that in this case, the skewness in the distribution ofX translates
into a different scaling of the normalizing constants. IfX is negatively
skewed (ˇ < 0), the scaling factor is larger than if X is positively
skewed (ˇ > 0).

We carry out a Monte Carlo study assumingX ∈ S1.5(ˇ, 1, 0) where
ˇ = ±0.7 and two choices of the tail probability � = 0.01 and � = 0.05.
We generate 2,000 samples from the corresponding distribution, the
size of which equals n = 250; 1,000; 10,000; and 100,000.

Figure 7.8 illustrates the convergence rate for the case � = 0.01
as the number of scenarios increases. While from the plot it seems
that n = 100,000 results in a density which is very close to that of
the limiting distribution, the Kolmogorov test fails. The convergence
rate is much slower in the heavy-tailed case than in the setting of the
classical CLT. Apparently, many more scenarios are needed in this
heavy-tailed case in comparison to the finite-variance case.

The plots in Figure 7.9 indicate that as the tail probability �

increases, the behavior of the sample AVaR distribution improves.
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Furthermore, the behavior improves when X turns from being neg-
atively to positively skewed.

7.6.2 Student’s t distribution

We used Student’s t distribution in section 7.4.1. It can be
demonstrated13 that for the Student’s t distribution,

lim
x→∞ x

�F(−x) = ��/2−1
�

(
�+1

2

)
�(�/2)

√
�
. (7.6.1)

This distribution is interesting because by varying the degree of
freedom parameter, we can explore what happens to the rate of con-
vergence as we shift between the classical result in Theorem 7.3.1
and the more general result in Theorem 7.5.2.

The result in this proposition and Theorem 7.5.2 imply that for
� > 2, the limiting distribution of the sample AVaR is the Gaus-
sian distribution. If 1 < � ≤ 2, then the limiting distribution is stable
with ˛∗ = �. If � ≤ 1, then the AVaR of X diverges. The scaling con-
stants cn should be chosen in a different way depending on the value
of �,

cn =
{
n−1/2��, if � > 2

n1/�−1A�/�, if 1 < � < 2
(7.6.2)

where �� is given in equation (7.3.4) and

A�� = ��/2−1
�

(
�+1

2

)
�(�/2)

√
�

�(2 − �)
� − 1

| cos(��/2)|.

The value of the constant A� is obtained by taking into account the
limit in (7.6.1) and the condition in equation (7.5.2). The case � > 2
is covered by our result in Theorem 7.3.1. This case is in the classical
setting of the CLT as the variance of X is finite.
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Figure 7.9: The density of the sample AVaR as n increases with ˇ = 0.7
(top) and ˇ = −0.7 (bottom) and � = 0.05.
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We carry out a Monte Carlo experiment in order to study the
convergence rate of the sample AVaR distribution to the limiting
distribution. We fix the degrees of freedom, the number of simula-
tions to 100,000, and � = 0.05. Next we generate 2,000 samples from
which the sample AVaR is estimated. Thus we obtain 2,000 estimates
ofAVaR�(X),X ∈ t(�). Finally, we calculate the Kolmogorov distance

	(G�,G) = sup
x

|G�(x) − G(x)|

whereG� is the c.d.f. of the sample AVaR approximated by the sample
c.d.f. obtained with the 2,000 estimates, and G is the c.d.f. of the
limiting distribution S˛∗(1, 1, 0) where ˛∗ = min(�, 2).

Figure 7.10 shows the values of 	(G�,G) as � varies from 1.05 to 3.
The horizontal line shows the critical value of the Kolmogorov statis-
tic: if the calculated 	(G�,G) is below the critical value, we accept the
hypothesis that the sample AVaR distribution is the same as the lim-
iting distribution, otherwise we reject it. Since we use a sample c.d.f.
to approximate G�(x), the solid line fluctuates a little but we notice
that for � ≤ 1.5 and � ≥ 2.5 it seems that 100,000 scenarios are enough
in order to accept the limiting distribution as a model. For the mid-
dle values, larger samples are needed. This observation indicates
that the rate of convergence of the sample AVaR distribution to the
limiting distribution deteriorates as � approaches 2 and is slowest
for � = 2. This finding can be summarized in the following way by
considering all possible cases for �:

• � > 2. As � decreases from larger values to 2, the tail thickness
increases, which results in higher absolute moments becoming
divergent, E|X|ı = ∞, ı ≥ �. The limiting distribution of sample
AVaR is the Gaussian distribution but the tails becoming thicker
results in a deterioration of the convergence rate to the Gaussian
distribution.

• � = 2. The limiting distribution of sample AVaR is the Gaussian
distribution even though the variance of X is infinite. This case is
not covered by Theorem 7.3.1 but is contained in the more general
Theorem 7.5.2.
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Figure 7.10: The Kolmogorov distance between the sample AVaR dis-
tribution of X ∈ t(�) obtained with 100,000 simulations and the limiting
distribution.

• 1 < � < 2. We continue decreasing � and the tails become so thick
that they start influencing the limit distribution which is stable
Paretian, S�(1, 1, 0), and already depends on �. However, the con-
vergence rate starts improving.

• 0 < � ≤ 1. The tails of X become so heavy that AVaR�(X) = ∞.
Consequentially, no asymptotic theory exists.

Therefore, from the standpoint of the limit distribution of sam-
ple AVaR, the case � = 2 represents a threshold at which a phase
transition occurs. This behavior is nothing specific to the Student’s
t distribution but is generic to families of distributions includ-
ing representatives with heavy and light tails. As a result, such a
phase transition in the probability law governing the approxima-
tion accuracy of sample AVaR will be observed with other classes
of distributions. This has to be taken into account when using such
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families to model stock returns since, as theory implies, different tail
behavior leads to different approximation quality of the Monte Carlo
method when using samples of equal sizes.

7.7 On the Choice of a Distributional Model

In the discussion of the distribution of sample AVaR, we emphasized
the importance of the assumed probabilistic model for the under-
lying return distribution. We demonstrated that its tail behavior
determines the asymptotic theory of sample AVaR.

In fact, the assumption for the return distribution is important
not only for the asymptotic theory, which is a question of secondary
importance, but it determines to a large extent how appropriate the
AVaR estimate itself is. This remark is valid with respect not only to
AVaR, but also to any other downside tail risk measure. Therefore,
as we noted in the introduction to this chapter, choosing a model
for the return distribution is an important question which deserves
special attention.

In this section, we do not aim at covering the topic in detail. Our
goal is to provide insight into one aspect, which is based on a result
from the theory of probability metrics known as a pre-limit theorem.

7.7.1 Tail behavior and return frequency

There is no fundamental theory in finance that can derive the prob-
abilistic model of stock returns processes from basic principles.
Therefore, the search for a probabilistic model is an empirical ques-
tion. A good model should be able to account for phenomena which
have been observed in the data through empirical studies. Such
phenomena include:

• volatility clustering (ARCH-effects)
• temporal dependence of the tail behavior
• short- and long-range dependence
• non-Gaussian, heavy-tailed and skewed distributions for the

“building blocks” of the time-series model (e.g., innovations).14
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To what degree these properties are pronounced in the data
depends largely on the return frequency but also on whether we
consider normal or distressed markets. In normal markets, lower
frequency returns (e.g., monthly) tend to be less heavy tailed and
with less volatility clustering. The fact that the thin-tailed nor-
mal distribution can be very misleading for risk estimation has
been pointed out in numerous papers and books.15 It was also
acknowledged by the Financial Services Authority16 in a discussion
paper about the reasons for the banking crisis of 2008: “Short-
term observation periods plus assumption of normal distribution
can lead to large underestimation of probability of extreme loss
events.”17

Consequentially, if we would like the probabilistic model to have
a consistent behavior across different frequencies, it has to be heavy
tailed at higher frequencies (e.g., daily) and if we aggregate the
returns to a lower frequency through the model (e.g., monthly), they
have to become less heavy tailed (e.g., possibly close to the nor-
mal distribution for monthly returns). The return aggregation can
be illustrated as a process in which we draw sample paths of 22
daily returns (i.e., typical number of trading days in a month) and
sum them to compute one monthly return.18

In case we use a time series model, one component of the daily
returns sum is the sum of the daily residuals, which are assumed
to be i.i.d. random variables. Therefore, one determinant of the dis-
tribution of the monthly return is the behavior of this sum. In the
following discussion, we consider only this component as it can be
studied generically without referring to the particular form of the
time series model.

Denote the sum of the residuals by

Sn =
n∑
i=1

�i (7.7.1)

where �i are i.i.d. copies of �1. Delving further into the question of
what distribution for �1 is appropriate, we confront a contradiction.
If we assume, as supported by empirical studies,19 a heavy-tailed
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distribution with an infinite variance for �1, then the behavior of
Sn is also heavy tailed with the same tail behavior as �1. On the
other hand, a thin-tailed distribution for Sn, supported by empirical
evidence, can be obtained only if we assume that �1 is not heavy
tailed.

There is a way to resolve the puzzle by noticing that empirical data
in normal markets suggest a decrease in tail thickness as the number
of summands in (7.7.1) increases.20 Therefore, we can resolve the
contradiction by assuming a model which is in the normal domain
of attraction: that is, for large n, Sn is close to the normal distribution,
but such that for smaller n, Sn has a behavior similar to that of a
heavy-tailed model.

An example of such a model is the truncated stable distribution
discussed in section 7.4.3 but if both tails are truncated, for example
at 0.1% and 99.9% quantiles. The truncated stable distribution has
a bounded support and, therefore, has finite moments of all orders.
In effect, the sum in (7.7.1) is approximately normal when n is large.
However, if n is small (e.g., n = 5), the sum is well described by a
stable distribution because the truncation points are deep into the
tails and the overall shape of the distribution is close to the shape of
the corresponding stable distribution.

This is illustrated in Figure 7.11 through a Monte Carlo exper-
iment. We generated 150 samples of 10,000 scenarios from a
truncated standardized symmetric stable distribution with ˛ = 1.7.
Using the generated samples, we computed 10,000 scenarios of
S5 and S150 as defined in (7.7.1) and then we fitted a stable and
a normal distribution. The tail index of S5 was estimated to be
ˆ̨ = 1.75 by the method of maximum likelihood. It is higher than 1.7
but significantly smaller than 2, which corresponds to the normal
distribution. The top plot of Figure 7.11 clearly shows that the fitted
stable density describes S5 much better than the fitted normal den-
sity. Actually, the fitted stable density can hardly be distinguished
from the non-parametric kernel estimate of the scenarios density.
The outcome is quite different for S150. From the bottom plot of
Figure 7.11, we can see that the normal distribution describes S150

perfectly well.
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Figure 7.11: Approximating S5 (top) and S150 (bottom) as defined in (7.7.1)
of a truncated symmetric stable distribution with ˛ = 1.7 via Monte Carlo.
The maximum likelihood estimate of the tail index of the stable fit on the
top plot is ˆ̨ = 1.75.
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The fact that a stable distribution can be accepted as a model for
Sn even though �1 is in the domain of attraction of the normal dis-
tribution is known as a pre-limit theorem. The distance between a
properly normalized sum of i.i.d. random variables and a stable
distribution in this context is studied by means of the following
probability metric:

kh(F,G) := sup
x∈R

|F ∗ h(x) − G ∗ h(x)| (7.7.2)

where ∗ stands for convolution and the “smoothing” function h(x)
stands for a c.d.f. with a bounded continuous density function,
supx |h′(x)| ≤ c(h) < ∞. The convolution F ∗ h(x) can be viewed as a
c.d.f. smoothed with a kernel function equal to h′(x). In this way, we
do not compare directly the c.d.f.s F and G but kernel-based smooth
approximations of them.21

In the pre-limit theorem, just as in other limit theorems, we use
appropriately scaled sums. With a slight abuse of the classical nota-
tion, we define

Sn,˛ = n−1/˛
n∑
i=1

�i. (7.7.3)

The distance between Sn,˛ and an ˛-stable random variable is
bounded by means of the following semidistance between the ran-
dom variables X and Y:

dc,
 (X,Y) = sup
|t|>c

|ϕX(t) − ϕY(t)|
|t|
 (7.7.4)

where c and 
 are two positive constants, and ϕX(t) = EeitX denotes
the characteristic function (ch.f.) of X. The semidistance dc,
 (X,Y)
does not take into account the differences in the tails between X and
Y since for any c > 0, the origin is excluded in the calculation of the
supremum in (7.7.4) and it is a well-known fact from the theory of
probability that the behavior of the ch.f. at t = 0 determines the tail
behavior of the random variable.22

Furthermore, ifd0,
 (Sn,˛, Y) < ∞ for some
 > ˛, whereY is strictly
˛-stable random variable, then Sn,˛ is in the domain of attraction of
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Y. From our discussion so far, it is evident that we are interested in
the case in which Sn,˛ is in the domain of attraction of the normal
distribution and, therefore, d0,
 (Sn,˛, Y) = ∞. As a consequence, we
consider dc,
 (X,Y) with c > 0 which is bounded.

The result known as the central pre-limit theorem, which we adapt
from Klebanov et al. (2009), is stated below.

Theorem 7.7.1. (central pre-limit theorem) Let �, �j, j > 1 be i.i.d.
random variables andSn,˛ = n−1/˛ ∑n

j=1 �j. Suppose thatY is a strictly
˛-stable random variable. Let 
 > ˛ and � > ı be arbitrary given
positive constants and let n < (�/ı)˛ be an arbitrary positive integer.
Then

kh(Sn,˛, Y) ≤ inf
a>0

(√
2�
dı,
 (�, Y)(2a)


n


˛−1


+ 2
c(h)
a

+ 2�a

)
(7.7.5)

As consequence of the theorem, the c.d.f. of normalized sum of
i.i.d. random variables is close to the c.d.f. of the corresponding
˛-stable random variable for “mid-size values” of n. We also see that
for these values of n, the closeness of Sn,˛ to a strictly ˛-stable ran-
dom variable depends on the body of the distribution of �. Finally, the
metric kh(Sn,˛, Y) emphasizes the closeness of the “middle parts” of
the distributions of Sn,˛ andY, which coincides with our conclusions
based on Figure 7.11.

In order for the analysis to be complete, note that if � happens to be
in the domain of attraction of an ˛-stable distribution, then Theorem
7.7.1 turns into a rate of convergence theorem for GCLT. In this case,
as we noted, the distance dı,
 (�, Y) is finite for ı = 0 and, therefore,
the theorem holds for arbitrarily large n.

7.7.2 Practical implications

From a practical viewpoint, we can think of the bound on the right-
hand side of equation (7.7.5) in the following way. Suppose that the
random variable � is such that for some 
 > ˛, the distance dı,
 (�, Y)
remains reasonably small even for small values of ı > 0. Then, we
can choose � and compute a value for a such that the bound on
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the right-hand side of (7.7.5) remains small even for relatively large
values of n. Therefore, for a given random variable �, there exists a
constant N� such that for n < N� the distance kh(Sn,˛, Y) is small and
we can accept the strictly ˛-stable random variable as a model for
the central part of the distribution of Sn,˛.

The constant N� can be thought of as the natural scale of �. While
there is no sudden change in regime, on an intuitive level we can
think that below N�, a strictly ˛-stable distribution determines the
properties of the body of � and above it, this is done by the normal
distribution. In case we would like to build a model which is to be
used for aggregation of returns across frequencies, the magnitude of
the natural scale can be one criterion for model selection. The natural
scales of different random variables are computed in Grabchak and
Samorodnitsky (2009).

Theorem 7.7.1 also has important implications for the application
of stable distributions as a model for stock returns. In a very broad
sense, it justifies the use of stable laws as an approximate model
for sums of i.i.d. random variables. However, under the assumption
that in usual market conditions the stock returns at lower frequencies
possess thinner tails, there is a caveat. The distance kh(Sn,˛, Y) empha-
sizes the differences in the body part of the distributions, which
means that the ˛-stable law can be accepted as a good model for
the central region of Sn,˛. The tails of Sn,˛, however, converge faster
than the tails ofY by construction. As a consequence, the AVaR ofY at
a small tail probability (e.g., below 1%) is larger than the AVaR ofSn,˛.
Therefore, under the current assumptions, the AVaR computed using
information only from the extreme tail of the approximating ˛-stable
distribution is conservative and may overestimate the corresponding
true AVaR.

Nevertheless, in times of severe market crashes, we may have rea-
sons to believe that the aggregation property we assumed in normal
markets does not hold for the period of the market crash. Thus, we
may accept the hypothesis that the tail behavior of lower-frequency
returns for that period does not differ much from the tail behav-
ior of the higher-frequency returns. If we assume that � is in the
domain of attraction of an ˛-stable distribution, then, as we noted,
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Theorem 7.7.1 turns into a rate of convergence theorem for GCLT.
This implies that the approximation Y can be a good model not only
for the body of the distribution but also for the tail behavior and, as a
result, the AVaR of Y can be a reasonable approximation for the true
AVaR.

Turning back to the question of choosing a return distribution
when markets are normal, Theorem 7.7.1 suggests that we adopt a
model in which we preserve the shape of stable distributions for the
body part but change the tails to be more quickly decaying than those
of stable laws. We considered a very crude method for tail truncation
in section 7.4.3 in which we directly remove the tail. A more refined
approach concerns the so-called tempered stable distributions which
are used as a model for the residuals in a time series process and are
successfully applied in option pricing theory.23

7.8 Summary

In this chapter, we explored the application of the Monte Carlo
method for estimating AVaR. The Monte Carlo method is a very
common numerical technique which is applied when the probabilis-
tic model is involved and analytic calculations are not feasible, or
even when the probabilistic model is not known in an analytic form
but is relatively easy to draw scenarios from.

A generic issue with the Monte Carlo method is the variability
of statistical estimators due to their dependence on the generated
scenarios. This variability introduces an error which can be studied
and estimated through the asymptotic distribution of the estimator.

In this chapter, we provided a classical limit result valid under
the assumption that the random variable describing the return of a
common stock has a finite second moment. In this case, the limit dis-
tribution is the normal distribution. We also provided a generalized
result the limit distribution in which is a totally skewed stable distri-
bution. This result applies when the random variable modeling the
return distribution is heavy tailed and has infinite variance.

The limit distributions in these theorems describe the approxi-
mation accuracy of the Monte Carlo method. They are more precise
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when the generated sample is larger. The number of scenarios needed
in order to trust the limit distribution for assessing the accuracy of the
Monte Carlo method can be inferred from the rate of convergence to
the limit distribution. Generally speaking, the most important factor
for the convergence rate is how heavy the tails of the probabilis-
tic model are. We studied this issue with Student’s t distribution,
which contains both finite and infinite variance representatives. We
found out that the lighter the tails are, the fewer scenarios we need
to estimate AVaR at the same precision level. As the tail of the distri-
bution becomes heavier, a phase transition occurs at some point and
the limit distribution becomes dependent on the tail behavior. The
convergence rate, however, improves.

Concerning the question of improving the rate of convergence, we
suggested the method of tail truncation, which introduces a bias but
reduces dramatically the sample size necessary to accept the limit
distribution as a model for the approximation error of the Monte
Carlo method.

7.9 Technical Appendix

In the technical appendix to this chapter, we provide a proof of the
stable limit result in Theorem 7.5.2. We do not provide a separate
proof of Theorem 7.3.1 since it arises as a special case. Nevertheless,
a separate proof based on the influence functions approach can be
found in Stoyanov and Rachev (2008a). A more detailed discussion
of the proof in this technical appendix is available in Stoyanov and
Rachev (2008b).

7.9.1 Proof of the stable limit result

In order to develop the limit theorem, we need a few additional
facts related to building a linear approximation to AVaR and esti-
mating the rate of improvement of the linear approximation. They
are collected in the following proposition.

Proposition 7.9.1. SupposeX is a random variable with c.d.f. Fwhich
satisfies the conditionEmax(−X, 0) < ∞ andF is differentiable at the
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�-quantile ofX. Denote byFn the sample c.d.f. ofX1, . . . , Xn which is a
sample of i.i.d. copies ofX. There exists a linear functional� defined
on the difference G− F where the functions G and F are c.d.f.s, such
that∣∣(Fn) − (F) −�(Fn − F)

∣∣ = o(	(Fn, F)) (7.9.1)

where 	(Fn, F) = supx |Fn(x) − F(x)| stands for the Kolmogorov
metric and

(G) = −1
�

∫ �

0
G−1(p)dp

in which G−1 is the inverse of the c.d.f. G. The linear functional �
has the form

�(Fn − F) = 1
�

∫ q�

−∞
(q� − x)d(Fn(x) − F(x)). (7.9.2)

where q� is the �-quantile of X.

Proof. For a detailed proof, see Stoyanov and Rachev (2008b). �

Corollary 7.9.1. Under the assumptions in the proposition,∣∣(Fn) − (F) −�(Fn − F)
∣∣ = o(n−1/2). (7.9.3)

Proof. By the Kolmogorov theorem, the metric 	(Fn, F) approaches
zero at a rate equal to n−1/2 which indicates the rate of improvement
of the linear approximation �(Fn − F). �

The main result is given in Theorem 7.5.2. The idea is to use the
linear approximation �(Fn − F) of the AVaR functional in order to
obtain an asymptotic distribution as n → ∞. We reproduce below
the proof given in Stoyanov and Rachev (2008b).

Proof. By the result in Theorem 7.9.1,

(Fn) − (F) = �(Fn − F) + o(n−1/2) (7.9.4)
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where  is the AVaR functional and �(Fn − F) is given in (7.9.1).
Simplifying the expression for �(Fn − F), we obtain

(Fn) − (F) = 1
n�

n∑
i=1

[
(q� − Xi)+ − E(q� − Xi)+

] + o(n−1/2) (7.9.5)

It remains to apply the domains of attraction characterization in
Theorem 7.5.1 to the right-hand side of equation (7.9.5). For this
purpose, consider the expression

n∑
i=1

Yi − nEY1 (7.9.6)

whereYi = (q� − Xi)+ are i.i.d. random variables. Denote byFY(x) the
c.d.f. of Y. The left-tail behavior of X assumed in (a) implies x˛(1 −
FY(x)) = L(x) as x → ∞ where L(x) is the slowly varying function
assumed in (a). This is demonstrated by

x˛(1 − FY(x)) = x˛P(max(q� − X, 0) > x)

= x˛P(X < q� − x)

∼ x˛P(X < −x)

(7.9.7)

Furthermore, the asymptotic behavior of the left tail ofY is FY(−x) =
0 which holds for anyx ≥ −q�. As a result, condition (i) from Theorem
7.5.1 holds.

Condition (b) implies that the tail exponent ˛ in (a) must satisfy
the inequality˛ > 1. Therefore, subtracting nEY1 in (7.9.6) is a proper
centering of the sum as suggested in (7.5.3) in Theorem 7.5.1. Note
that if ˛ ≥ 2, then Y is in the domain of attraction of the normal
distribution and the same choice of centering is appropriate. Thus,
the tail index of the limiting distribution satisfies 1 < ˛∗ = min(˛, 2).

Finally, computing condition (ii) in Theorem 7.5.1 from the tail
behavior ofY yieldsˇ = 1. Essentially, this follows because FY(−x) =
0 if x ≥ −q�.

Therefore, all conditions in Theorem 7.5.1 are satisfied and, as a
result, there exists a sequence of normalizing constants an satisfying
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(7.5.2), such that

a−1
n

(
n∑
i=1

Yi − nEY1

)
w→ S˛∗(1, 1, 0). (7.9.8)

as n → ∞. In order to apply this result to sample AVaR, we need
(7.9.8) reformulated for the average rather than the sum of Yi. Thus,
a more suitable form is

n�a−1
n

(
1
n�

n∑
i=1

(Yi − EYi)

)
w→ S˛∗(1, 1, 0). (7.9.9)

as n → ∞.
As a final step, we apply the limit result in (7.9.9) to equation

(7.9.5). Multiplying both sides of (7.9.5) by n�a−1
n yields the limit

n�a−1
n ((Fn) − (F)) w→ S˛∗(1, 1, 0) (7.9.10)

as n → ∞. It remains only to verify if the normalization does not
lead to explosion of the residual. Indeed,

n�a−1
n o(n

−1/2) = n1/2

an
o(1) = o(1)

because the factor n1/2/an approaches zero by the asymptotic behav-
ior of an given in the domains of attraction characterization in
Theorem 7.5.1. �

Notes

1. Analytic tractability very often hinges on simplified assumptions
about the nature of the objects being studied. It is a very desir-
able modeling feature since it allows conceiving model properties
in full detail. Requiring more realistic assumptions, however, usually
detracts from mathematical elegance and we are forced to rely on
numerical techniques instead.

2. For further details about the bias of sample AVaR, see Trindade et al.
(2007).

3. For a proof, see Stoyanov and Rachev (2008a).
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4. See Rachev et al. (2005) and the references therein.
5. For more details about how these expressions are derived, see

Stoyanov and Rachev (2008a).
6. If we generate a sample of 2,000 scenarios from the standard normal

distribution, a relative deviation below 6% between the estimated
quantile q2.5% and the corresponding standard normal quantile hap-
pens with about 95% probability, and below 7.7% with about 99%
probability.

7. See Chapter 6 for more details on stable distributions.
8. For more information, see Rachev and Mittnik (2000).
9. For further information about stable distributions and their proper-

ties, see Samorodnitsky and Taqqu (1994).
10. See Rachev and Mittnik (2000).
11. See Samorodnitsky and Taqqu (1994).
12. See Samorodnitsky and Taqqu (1994).
13. For a proof, see Stoyanov and Rachev (2008b).
14. See Rachev et al. (2007) for more details on time series models.
15. See, for example, Rachev and Mittnik (2000).
16. Financial Services Authority is an independent body that regulates

the financial services industry in the UK.
17. See Financial Services Authority (2009), p. 42.
18. We assume that the returns are logarithmic. This is the usual assump-

tion when modeling stock returns.
19. See Rachev and Mittnik (2000).
20. The discussion is based on Klebanov et al. (2009) and Grabchak and

Samorodnitsky (2009).
21. For more information about kernel methods, see section 6.4.5 of

Chapter 6 and the references therein.
22. For additional information, see Klebanov et al. (2009) and Rachev

(1991).
23. See Kim, Rachev, Bianchi and Fabozzi (2008) and Kim, Rachev, Chung

and Bianchi (2008).
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Chapter 8

Stochastic Dominance Revisited

The goals of this chapter are the following:

• To explore the relationship between preference relations and
quasi-semidistances.

• To introduce a universal description of probability quasi-
semidistances in terms of a Hausdorff structure.

• To provide examples with first-, second-, and higher-order
stochastic dominance and to introduce primary, simple, and com-
pound stochastic orders.

• To explore new stochastic dominance rules based on a popular
risk measure.

• To provide a utility-type representation of probability quasi-
semidistances and to describe the degree of violation utilized in
almost stochastic orders in terms of quasi-semidistances.

Notation introduced in this chapter:

Notation Description

� A binary relation or a preference relation
�� The specialization pre-order of a given topology �

A Probability Metrics Approach to Financial Risk Measures by Svetlozar T. Rachev,
Stoyan V. Stoyanov and Frank J. Fabozzi
© 2011 Svetlozar T. Rachev, Stoyan V. Stoyanov and Frank J. Fabozzi
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Notation Description

�d A preference relation induced by a
quasi-semidistance d

d−1(x, y) The dual of a quasi-semidistance d(x, y)
�d−1 A preference relation induced by the dual of a

quasi-semidistance d
r(A,B) The Hausdorff semimetric between two sets A and B
h�,�,B The Hausdorff structure of a probability

quasi-semidistance
L∗
�(X,Y) The Lévy quasi-semidistance between X and Y
L

∗
�,n(X,Y) A quasi-semidistance metrizing n-th order stochastic

dominance
�∗
n(X,Y) A quasi-semidistance based on the Zolotarev

probability metric metrizing the Rothschild–Stiglitz
stochastic order

�∗
�(X,Y) A quasi-semidistance based on the Hausdorff

probability metric
AV�,�,B A probability quasi-semidistance metrizing a

stochastic order based on the risk measure average
value-at-risk

�∗
U(X,Y) A quasi-semidistance based on the utility functions in

the class U
r̃�(f, g) The Hausdorff semimetric between two functions f

and g
κ∗(X,Y) The Kantorovich quasi-semidistance
v�(X,Y) A ratio measuring the degree of violation of the

stochastic order �� generated by the
quasi-semidistance �

Important terms introduced in this chapter:

Term Concise explanation

quasi-
semidistance

A functional satisfying the identity and the triangle
inequality axioms

preference
relation

A relation which is reflexive and transitive; a pre-order
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Term Concise explanation

metrizable
stochastic
order

A stochastic order which can be described by means
of a quasi-semidistance

dual
stochastic
order

The stochastic order induced by the dual of a given
quasi-semidistance

topology A family of sets satisfying certain properties that are
used to define a topological space

specialization
pre-order

A pre-order generated by a topology describing the
natural order of the points of the corresponding
topological space

almost
stochastic
dominance

A stochastic dominance corresponding to all
preferences in a sub-category of given category (e.g.
almost first-order stochastic dominance)

8.1 Introduction

From a historical perspective, stochastic dominance (SD) rules were
first introduced in relation to the normative expected utility the-
ory describing choice under uncertainty. The notions of first-order
stochastic dominance (FSD) and second-order stochastic dominance
(SSD) were used to prescribe the behavior of unsatiable investors and
unsatiable, risk-averse investors, respectively. Since its introduction,
the significance of SD analysis has increased enormously. In port-
folio theory, for example, new families of risk measures have been
introduced but consistency with FSD and SSD is always sought. In
areas other than finance, SD finds application in diverse fields such
as economics, insurance, agriculture, and medicine. We discussed
SD relations in more detail in Chapter 3. For additional information
about the applications in different areas, see Levy (2006).

In this chapter, we discuss a new concept describing SD relations
which is based on the notion of a quasi-semidistance. We consider
probability quasi-semidistances, which represent an extension of the
notion of probability semidistances.1 In the context of SD relation,
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quasi-semidistances allow measuring by how much a given prospect
X dominates another prospect Y or, in case they are incomparable,
they allow measuring the degree of violation of the SD rule. The
notion of degree of violation is closely connected with the notion
of almost stochastic dominance developed to explain observed devia-
tions from the rational behavior prescribed by expected utility theory.
For additional details about almost stochastic dominance, see Levy
(2006).

The new concept distinguishes between a few types of stochas-
tic orders nested in each other, such that a stochastic order from a
given category cannot imply a stochastic order from categories in
which it is nested. This is, essentially, a corollary of the subdivi-
sion of probability distances into a primary, simple, and compound
type which we discussed in Chapter 4. Here is an example concern-
ing SD relations. The smallest category includes stochastic orders
based on certain characteristics of the underlying prospects. For
example, the mean-variance order belongs to this category as it
is based on inequalities between the means and the variances of
the corresponding prospects. The second smallest category includes
stochastic orders based on inequalities between certain transforma-
tions of the cumulative distribution functions (c.d.f.s). Both FSD and
SSD belong to this category. As a consequence, the mean-variance
order can imply neither FSD nor SSD. The same holds for any mean-
risk order, where risk is measured by an arbitrary risk measure.

Comparing the mean-variance, or more generally the mean-risk,
approach and the SD approach, we can conclude that the former
leads to optimization problems that are practical. Even though the
SD approach is more general, it does not provide a method for con-
struction of a portfolio from several individual securities (see, for
example, Levy (2006)). We believe that the framework discussed in
this chapter is a step towards resolving this shortcoming.

The goal of this chapter is to discuss two types of representations
of probability quasi-semidistances – a Hausdorff representation and
a utility-type representation. We provide examples for n-th order
stochastic dominance, stochastic orders based on average value-at-
risk (AVaR), and stochastic orders arising from classes of investors.
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The appendix to this chapter includes a more technical discussion
about the utility-type representation and also a more general dis-
cussion about the links between preference relations and topology.
Finally, we briefly describe the structural classification of probability
distances which is based on Rachev (1991).

8.2 Metrization of Preference Relations

In this section, we introduce notation and discuss an approach
towards describing a preference relation through a quasi-
semidistance.

Let S denote the space of all combinations of goods, services, and
assets, which we also call baskets. A preference relation on S, denoted
by �, is introduced by a binary relation such that x � y, if y is at least
as preferable as x. There are a few assumptions that are usually made:

1. The binary relation is assumed reflexive, i.e. x � x, for all x ∈ S.
2. The binary relation is assumed transitive, i.e. if x � y and y � z,

then x � z for any x, y, z ∈ S.

If x � y and y � x, then we say that x and y are indistinguishable or
equivalent from the standpoint of the preference order.

We do not discuss the adequacy of the reflexivity and the transitiv-
ity assumptions. We assume that they characterize every preference
relation and, as a consequence, the preference relation � represents
a pre-order defined on S. For a detailed discussion of these axioms,
see Anand (1995).

The most direct way to describe a preference relation defined in
this way is through the corresponding binary relation. However,
this is not practical because we have to make a list of all pairs (x, y)
such that x � y. A generic and more practical approach to describe a
preference relation is by means of a quasi-semidistance. In section 2.3
of Chapter 2, we provided a definition of metric and semidistance
spaces which are closely related notions. In this section, we define
the notion of a quasi-semidistance.
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A quasi-semidistance is a functiond(x, y) : S× S → [0,∞] satisfying
the properties:

i. The identity property: if x = y, then d(x, y) = 0.
ii. The triangle inequality: d(x, y) ≤ K(d(x, z) + d(z, y)) for any

x, y, z ∈ S in which K ≥ 1.

IfK = 1, then the quasi-semidistance turns into a quasi-semimetric.
In fact, comparing the definitions of a quasi-semidistance and a
semidistance, we can generalize that semidistances are symmetric
quasi-semidistances.2

Every quasi-semidistance defines a pre-order and, therefore, a
preference relation in the following way. The basket y is at least as
preferable as another basket x, x �d y, if d(x, y) = 0. It is straightfor-
ward to verify that the transitivity property of �d is a consequence
of the triangle inequality for d(x, y) and reflexivity follows from the
identity property.

Since every quasi-semidistance defines a preference relation, we
can ask the converse question, which is explored in detail in sec-
tion 8.8.1. In this section, we only mention that the answer is in the
negative. Therefore, the set of all preference relations can be divided
into two parts: (1) those that arise from quasi-semidistances and (2)
those that do not arise in this fashion. The preference relations that
do arise from quasi-semidistances we call quasi-metrizable or simply
metrizable.

Finally, note that from a given quasi-semidistance, we can always
construct a semidistance using the dual. One approach to do that is to
calculate the maximum between the quasi-semidistance and its dual,

�(x, y) = max(d(x, y), d(y, x)). (8.2.1)

It is straightforward to verify that in addition to the identity
property and the triangle inequality, � satisfies the symmetry prop-
erty �(x, y) = �(y, x). The representation in (8.2.1) implies that
the quasi-semidistance d(x, y) is consistent with any convergence
in �(x, y). That is, if x1, x2, . . . is a sequence converging to x in
�(x, y), limn→∞ �(xn, x) → 0, then necessarily limn→∞ d(xn, x) → 0.
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We exploit this property in the classification of stochastic orders,
which we link to the corresponding classification of the metric �(x, y)
which is obtained through the symmetrization transform in (8.2.1).

8.3 The Hausdorff Metric Structure

In section 8.2, we do not specify the nature of the points in the space
S. Suppose that S is the space of one-dimensional random variables
defined on a probability space (	,A,Pr) taking values in (R,B1),
where B1 is the 
-field of all Borel subsets of R.3 In this setting, a
quasi-metrizable preference order on S turns into a stochastic order
with a quasi-semidistance d(X,Y) defined on the space of all joint
distributions S2 generated by the pairs of random variables (X,Y),
which we denote with capital letters. We proceed with the definition
of the universal Hausdorff representation of quasi-semidistances on
S2 which we also call probability quasi-semidistances as they metrize
preference relations between random quantities. The terms and the
notation are consistent with the discussion in section 2.4 of Chapter 2.

Consider the Hausdorff metric r(A,B) defined on the space of all
subsets ofR. LetB ⊆ B1 and define a function � : S2 ×B2 → [0,∞]
satisfying the following relations:

I. If P(X = Y) = 1, then �(X,Y;A,B) = 0 for all A = B ∈ B.
II. There exists a constant K� ≥ 1 such that for all A,B,C ∈ B and

random variables X,Y,Z

�(X,Y;A,B) ≤ K�(�(X,Z;A,C) + �(Z,Y;C, B))

Let d(X,Y) be a probability quasi-semidistance. The representation
of d(X,Y) in the following form:

d(X,Y)= h�,�,B(X,Y)

:= sup
A∈B

inf
B∈B

max
{

1
�
r(A,B), �(X,Y;A,B)

}
(8.3.1)

is called the Hausdorff structure of d(X,Y). In this representation,
r(A,B) is the Hausdorff metric in the set B, � is a positive number,
and the function � satisfies relations I and II above.
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It can be demonstrated that the function h�,�,B(X,Y) defined
above is indeed a quasi-semidistance.

Theorem 8.3.1. The function h�,�,B(X,Y) defined in equation (8.3.1)
is a quasi-semidistance.

Proof. The identity property and the triangle inequlity are essentially
metric properties. The proof follows from the arguments in Rachev
(1991) proving that the Hausdorff representation is a probability
metric. �

Applying the symmetrization in equation (8.2.1) to the representa-
tion in (8.3.1), we obtain the Hausdorff representation of probability
metrics. For more information, see Chapter 4 in Rachev (1991).

The following example illustrates the significance of the Hausdorff
representation. It turns out that every probability quasi-semidistance
is representable in the form in (8.3.1). Consider an arbitrary probabil-
ity quasi-semidistance �(X,Y). It has the trivial form h�,�,B(X,Y) =
�(X,Y) where the set B is a singleton: for example, B = {A0}, and
�(X,Y;A0, A0) = �(X,Y).

In the limit cases � → 0 and � → ∞, the Hausdorff structure turns
into a structure of a uniform type. The following limit relations hold.

Theorem 8.3.2. Let d(X,Y) have the representation in (8.3.1). Then,
as � → 0, d(X,Y) has a limit equal to

h0,�,B(X,Y) = sup
A∈B

�(X,Y;A,A) (8.3.2)

As � → ∞, the limit lim�→∞ �h�,�,B(X,Y) = h∞,�,B(X,Y) exists
and equals

h∞,�,B(X,Y) = sup
A∈B

inf
B∈B,�(X,Y;A,B)=0

r(A,B) (8.3.3)

Proof. For a proof, see Stoyanov et al. (2009b). �
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The main building block of the Hausdorff representation, the
function �(X,Y;A,B), can be interpreted in the following way. It
calculates the performance of X relative to Y over two events A and
B. If �(X,Y;A,B) = 0 for someA and B, then, according to the prefer-
ence order definition,Y performs at least asXwith respect to the two
events. As we demonstrate in the next section, in some cases there
is a straightforward interpretation in the sense that � calculates the
deviation of the probability of X belonging to A relative to the prob-
ability of Y belonging to B. In other cases, the relationship of X to A
and Y to B is not so direct.

Besides the function �, the definition in (8.3.1) includes also the
Hausdorff metric r(A,B) in order to take into account the degree of
dissimilarity between the eventsA and B. If we want to calculate the
degree of deviation betweenX andY on one and the same events, i.e.
A = B, then we can use the limit case given in (8.3.2). In this case, ifY
outperformsX with respect to all eventsA = B, i.e. �(X,Y;A,A) = 0
for all A, then Y is at least as preferable as X.

The Hausdorff representation of a quasi-semidistance in (8.3.1)
can be translated into a different form which is more open to inter-
pretation.

Theorem 8.3.3. Suppose that a probability quasi-semidistance admits
the Hausdorff representation h�,�,B given in (8.3.1). Then, the prob-
ability quasi-semidistance also enjoys the following representation:

h�,�,B(X,Y) = inf{� > 0 : v(X,Y; ��) < �} (8.3.4)

where

v(X,Y; t) = sup
A∈B

inf
B∈A(t)

�(X,Y;A,B) (8.3.5)

in which A(t) is the collection of all elements B of B such that the
Hausdorff metric r(A,B) is not greater than t.

Proof. The proof is constructed in the same way as the proof of
Theorem 4.2.1 in Rachev (1991). �
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We can interpret equation (8.3.5) in the following way. Fix an event
A and a tolerance level t > 0. Using the Hausdorff metric, take all
events that do not deviate from A more than as implied by the tol-
erance level: that is, build the set A(t) = {B ∈ B : r(A,B) < t}. With
A fixed, compute the minimum performance deviation between X
and Y running through all events for Y, which are within the toler-
ance level. As a next step, compute the maximum of those minimal
deviations by varying A.

By varying the tolerance level t, we control the size of the admis-
sible sets relative toA. The larger t is, the more the admissible events
may deviate from the event A and, therefore, the larger potential
there is for deviation in the performance of Y relative to X. At the
other extreme, when t = 0, the deviation in performance is estimated
over one and the same event.

Finally, in equation (8.3.4) we calculate the smallest tolerance
level such that the largest of those minimal performance deviations
is smaller than it. Note that, depending on the nature of the ran-
dom variables X and Y and the choice of �, this smallest tolerance
level may actually be infinite: that is, the quasi-semidistance may be
unbounded.

The parameter � in both (8.3.1) and (8.3.4) allows calculating limit
quasi-semidistances arising naturally from the general case. This
is demonstrated in Theorem 8.3.2. If we view h�,�,B(X,Y) defined
in (8.3.1) as a function of the parameter �, it appears that it is a
monotonic, non-increasing function.

Theorem 8.3.4. The quasi-semidistance h�,�,B(X,Y) defined in (8.3.1)
is a non-increasing function of � > 0.

Proof. For any fixed A ∈ B and 0 < �1 < �2,

max
{

1
�2
r(A,B), �(X,Y;A,B)

}
≤ max

{
1
�1
r(A,B), �(X,Y;A,B)

}

for all B ∈ B. Therefore, the same inequality is preserved after
computing sequentially the infimum with respect to B and
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then the supremum with respect to A. In effect, h�2,�,B
(X,Y) <

h�1,�,B
(X,Y). �

This result implies that the limit computed in (8.3.2) is an upper
bound of h�,�,B(X,Y), i.e.

h�,�,B(X,Y) ≤ h0,�,B(X,Y).

Thus, if h0,�,B(X,Y) is finite, it means that h�,�,B(X,Y) is finite as
well.

8.4 Examples

In this section, we provide examples of quasi-semidistances
with a Hausdorff structure. We also provide examples of quasi-
semidistances metrizing different stochastic dominance orders.4

The structure of the quasi-semidistance determines whether the
induced stochastic order is based essentially on inequalities between
certain characteristics such as mean, volatility, etc., inequalities based
on c.d.f.s, or inequalities directly between functions of the corre-
sponding random variables. In line with the theory of probability
metrics, the first order type we call primary; the second, simple; and
the third, compound.5 The formal definition is as follows.

Definition 8.4.1. A metrizable stochastic order �d is called primary,
simple, or compound if the probability semidistance arising from a
symmetrization transform, such as the one given in (8.2.1), is pri-
mary, simple, or compound, respectively.

From the point of view of finance, the stochastic order behind the
mean-variance framework is primary. In contrast, FSD and SSD are
simple orders, as we demonstrate below. A theoretical advantage of
this categorization is the inclusion

primary orders ⊂ simple orders ⊂ compound orders
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which implies that a primary order cannot induce a simple order,
which, in turn, cannot induce a compound order. This is a conse-
quence of the corresponding relations between primary, simple, and
compound probability metrics.

8.4.1 The Lévy quasi-semidistance and first-order
stochastic dominance

Consider the choice �(X,Y; (−∞, x], (−∞, y]) = (FX(x) − FY(y))+,
where (x)+ = max(x, 0). In this case, the sets A and B are of the form
(−∞, a], a ∈ R. The representation in (8.3.1) becomes

L∗
�(X,Y) = sup

x∈R
inf
y∈R

max
{

1
�
|x − y|, (FX(x) − FY(y))+

}
(8.4.1)

The quasi-semidistance defined above also equals

L∗
�(X,Y) = inf{� > 0 : (FX(x) − FY(x + ��))+ < �,∀x ∈ R}

which can be demonstrated by applying the result in Theorem 8.3.3.
Applying the symmetrization transform in (8.2.1) leads to the para-
metric version of the celebrated Lévy metric

L�(X,Y) = inf{� > 0 : FX(x − ��) − � ≤ FY(x) ≤ FX(x + ��)

+ �,∀x ∈ R}
and for this reason we call L∗

�(X,Y) the Lévy quasi-semidistance. The
two limit cases in Theorem 8.3.2 can be calculated explicitly and they
equal

L∗
0(X,Y) = sup

x∈R
(FX(x) − FY(x))+

L∗
∞(X,Y) = sup

t∈[0,1]
(F−1
Y (t) − F−1

X (t))+

where F−1
X (t) = sup{x : FX(x) < t} is the inverse c.d.f. of X.

Figure 8.1 illustrates the Lévy quasi-semidistance with � = 1 and
its dual.6 Like the Lévy metric discussed in Chapter 2, L∗

1(X,Y) can
be interpreted in terms of a distance between the graphs of FX and
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Figure 8.1: Illustration of the Lévy quasi-semidistance with � = 1 and its
dual. L∗

1(X,Y)
√

2 is the maximum distance between FX and FY computed
where FX ≥ FY along a 45 degree direction (top plot). In a similar way,
L∗

1(Y,X)
√

2 is the maximum distance between FX and FY computed where
FY ≥ FX along a 45 degree direction (bottom plot).

FY computed along a 45 degree direction. In contrast to the classical
Lévy metric, however, in the case of L∗

1(X,Y) we compute the maxi-
mal distance where FX ≥ FY. The arrow on the top plot of Figure 8.1
shows where the maximum is attained.
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In a similar vein, the dual L∗
1(Y,X) can be interpreted in terms of

the maximal distance between the graphs of FX and FY computed
along a 45 degree direction but where the converse inequality holds,
FX ≤ FY. This is illustrated on the bottom plot of Figure 8.1.

The Lévy quasi-semidistance is an important example because it
can be used to metrize FSD. In fact, the definition in (8.4.1) induces
the dual order7 and is, therefore, monotonic with respect to FSD in
the sense of Proposition 8.8.2 which is provided in the appendix
to this chapter. Recall that FSD can be introduced by an inequality
between the corresponding c.d.f.s,8

X �FSD Y ⇐⇒ FY(x) ≤ FX(x),∀x ∈ R. (8.4.2)

The dual order, �FSD−1 , can be expressed in a similar way:

X �FSD−1 Y ⇐⇒ FX(x) ≤ FY(x),∀x ∈ R. (8.4.3)

Theorem 8.4.1. The functional L∗
�(X,Y) defined in (8.4.1) metrizes

�FSD−1 .

Proof. For a proof, see Stoyanov et al. (2009b). �

As a corollary to this result, it follows that the dual quasi-
semidistance L∗

�(Y,X) metrizes FSD. Also, note that the reasoning
does not depend on the choice of � and, therefore, the result is valid
for any � > 0. In effect, there are many quasi-semidistances inducing
FSD. In section 8.6, we provide yet another example which does not
belong to the class L∗

�(Y,X).
Since symmetrization of L∗

� leads to the Lévy metric, which is a
simple probability metric, it follows that FSD is a simple order.

8.4.2 Higher-order stochastic dominance

The reasoning in section 8.4.1 can be applied to the more general
case of higher-order stochastic dominance. Stochastic dominance of
order n, �n, can be introduced by means of an inequality involving
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the corresponding c.d.f.s,9

X �n Y ⇐⇒ F
(n)
X (x) ≤ F

(n)
Y (x),∀x ∈ R. (8.4.4)

where F(n)
X (x) stands for the n-th integral of the c.d.f. of X which can

be defined recursively as

F
(n)
X (x) =

∫ x

−∞
F

(n−1)
X (t)dt. (8.4.5)

with the initial condition F(1)
X (x) = FX(x).

Repeating the arguments in Theorem 8.4.3, it can be demonstrated
that the quasi-semidistance

L∗
�,n(X,Y) = sup

x∈R
inf
y∈R

max
{

1
�
|x − y|,

(
F

(n)
X (x) − F

(n)
Y (y)

)
+

}
(8.4.6)

metrizes the dual of the n-th order stochastic dominance and, as a
result,L∗

�,n(Y,X) metrizes �n. In this more general case, however, it is
not clear a priori if L∗

�,n(X,Y) < ∞. For the Lévy quasi-semidistance
this question is redundant because the limit L∗

0(X,Y) is always
finite and Theorem 8.3.4 guarantees boundedness of the Lévy quasi-
semidistance. The limit of (8.4.6) as � → 0 equals

L∗
0,n(X,Y) = sup

x∈R

(
F

(n)
X (x) − F

(n)
Y (x)

)
+

and by Theorem 8.3.4 we can conclude that L∗
�,n(X,Y) < ∞ if

L∗
0,n(X,Y) < ∞.
We develop a set of sufficient conditions involving another prob-

ability quasi-semidistance.

Theorem 8.4.2. The following inequality holds true, provided that
EXk = EYk, k = 1, 2, . . . , n− 2, E|X|n−1 < ∞ and E|Y|n−1 < ∞,

L∗
0,n(X,Y) ≤

∫
R

(∫ x

−∞

(x − t)n−2

(n− 2)!
d(FX(t) − FY(t))

)
+
dx < ∞

(8.4.7)
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Proof. For a proof, see Stoyanov et al. (2009b). �

The inequality in (8.4.7) is an inequality between two quasi-
semidistances. The upper bound is the Zolotarev quasi-semidistance

�∗
n(X,Y) =

∫
R

(∫ x

−∞

(x − t)n−1

(n− 1)!
d(FX(t) − FY(t))

)
+
dx (8.4.8)

which can also be represented as

�∗
n(X,Y) = 1

(n− 1)!

∫
R

(
E(x − X)n−1

+ − E(x − Y)n−1
+

)
+
dx

The Zolotarev quasi-semidistance itself can be used to metrize the
n-order stochastic dominance under the assumed moment condi-
tions. However, L∗

�,n(X,Y) is strictly weaker as there is no lower
bound of it that can be expressed in terms of �∗

n−1(X,Y). There-
fore, this can be viewed as an illustration of how one and the same
stochastic order can arise from two different quasi-semidistances.

The conclusion that FSD is a simple order can be extended to the
n-th order stochastic dominance by noticing that symmetrizing �∗

n−1
leads to a simple probability semidistance.

The approach discussed in this section can be applied without
modification to the fractional and the inverse orders discussed in
Ortobelli et al. (2009). From a theoretical viewpoint, they belong to
the class of simple stochastic orders as the probability semidistances
arising from applying the symmetrization transform are simple.

The inequality (8.4.7) has an interesting interpretation in terms of
the relationship between SSD and the Rothschild–Stiglitz stochastic
dominance order (RSD) which is provided in section 3.3.3 of Chapter
3. The interpretation can also be viewed as an application of Propo-
sition 8.8.3. Recall that the Rothschild–Stiglitz stochastic order, �RSD,
is introduced in the following way:

X �RSD Y ⇐⇒

⎧⎪⎨⎪⎩
EX = EY,∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY(t)dt, ∀ x ∈ R
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and it implies SSD: that is, ifX �RSD Y, thenX �SSD Y. In section 3.7.2
of Chapter 3, we discussed the relationship X �SSD Y ⇒ X �3 Y

and, therefore, if X �RSD Y, then X �3 Y.
We can demonstrate that a quasi-semidistance metrizing RSD

is �∗
2 (Y,X) defined in equation (8.4.8). Conditions that guarantee

�∗
2 (X,Y) < ∞ are EX = EY and existence of second moments, EX2 <

∞ and EY2 < ∞. As a consequence, �∗
2 (Y,X) = 0 implies X �RSD Y

because both conditions defining RSD are satisfied. The converse
follows from the definition of �∗

2 in (8.4.8). As a result, �∗
2 metrizes

RSD.
The inequality L∗

0,3(Y,X) ≤ �∗
2 (Y,X) proved in Theorem 8.4.7 indi-

cates that L∗
0,3(Y,X) = 0 if X �RSD Y. Therefore, RSD implies the

order metrized by L0,3 which is in fact third-order stochastic dom-
inance: that is, X �RSD Y ⇒ X �3 Y. Even though the relationship
between RSD and third-order stochastic dominance can be directly
illustrated through the inequality in Theorem 8.4.2, there does not
seem to be an inequality illustrating the relationship between RSD
and SSD. Nevertheless, the relationship between them can be derived
taking advantage of different arguments.

Finally, the stochastic order induced by the quasi-semidistance
�∗
n can be viewed as a generalization of RSD. The reason is that X

and Y need to satisfy the following conditions in order to guarantee
�∗
n(X,Y) < ∞:

EXk = EXk, k = 1, . . . , n− 1 and E|X|n < ∞, E|Y|n < ∞.

8.4.3 The H-quasi-semidistance

In the formal construction of the Hausdorff representation given
in (8.3.1), we do not impose symmetry with respect to X and Y

because our goal is to describe quasi-semidistances. Nevertheless,
in some cases the resulting functional can be symmetric because,
for example, the assumed set B is very general. This should not be
regarded as a weird consequence of the generality of the construct.
Rather, it is an expected outcome because symmetric probability
quasi-semidistances are probability semidistances.
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Consider the choice �(X,Y;A,B) = (P(X ∈ A) − P(Y ∈ B))+,
where A,B ∈ B are arbitrary events and B is the Borel 
-field. The
Hausdorff representation equals

�∗
�(X,Y) = sup

A∈B
inf
B∈B

max
{

1
�
r(A,B), (P(X ∈ A) − P(Y ∈ B))+

}
.

The function � can be also expressed in terms of the complements
of the events A and B, �(X,Y;A,B) = (P(Y ∈ Bc) − P(X ∈ Ac))+, in
whichAc denotes the complement ofA andP(Y∈ Bc) = 1 − P(Y∈ B).
Since the complement of a given event also belongs to B, the func-
tional above equals also

�∗
�(X,Y) = sup

A∈B
inf
B∈B

max
{

1
�
r(A,B),

∣∣P(X ∈ A) − P(Y ∈ B)
∣∣} .

(8.4.9)

Applying the symmetrization transform in (8.2.1) to �∗
�(X,Y), we

obtain the �H�(X,Y) probability semidistance which is between the
Prokhorov metric and the total variation metric from a topological
viewpoint: that is, the topology generated by �H� is finer than the
topology of the Prokhorov metric and the coarser than the topol-
ogy of the total variation metric. This metric is also known as the
Hausdorff probability metric, or the H-metric. For additional details,
see section 4.1 in Rachev (1991).

The two limit cases from Theorem 8.3.2 can be derived using the
arguments in Lemma 4.1.5 in Rachev (1991). They equal

�∗
0(X,Y) = sup

A∈B
|P(X ∈ A) − P(Y ∈ A)|

and

�∗
∞(X,Y) = inf

{
� > 0 : inf

B∈A(�)
|P(X ∈ A) − P(Y ∈B)| = 0, ∀A ∈ B

}
in which A(�) = {C ∈ B : r(A,C) < �}. Notice that �∗

0(X,Y) is in fact
the total variation metric which, being a metric, satisfies the sym-
metry property �∗

0(X,Y) = �∗
0(Y,X). It is curious that �∗

0(X,Y) is
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symmetric even though it arises as a limit from �∗
�(X,Y), which is

a non-symmetric quasi-semidistance.
Repeating the arguments in the proof of Theorem 8.4.1, we can

conclude that the stochastic order generated by (8.4.9) is actually
an equivalence relation. Indeed, �∗

�(X,Y) = 0 if and only if |P(X ∈
A) − P(Y ∈ A)| = 0 for all A ∈ B. Since B denotes the entire Borel

-field, this implies that the probability laws associated with X and
Y are identical.

8.4.4 AVaR generated stochastic orders

In this section, we provide an example of a probability quasi-
metric generated from a coherent risk measure that admits the
representation given in (8.3.2). The coherent risk measure is the
average value-at-risk (AVaR), also known as conditional value-at-risk,
which is defined as

AVaR�(X) = −1
�

∫ �

0
F−1
X (t)dt (8.4.10)

where 0 < � < 1 is called tail probability and X is a random variable
describing the return distribution of an investment. AVaR is inter-
preted as the average loss, provided that the loss is larger than the
�-quantile. A detailed discussion of this risk measure was provided
in Chapters 6 and 7.

Another representation of (8.4.10), which is essentially a conse-
quence of the general representation of coherent risk measures given
in Artzner et al. (1998), equals

AVaR�(X) = sup
A∈A�

−
∫ 1

0
F−1
X (t)d�A = − inf

A∈A�

∫ 1

0
F−1
X (t)d�A (8.4.11)

where A� = {A ⊂ [0, 1] : �(A) = �}, in which �(A) is the Lebesgue
measure of A and �A is a uniform probability measure on the set
A. The family of setsA� can be interpreted as the collection of all sets
A such that F−1

X (A) is an �-probability event, P(X ∈ F−1
X (A)) = �. The

interval [0, �] ∈ A� yields the AVaR at tail probability �.
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Consider the following choice for the building block � of the
Hausdorff representation in (8.3.1):

�(X,Y;A,B) =
(∫ 1

0
F−1
X (t)d�B −

∫ 1

0
F−1
Y (t)d�A

)
+

(8.4.12)

in which A,B ∈ B, whereB = [0, �] ∪B1 ⊆ A� because the interval
[0, �] needs to be inB. It is easy to verify that the axiomatic properties
hold and this is a valid choice for � in the Hausdorff representation.
The resulting quasi-semidistance

AV�,�,B(X,Y) = sup
A∈B

inf
B∈B

max
{

1
�
r(A,B),(∫ 1

0
F−1
X (t)d�B −

∫ 1

0
F−1
Y (t)d�A

)
+

}
(8.4.13)

is an AVaR generated quasi-semidistance. In the special case when
B = {[0, �]}, then

AV�,�,{[0,�]}(X,Y) = (AVaR�(Y) − AVaR�(X))+.

The stochastic order �AVB induced by the quasi-semidistance
AV�,�,B can be interpreted in the following way. Suppose thatX and
Y are two random variables describing the returns of two stocks. If
X �AVB Y, then the average loss of X in events occurring with prob-
ability � is always not smaller than the corresponding average loss
of Y. The events that we consider in this comparison depend on the
choice ofB but the most extreme ones, F−1

X ([0, �]) and F−1
Y ([0, �]), are

always included.
A couple of properties are collected in the next theorem.

Theorem 8.4.3. The following relations hold true.

(a) If X �AVB Y, then AVaR�(Y) ≤ AVaR�(X) for any admissible
choice ofB.
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(b) The limit of AV�,�,B(X,Y) as � → 0 equals

AV0,�,B(X,Y) = sup
A∈B

(∫ 1

0
F−1
X (t)d�A −

∫ 1

0
F−1
Y (t)d�A

)
+
(8.4.14)

(c) If X = EY is a constant, then AV�,�,B(EY,Y) = AVaR�(Y − EY)
and, thus, equals the deviation measure behind the AVaR risk
measure.

(d) Suppose thatB1 ⊆ B2. Then, the stochastic order �AVB2
implies

the stochastic order �AVB1
.

(e) IfX �FSD Y, thenX �AVB Y for any admissible choice ofB. The
converse is not true.

Proof. For a proof, see Stoyanov et al. (2009b). �

An expected corollary from the results above is that AVaR is consis-
tent with FSD. Assuming that the random variablesX andY describe
asset returns, it is the structure of the admissible family B which
determines whether only events including losses are considered in
�AVB , i.e. negative returns, or both profits and losses, i.e. positive
and negative returns.

8.4.5 Compound quasi-semidistances

The examples in the previous sections share a common feature. If X
andY are two random variables such thatFX(x) = FY(x),∀x ∈ R, then
the corresponding quasi-semidistances equal zero. In this section, we
consider compound quasi-semidistances in the form in (8.3.4) which
are essentially characterized by the following feature: if X = Y in
almost sure sense, then they turn into zero.

Consider a function d(x, y) defined on R×R, which is a quasi-
semidistance. Define the function v in the representation in (8.3.4) to
be

v(X,Y; t) = P(d(X,Y) > t).
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Then, the functional

��(X,Y) = inf{� > 0 : P(d(X,Y) > ��) < �}

is a compound quasi-semidistance.
The stochastic order generated from ��(X,Y) is of a compound

type. Suppose that d(X,Y) = (X − Y)+. Under this assumption,
��(X,Y) = 0 if and only if P((X − Y)+ > �) = 0,∀� > 0 which means
that X ≤ Y in almost sure sense.

There are also other ways to construct compound quasi-
semidistances which do not enjoy a non-trivial Hausdorff represen-
tation. For additional information, see Stoyanov et al. (2008).

8.5 Utility-type Representations

From the perspective of economic theories that describe choice under
uncertainty, some stochastic orders arise from the preferences of a
given class of economic agents. For example, according to classi-
cal expected utility theory, FSD arises from the class of non-satiable
investors who have non-decreasing utility functions. Thus, if all non-
satiable investors do not prefer Y to X, then X �FSD Y. Likewise,
second-order stochastic dominance arises from the non-satiable,
risk-averse investors who have non-decreasing, concave utility func-
tions. In the same manner, n-th order stochastic dominance can be
introduced through the preference relations of a class of investors
the utility functions of whom are characterized by certain properties
involving derivatives of higher order. For a more detailed discussion,
see Chapter 3.

Consider the preference relation of an investor with a utility
function u(x), x ∈ R. The preference relation is characterized by the
expected utility: that is, X �u Y if and only if Eu(X) ≤ Eu(Y). As
a result, one natural quasi-semidistance metrizing the preference
relation is

�∗
u(X,Y) = (Eu(X) − Eu(Y))+.

Indeed, it can be directly verified that X ��∗u Y ⇔ X �u Y.
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This approach can be generalized to a given class of investors
U. The arising stochastic order �U is introduced in the following
way: X �U Y if and only if X �u Y,∀u ∈ U. In this case, one natural
quasi-semimetric metrizing �U has the form

�∗
U(X,Y) = sup

u∈U

(∫
R

u(x)d(FX(x) − FY(x))
)

+
(8.5.1)

which equals �∗
U(X,Y) = supu∈U(Eu(X) − Eu(Y))+ if the correspond-

ing expected utilities are finite. Thus, the condition �∗
U(X,Y) = 0

guarantees that X �u Y,∀u ∈ U, and therefore the stochastic order
generated by the quasi-semidistance in (8.5.1) coincides with the
stochastic order of the class U. Since the representation in (8.5.1) is
directly liked to the class U, we call it a utility-type representation.

Some properties of (8.5.1) are collected in the following theorem.

Theorem 8.5.1. Suppose that the functional defined in (8.5.1) is finite.
Under this assumption, it is a probability quasi-semidistance which
metrizes the stochastic order �U.

Proof. The identity property is obvious, ifFX(x) = FY(x),∀x ∈ R, then
�∗
U(X,Y) = 0. The triangle inequality follows from the properties of

the (y)+ function.
From the definition in (8.5.1), it follows that if �∗

U(X,Y) = 0, then
X �u Y,∀u ∈ U. Therefore, ��∗U ⇒ �U. The converse relationship fol-
lows by construction, if Eu(X) ≤ Eu(Y),∀u ∈ U, then supu∈U(Eu(X) −
Eu(Y))+ = 0. As a result, ��∗U ⇔ �U . The assumption of boundedness
of �∗

U(X,Y) is technical and is required to make sure the order ��∗U is
well-defined over all pairs (X,Y). �

Additional properties for the functions in U have to be specified
in order to guarantee that �∗

U(X,Y) is finite. Usually this is done
by imposing certain growth conditions. For additional details, see
Rachev (1991).

Stoyanov et al. (2009a) consider a functional similar to (8.5.1) which
is constructed to be consistent with cumulative prospect theory.10

They demonstrate that the class of investors with balanced views,
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introduced in Stoyanov et al. (2009a), is sufficient to metrize FSD.
In order to be consistent with the definition in (8.5.1), we illustrate
this with a subclass. Consider all investors with bounded, non-
decreasing Lipschitz utility functions, u(x) : |u(x) − u(y)| ≤ K|x −
y|,∀x, y ∈ R, where 0 < K ≤ 1. Denote this class of utility functions
with UL. Under these assumptions, the quasi-semidistance �∗

UL(X,Y)
is bounded,

�∗
UL(X,Y) ≤

∫
R

(FY(x) − FX(x))+dx,

and metrizes FSD. See sections 8.8.3 and 8.8.4 for further details.
Note that both �∗

UL from this example and the Lévy quasi-
semidistance in (8.4.1) metrize FSD. This does not necessarily mean
that there is an inequality between �∗

UL and L∗
�. From a topological

viewpoint, the topologies generated by the two quasi-semimetrics
may be completely different and yet their specialization orders can
be the same. The link with topology is considered in more detail in
section 8.8.1 in the appendix to this chapter.

The quasi-semidistance in (8.5.1) is not a universal representation
like the Hausdorff construction in (8.3.1). Therefore, even though
any metrizable stochastic order is generated by a quasi-semidistance,
there may not exist a quasi-semidistance with a utility-type represen-
tation metrizing it. An example of a stochastic order which implies
SSD but for which no representation in terms of a class of investors
is known was provided in section 3.7.4 of Chapter 3.

In the theory of probability distances, there is a representation sim-
ilar to the utility-type representation. It is called the zeta structure and,
unlike the Hausdorff construction for probability distances, it is not
a universal representation. Additional details concerning the struc-
tural classification of probability distances are provided in section
8.8.5 in the appendix to this chapter.

Finally, whether a utility-type order is primary or simple depends
on how rich the familyU is. As an extreme example, ifU contains only
one utility function (i.e., there is only one investor), �∗

U generates a
primary order.
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8.6 Almost Stochastic Orders and Degree
of Violation

In section 3.5 of Chapter 3, we discussed that the classical expected
utility theory is prescriptive: that is, it determines what the ratio-
nal behavior of economic agents should be. Empirical work in the
field of behavioral finance has identified examples in which people
behave differently from the rational prescription of expected utility
theory. The following paradox,11 among many others, illustrates a
discrepancy of this kind.

Suppose that an investor having a utility function of the type

u0(x) =
{
x, x ≤ x0

x0, x > x0

faces the following two alternatives:

Alternative A:

{
$1, p1 = 1/10

$10 mln, p2 = 9/10

Alternative B :

{
$2, p1 = 1/10

$3, p2 = 9/10.

It is easy to verify that neither of the c.d.f.s of A and B dominate the
other with respect to FSD because the two c.d.f.s cross. In practice,
many investors, if not all of them, would prefer A to B. Nevertheless,
an investor with a utility function u0(x) and x0 = 2 prefers B to A
because alternative B has a higher expected utility.12

The reason for this paradoxical result is that the FSD criterion is
based on the set of all investors with non-decreasing utility func-
tions and u0(x) is a utility function of this type. This set may include
preferences that can be regarded as extreme, pathological, or simply
unrealistic. Yet, since from a mathematical viewpoint these pref-
erences describe the behavior of some non-satiable investors, they
cannot be excluded and, as a result, neither of the two alternatives
dominates the other in terms of FSD.
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A way to address some of the paradoxes arising from expected
utility theory is discussed in Leshno and Levy (2002) and Bali et al.
(2009). They suggest considering a subset of the corresponding
investors set because, as we discussed, paradoxes arise from non-
realistic choices of utility functions. The stochastic order arising from
this smaller set of investors is called almost stochastic order.

The general idea is to develop conditions that the utility func-
tions in a given set need to satisfy which depend on the degree of
violation of the stochastic order arising from the larger investors
set. For instance, consider s1 = {x : FX(x) − FY(x) < 0} and s2 = {x :
FY(x) − FX(x) < 0}. The degree of violation ofX �FSD Y is defined as
the ratio

� =
∫
s1

(FY(x) − FX(x))dx∫
R

|FX(x) − FY(x)|dx
and the corresponding condition on the non-decreasing utility func-
tions is derived to be u′(x) ≤ infx u′(x)(1/�− 1).

The degree of violation of FSD can be expressed in terms of a
quasi-semidistance metrizing FSD. Consider the Kantorovich quasi-
semidistance

κ∗(X,Y) =
∫
R

(FY(x) − FX(x))+dx. (8.6.1)

It can be demonstrated that it metrizes FSD by repeating the
arguments in Theorem 8.4.1. For additional information, see also
Stoyanov et al. (2009a).

The degree of violation � can be related to κ∗(X,Y) in the following
way:

�/(1 − �) = κ∗(X,Y)/κ∗(Y,X).

As a result, the corresponding condition becomes

u′(x) ≤ inf
x
u′(x)

κ∗(Y,X)
κ∗(X,Y)

.

This example is interesting as it illustrates a generic property. If
X and Y are two prospects such that their c.d.f.s do not coincide
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completely, then the ratio

v�(X,Y) = �(X,Y)
�(Y,X)

, (8.6.2)

in which �(X,Y) is some quasi-semidistancemmeasures the degree
of violation of the stochastic order X �� Y metrized by �.

Figure 8.2 illustrates the Kantorovich quasi-semidistance defined
in (8.6.1). The shaded area on the top plot equals κ∗(X,Y) and the
shaded area on the bottom plot, equals κ∗(Y,X). As a result, the
degree of violation coefficient vκ∗(X,Y) corresponding to κ∗ repre-
sents the ratio of the two shaded areas. If the vκ∗ is very large, then
the area on the top plot is very small compared to the area on the
bottom plot, implying that Y almost dominates X with respect to
FSD. Conversely, if vκ∗ is very small, then the area on the bottom plot
is very small compared to the area on the top plot, implying that X
almost dominates Y with respect to FSD.

The same reasoning can be applied to v�(X,Y) with an arbitrary
quasi-semidistance�. In this case, however, the conclusion concerns
almost stochastic dominance with respect to the induced order ��.

8.7 Summary

In this chapter, we considered a general systematic approach
towards describing stochastic dominance rules by means of
quasi-semidistances. We provided a universal representation of
quasi-semidistances, which we call the Hausdorff representation in
line with a similar universal representation in the theory of proba-
bility metrics. The theoretical framework allows for a categorization
of stochastic orders to a primary, simple, and compound type.

A number of examples supporting the theoretical construct were
discussed pertaining to FSD and the n-th order stochastic dominance
in general. We introduced a stochastic order based on the average
value-at-risk measure which illustrates how the quasi-semidistances
approach can be used to generate new stochastic orders.
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Figure 8.2: Illustration of the Kantorovich quasi-semidistance and its dual.
The shaded area on the top plot equals κ∗(X,Y) and the shaded area on the
bottom plot equals κ∗(Y,X).

We also considered stochastic orders arising from classes of
investors and a utility-type quasi-semidistance metrizing them. An
expected outcome from the theoretical framework is that not all
metrizable stochastic orders have a utility-type representation.
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Finally, we discussed a way to measure the degree of violation
of a stochastic order and how it is related to the notion of almost
stochastic dominance.

8.8 Technical Appendix

In this appendix, we start with a more general discussion of the
relationship between preference relations, topology, and the notion
of metrization. Next, we focus on utility-type representations of
quasi-semidistances and cumulative prospect theory. Finally, we
briefly describe the structural classification of probability distances
which provides intuition for the Hausdorff structure and utility-type
representation of probability quasi-semidistances.

8.8.1 Preference relations and topology

In section 8.2, we concluded that every quasi-semidistance defines
a preference relation. Discussing the converse question, whether
a given preference relation is representable through a quasi-
semimetric, requires the more advanced topic of a topological space.

A topological space is a set X together with a collection of subsets
� which satisfies the following axioms:13

(a) The empty set and X belong to �.
(b) The union of any collection of sets in � is also in �.
(c) The intersection of any finite collection of sets from � also

belongs to �.

The collection � is called a topology on X. In our case, X = S. In
every topology, there is a natural pre-order which is also known as
the specialization pre-order. It is denoted by �� and is defined in the
following way: for any x, y ∈ S, x �� y, if and only if y is contained
in all elements of � that contain x.14 Intuitively, the element y is more
special than the element x because it is contained in more open sets,
hence the name of the pre-order.

For example, consider the two-point set X = {0, 1} with the topol-
ogy � = {∅, {1}, {0, 1}}. It can be directly verified that � satisfies the
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three conditions given above. The specialization order in this case
coincides with the natural order of the numbers 0 and 1. Indeed,
since the element {1} is contained in all open sets that contain the
element {0}, it follows that 0 �� 1. The cases 0 �� 0 and 1 �� 1 are
trivial.

In effect, we can conclude that any topology � on the space of
baskets S induces a preference order through the specialization pre-
order. In this setting, the notion of equivalence between baskets can
be related to the notion of topological indistinguishability. That is,
if x �� y and y �� x, then the open sets which contain x contain also
y and vice versa. Therefore, the open neighborhoods of x and y are
identical and, therefore, x and y can be considered indistiguishable
from a topological viewpoint.

If a given topology on S induces a preference order, then is it true
that any preference order arises as the specialization order of some
topology? In this more general setting, the answer is in the affirma-
tive. In fact, for a given preference order there are many topologies
generating it as a specialization order and the finest of them is
also known as the Alexandrov topology. There is a representation
result according to which there exists a one-to-one correspondence
between the set of Alexandrov topologies on S and the set of all
preference relations on S. For more details, see Steiner (1966). We
can link this result to the discussion of quasi-semimetrics if we can
link the notion of topology to the notion of quasi-semimetric. Every
quasi-semimetric generates a topology through the system of open
ballsBx,� = {y : d(x, y) < �}. A topology, however, may not arise from
a quasi-semimetric in this manner. If the converse is true, we say
that the topology is quasi-metrizable. Therefore, even though there
is an Alexandrov topology behind any preference order on S, there
may not be a quasi-semimetric generating it: that is, it may not be
quasi-metrizable.

As a result of this discussion, a given preference order arises from
a quasi-semidistance if and only if we can find a quasi-metrizable
topology that generates it as a specialization order. Preference orders
arising in this fashion we call quasi-metrizable or simply metrizable.
A review of different sets of necessary and sufficient conditions for
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quasi-metrizability can be found in Andrikopoulos (2007). Therefore,
in case a number of topologies generating a given preference order
appear to be quasi-metrizable, then there will be a number of quasi-
semidistances generating one and the same preference order. By the
same token, if none of the topologies generating a given preference
order are quasi-metrizable, then there exist no quasi-semidistances
generating it. It is also possible that different quasi-semidistances
generate one and the same topology: that is, they are topologically
equivalent. In this case, one and the same specialization order is
generated by all topologically equivalent quasi-semidistances.

8.8.2 Quasi-semidistances and preference relations

In this section, we discuss in more detail the connection between
quasi-semidistances and preference relations. The discussion is
generic with no assumptions about the nature of the space S.

We noted that the preference order �d defined through a quasi-
semidistance is a pre-order and, therefore, a preference relation.
Every preference relation induces a dual one by considering the con-
verse relation. The dual of �d, denoted by �d−1 , is introduced in the
following way: x �d−1 y if and only if y �d x. It turns out that if a
given preference relation is generated by a quasi-semidistance, then
its dual is also generated by a quasi-semidistance.

Proposition 8.8.1. Suppose that �d is generated by the quasi-
semidistance d(x, y). Then, the dual preference relation �d−1 is
generated by d−1(x, y) = d(y, x) which is also a quasi-semidistance.

Proof. For a proof, see Stoyanov et al. (2009b). �

The quasi-semidistance generating the dual order is monotonic
with respect to primary order �d in the following sense.

Proposition 8.8.2. Suppose that x �d y �d z, where x, y, z ∈ S. Then,
d−1(x, y) ≤ d−1(x, z) and also d−1(y, z) ≤ d−1(x, z) in which d−1(x, y) =
d(y, x).
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Proof. For a proof, see Stoyanov et al. (2009b). �

This result shows how the quasi-semidistances concept can be
used to construct monotonic functionals relative to a given metriz-
able preference relation, which can be exploited in approximation
problems.

Another advantage of the theoretical framework is that it provides
a way of comparing preference relations if there exists an inequality
between the corresponding quasi-semidistances.

Proposition 8.8.3. Suppose that d1(x, y) and d2(x, y) are two quasi-
semidistances and that d1(x, y) ≤ d2(x, y). Under these assumptions,
if x �d2 y, then x �d1 y.

Proof. For a proof, see Stoyanov et al. (2009b). �

Note that this result does not imply the converse, i.e. if x �d2 y ⇒
x �d1 y for all x, y ∈ S, then there exists an inequality between the
corresponding quasi-semidistances.

8.8.3 Construction of quasi-semidistances on classes
of investors

The discussion in this section is based on Stoyanov et al. (2009a). The
approach is consistent with cumulative prospect theory (CPT) and
the corresponding notation described in section 3.5 of Chapter 3.

We begin by introducing some notation. The class of bounded
S-shaped value functions we denote by S. The elements of S are
bounded real-valued functions v(x) : R→ R with the following
property,

v(x) =

⎧⎪⎨⎪⎩
v−(x), x < 0

0, x = 0

v+(x), x > 0

where v−(x) < 0 is a monotonically increasing convex function and
v+(x) > 0 is a monotonically increasing concave function.
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According to CPT, individuals make a choice between two risky
prospects X and Y by computing the subjective expected values
according to

V(X) =
∫ 0

−∞
v(x)d[w−(FX(x))] +

∫ ∞

0
v(x)d[−w+(1 − FX(x))]

where

w−(0) = w+(0) = 0 and w−(1) = w+(1) = 1.

and then compare V(X) and V(Y). If V(X) ≥ V(Y), then Y is not pre-
ferred to X. If V(X) = V(Y), then the individual is indifferent. Note
that if the individuals do not weight the cumulative probabilities,
then V(X) reduces to V(X) = Ev(X).

Suppose that all investors which we consider are indifferent
betweenX andY,Vj(X) = Vj(Y), for all j ∈ J. Note thatJ is a general
set, not necessarily countable. In order to study the implications of
this assumption on the distribution functions ofX andY, we consider
the functional

�J (X,Y) = sup
j∈J

∣∣Vj(X) − Vj(Y)
∣∣ , (8.8.1)

where

Vj(X) − Vj(Y) =
∫ 0

−∞
vj(x)d[w−

j (FX(x)) − w−
j (FY(x))]

+
∫ ∞

0
vj(x)d[w+

j (1 − FY(x)) − w+
j (1 − FX(x))].

Note that in the case of no subjective weighting, this expression
reduces to

Vj(X) − Vj(Y) =
∫ ∞

−∞
vj(x)d(FX(x) − FY(x)).

The functional �J (X,Y) is the largest difference between the values
assigned by the investors toX andY running through all investors. If
the functional in (8.8.1) equals zero, then this means that all investors
that we consider are indifferent betweenX andY. In fact, �J (X,Y) has
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metric properties. In particular, ifX d= Y, then �J (X,Y) = 0 although
the converse may not hold. Therefore, the fact that �J (X,Y) = 0 does
not necessarily imply equality in distribution between X and Y as
it depends on how rich the set J is. The next theorem establishes a
sufficient condition for the converse relationship.

Theorem 8.8.1. Suppose that the set VJ = {vj, j ∈ J} ⊆ S contains the
functions

v−
x0,n

(x) =

⎧⎪⎨⎪⎩
−1/n, x < x0

x0 − x − 1/n, x ∈ [x0, x0 + 1/n)

0, x ≥ x0 + 1/n

(8.8.2)

where n = 1, 2, ... and x0 + 1/n ≤ 0 and

v+
x0,n

(x) =

⎧⎪⎨⎪⎩
0, x < x0 − 1/n

x − x0 + 1/n, x ∈ [x0 − 1/n, x0)

1/n, x ≥ x0

(8.8.3)

where n = 1, 2, ... and x0 − 1/n ≥ 0. Suppose also that the weighting
functions w− and w+ are continuous. Then, �J (X,Y) is a simple

probability metric which means that �J (X,Y) = 0 ⇐⇒ X
d= Y.

Proof. The proof is provided in Stoyanov et al. (2009a). �

This result implies that if the set of investors is so large that
it contains the value functions defined in (8.8.2) and (8.8.3), then
�J (X,Y) = 0 indicates that the c.d.f.s of X and Y coincide. Note that
the particular form of the weighting functions is immaterial. The only
properties needed are that they are non-decreasing and continuous.

The reasoning outlined above can be used to construct a functional
consistent with the FSD order. Consider

�∗
J (X,Y) = sup

j∈J

(
Vj(X) − Vj(Y)

)
+ , (8.8.4)

where (x)+ = max(x, 0). The interpretation of (8.8.4) is as follows. The
distance betweenX andY equals the largest differenceVj(X) − Vj(Y)
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running through all investors who do not prefer Y to X. In this case,
the condition �∗

J (X,Y) = 0 implies that all investors prefer Y to X
because in this case Vj(X) ≤ Vj(Y), ∀j ∈ J.

Theorem 8.8.2. �∗
J (X,Y) is a probability quasi-semimetric and if

FY(x) ≤ FX(x),∀x ∈ R, then �∗
J(X,Y) = 0. Furthermore, if the set of

value functions contains the set defined in (8.8.2) and (8.8.3), and
the weighting functions are continuous, then �∗

J(X,Y) = 0 implies
FY(x) ≤ FX(x),∀x ∈ R.

Proof. The proof is provided in Stoyanov et al. (2009a). �

Similarly to �J(X,Y), if the class J is not rich enough, then the
condition �∗

J (X,Y) = 0 does not imply inequality between the distri-
bution functions but only between certain characteristics ofX andY.

8.8.4 Investors with balanced views

This section extends the discussion in section 8.8.3 introducing the
notion of investors with balanced views, which is consistent with
CPT. This section is based on Stoyanov et al. (2009a).

In section 8.8.3, we introduce the quasi-semidistance �∗
J(X,Y)

which is consistent with FSD provided that the set J contains a set of
value functions. One last condition we need to check is whether we
can choose a class of investors which is sufficiently large and at the
same time (8.8.1) and (8.8.4) are bounded. Otherwise, if (8.8.1) and
(8.8.4) take only two values – zero and infinity, the construct is mean-
ingless. In this section, we provide upper bounds on �J (X,Y) and
�∗
J (X,Y) introducing additional assumptions which concern the rate

of change of vj(x) and the weighting functions. From a mathemati-
cal viewpoint, they can be regarded as smoothness assumptions but
because of the particular relationship between vj(x) andw(x), we call
the set J investors with balanced views. The main result is provided
below.

Theorem 8.8.3. Consider the set VJ of value functions vj ∈
S satisfying the Lipschitz condition |vj(x) − vj(y)| ≤ Kvj |x − y|
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and the weighting functions satisfy the Lipschitz conditions
|w−

j (x) − w−
j (y)| ≤ Kwj |x − y| and |w+

j (x) − w+
j (y)| ≤ Kwj |x − y| where

0 < KvjKwj ≤ 1. The following inequalities hold;

�J (X,Y) ≤
∫
R

|FX(x) − FY(x)|dx (8.8.5)

�∗
J (X,Y) ≤

∫
R

(FY(x) − FX(x))+dx (8.8.6)

Proof. The proof is provided in Stoyanov et al. (2009a). �

The Lipschitz conditions imply that the value function and the
weighting functions do not change too quickly. For example, if we
compare two outcomes x and x + h, h > 0, then the Lipschitz con-
dition suggests that vj(x + h) − v(x) ≤ Kvjh which means that the
difference between the assigned values by vj of the j-th investor is
bounded by Kvjh. Likewise, we can interpret the Lipschitz condition
for the weighting function.

The condition in the theorem, 0 < KwjKvj ≤ 1, means that if the
value function of a given investor is changing too quickly (Kvj is
high), then the weighting functions of the corresponding investor
should have a constant Kwj bounded from above by 1/Kvj . In effect,
the combined condition in the theorem means that the individuals
that we consider are balanced in their views. A steeper value func-
tion should be compensated by a more flat weighting function and
vice versa. If the value function and the weighting functions are dif-
ferentiable, then the Lipschitz conditions translate into bounds on
their first derivatives, |dvj(x)/dx| ≤ Kvj and |dw−/+(x)/dx| ≤ Kwj .

The class of Lipschitz value functions includes (8.8.3) and (8.8.2)
with a constant Kv = 1/n ≤ 1. Thus, investors with balanced views
are a sufficiently large class with suitable properties. On the basis of
this class using (8.8.1) and (8.8.4), we can draw conclusions about
the relation between X and Y.

8.8.5 Structural classification of probability distances

In this section, we discuss briefly a structural classification of prob-
ability metrics. This classification is the basis of the Hausdorff
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structure and the utility-type representations of probability quasi-
semidistances discussed in this chapter.

Chapter 4 was devoted to a classification of probability semidis-
tances �(P) (P ∈ P2) with respect to various partitionings of the set
P2 into classes PC such that �(P) takes a constant value on each PC.
For instance, if PC := PC(P1, P2) := {P ∈ P2 : T1P = P1, T2P = P2},
P1, P2 ∈ P1 and �(P′) = �(P′′) for each P′, P′′ ∈ PC then � was said
to be a simple semidistance. Analogously, if

PC := PC(a1, a2) := {P ∈ P2 : h(T1P) = a1, h(T2P) = a2}

and �(P′) = �(P′′) as P′, P′′ ∈ PC(a1, a2) then � was said to be a
primary distance.

In the present section, we classify the probability semidistances
on the basis of their metric structure. There are three basic types of
representations – the Hausdorff structure, the lambda structure, and
the zeta structure. The material in this section is based on Rachev
(1991).

The Hausdorff structure
The intuition behind the Hausdorff structure is based on the Haus-
dorff semimetric in the space of all subsets in a given metric space
and representations of the Lévy metric similar to it.

The definition of Hausdorff probability semidistance structure
(briefly, h-structure) is based on the notion of Hausdorff semimetric
in the space of all subsets of a given metric space (S, �):

r(A,B) = inf{ε > 0 : Aε ⊇ B, Bε ⊇ A}
= max{inf{ε > 0 : Aε ⊇ B}, inf{ε > 0 : Bε ⊃ A}} (8.8.7)

where Aε is the open ε-neighborhood of A.
From the definition in (8.8.7), another representation of the

Hausdorff follows immediately:

r(A,B) := max(r′, r′′) (8.8.8)
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where

r′ := sup
x∈A

inf
y∈B
�(x, y)

and

r′′ := sup
y∈B

inf
x∈A

�(x, y).

As an example of a probability metric with a representation close
to that of equality (8.8.8), let us consider the following parametric
version of the Lévy metric for � > 0, X,Y ∈ X(R)

L�(X,Y) :=L�(FX, FY) := inf{ε > 0 : FX(x − �ε) − ε ≤ FY(x)

≤FX(x + �ε) + ε ∀x ∈ R}. (8.8.9)

Obviously, L� is a simple metric inX(R) for any � > 0, and L := L1

is usual Lévy metric. Moreover, it is not difficult to check that L�(F,G)
is a metric in the space F of all d.f.s. Considering L� as a function of
�, we see that L� is non-increasing on (0,∞) and the following limit
relations hold

lim
�→0

L�(F,G) = ρ(F,G) F,G ∈ F (8.8.10)

and

lim
�→0

�L�(F,G) = W(F,G). (8.8.11)

In equality (8.8.10), ρ is the Kolmogorov metric in F:

ρ(F,G) := sup
x∈R

|F(x) − G(x)|. (8.8.12)

In equality (8.8.11), W(F,G) is the uniform metric between the inverce
functions F−1, G−1

W(F,G) := sup
0<t<1

|F−1(t) − G−1(t)| (8.8.13)

where F−1 is the generalized inverse of F, F−1(t) := sup{x : F(x) < t}.
Equality (8.8.10) follows from (8.8.9). Likewise, (8.8.11) is handled
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by the equalities

lim
�→∞

�L�(F,G) = inf{ı > 0 : F(x) ≤ G(x + ı), G(x) ≤ F(x + ı) ∀x ∈ R}
= W(F,G).

Let us define the Hausdorff metric between two bounded func-
tions on the real line R. Let dm� (� > 0) be the Minkovski metric
on the plane R2, i.e. for each A = (x1, y1) and B = (x2, y2) we have
dm�(A,B) := max{(1/�)|x1 − x2|, |y1 − y2|}. The Hausdorff metric r�
(� > 0) in the set C(R2) (of all closed non-empty sets G ⊂ R2) is
defined as follows: for G1 ⊆ R2 and G2 ⊆ R2

r�(G1, G2) := max

{
sup
A∈G1

inf
B∈G2

dm�(A,B), sup
B∈G2

inf
A∈G1

dm�(A,B)

}
.

(8.8.14)

We say that r� is generated by the metric dm� as in equality (8.8.8)
the Hausdorff distance r was generated by �. Let f ∈ D(R), the set
of all bounded right-continuous functions on R having limits f (x−)
from the left. The set

f = {(x, y) : x ∈ R and either f (x−) ≤ y ≤ f (x) or f (x) ≤ y ≤ f (x−)}
is called the completed graph of the function f .

Definition 8.8.1. The metric

r�(f, g) := r�(f , g) f, g ∈ D(R)

is said to be the Hausdorff metric in D(R).

It turns out that the Lévy metric admits a representation in terms
of the Hausdorff semimetric r� defined in (8.8.14).

Theorem 8.8.4. For all F,G ∈ F and � > 0

L�(F,G) = r�(F,G).

Proof. For a proof, see Rachev (1991). �
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In order to cover other probability metrics by means of the Haus-
dorff metric structure, the following generalization of the notion of
Hausdorff metric r is needed. Let FS be the space of all real-valued
functions FA : A → R, where A is a subset of the metric space (S, �).

Definition 8.8.2. Let f = fA and g = gB be elements of FS. The
quantity

r̃�(f, g) := max(̃r′�(f, g), r̃′�(g, f )) (8.8.15)

where

r̃′�(f, g) := sup
x∈A

inf
y∈B

max
{

1
�
�(x, y), f (x) − g(y)

}
is called the Hausdorff semimetric between the functions fA, gB.

Obviously, if f (x) = g(y) = constant for all x ∈ A, y ∈ B then
r̃�(f, g) = r(A,B). Note that r̃� is a metric in the space of all upper
semi-continuous functions with closed domains.

The next two theorems are simple consequences of a more general
theorem, Theorem 8.8.7.

Theorem 8.8.5. The Lévy metric L� (8.8.9) admits the following rep-
resentation in terms of metric r̃ given in (8.8.15):

L�(X,Y) = r̃�(fA, gB)

where fA = FX , gB = FY, A ≡ B ≡ R, �(x, y) = |x − y|.

The Lévy metric L�, thus, has two representations in terms of r�
and in terms of r̃�. Concerning the Prokhorov metric π� (4.7.34) only
a representation in terms of r̃� is known. Namely, let S = C((U, d))
be the space of all closed non-empty subsets of a metric space (U, d)
and let r be the Hausdorff distance (8.8.7) in S. Any law P ∈ P1(U)
can be considered as a function on the metric space (S, r) because P
is determined uniquely on S, namely:

P(A) := sup{P(C) : C ∈ S, C ⊆ A} for any A ∈ B1.
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Define a metric r̃�(P1, P2) (P1, P2 ∈ P1(U)) by putting A = B = S and
� = r in Equality (8.8.15).

Theorem 8.8.6. For any � > 0, the Prokhorov metric π� takes the form

π�(P1, P2) = r̃�(P1, P2) (P1, P2 ∈ P1(U))

where U = (U, d) is assumed to be arbitrary metric space.

Next, taking into account Definition 8.8.2, we shall define the
Hausdorff structure of probability semidistances.

Without loss of generality (see section 2.6.2), we assume that any
probability semidistance �(P), P ∈ P2(U) has a representation in
terms of pairs of U-valued random variables X,Y ∈ X := X(U)

�(P) = �(PrX,Y) = �(X,Y).

LetB0 ⊆ B(U) and let the function � : X2 × B2
0 → [0,∞] satisfy the

relations

(a) if Pr(X = Y) = 1 then �(X,Y;A,A) = 0 for all A ∈ B0;
(b) there exists a constant K� ≥ 1 such that for all A,B,C ∈ B0 and

r.v. X, Y, Z

�(X,Z;A,B) ≤ K�[�(X,Y;A,C) + �(Y,Z,C, B)].

Definition 8.8.3. Let � be probability semidistance. The representa-
tion of � in the following form:

�(X,Y) = h�,�,B0 (X,Y) := max{h′
�,�,B0

(X,Y), h′
�,�,B0

(Y,X)} (8.8.16)

where

h′
�,�,B0

(X,Y) = sup
A∈B0

inf
B∈B0

max
{

1
�
r(A,B), �(X,Y;A,B)

}
(8.8.17)

is called the Hausdorff structure of �, or simply h-structure.
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In (8.8.17), r(A,B) is the Hausdorff semimetric in the Borel 
-
algebra B((U, d)) (see (8.8.7) with � ≡ d), � is a positive number.
B0 ⊆ B(U) and � satisfies conditions (a) and (b).

Using the properties (a) and (b) we easily obtain the following
lemma.

Lemma 8.8.1. Each� in the form (8.8.16) is a probability semidistance
in Xwith a parameter K� = K�.

In the limit cases � → 0, � → ∞ the Hausdorff structure turns
into a uniform structure. More precisely, the following limit relations
hold.

Lemma 8.8.2. Let� have Hausdorff structure (8.8.16), then, as � → 0,
�(X,Y) = h�,�,B0 (X,Y) has a limit which is defined to be be

h0,�,B0 (X,Y) = max

{
sup
A∈B0

�(X,Y;A,A), sup
A∈B0

�(Y,X;A,A)

}
.

As � → ∞ the limit

lim
�→∞

�h�,�,B0 (X,Y) = h∞,�,B0 (X,Y) (8.8.18)

exists and is defined to be

max

{
sup
A∈B0

inf
B∈B0,�(X,Y;A,B)=0

r(A,B), sup
A∈B0

inf
B∈B0,�(Y,X;A,B)=0

r(A,B)

}
.

Proof. For a proof, see Rachev (1991). �

Example 8.8.1. (Universal Hausdorff representation). Each probability
semidistance � has the trivial form h�,�,B0 = � where the set B0 is a
singleton, say B0 ≡ {A0}, and �(X,Y;A0, A0) = �(X,Y).

Example 8.8.2. (Hausdorff structure of the Prokhorov metric π�). The
Prokhorov metric (4.7.34) admits a Hausdorff structure representa-
tion h�,�,B0 = �where B0 is either the class C of all non-empty closed
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subsets ofU orB0 ≡ B(U) and�(X,Y;A,B) = Pr(X ∈ A) − Pr(Y ∈ B),
A,B ∈ B(U). As � → 0 and � → ∞ we obtain the limits

h0,�,B0 = σ (distance in variation)

and

h∞,�,B0 = �∞.

Example 8.8.3. (Lévy metric L�(� > 0) in the space P(Rn)). Let F(Rn)
be the space of all right continuous d.f.s F on Rn. We extend the def-
inition of the Lévy metric (L�, � > 0) in F(R1) (see Definition (8.8.9))
considering the multivariate case L� in F(Rn)

L�(P1, P2): = L�(F1, F2) := inf{ε > 0 : F1(x − �εe) − ε ≤ F2(x)

≤ F1(x + �εe) + ε ∀x ∈ Rn} (8.8.19)

where Fi is the d.f. of Pi (i = 1, 2) and e = (1, 1, . . . , 1) is the unit
vector in Rn.

The Hausdorff representation of L� is handled by Representation
(8.8.16) where B0 is the set of all multivariate intervals (−∞, x] (x ∈
Rn) and

�(X,Y; (−∞, x], (−∞, y]) := F1(x) − F2(y)

i.e., for r.v.s X and Y with d.f.s F1 and F2, respectively,

L�(X,Y)=L�(F1, F2):= max
{

sup
x∈Rn

inf
y∈Rn

max
[

1
�

‖x − y‖∞, F1(x) − F2(y)
]
,

sup
y∈Rn

inf
x∈Rn

max
[

1
�

‖x − y‖∞, F2(y) − F1(x)
]}

(8.8.20)

for allF1, F2 ∈ F(Rn) where ‖ · ‖ stands for the Minkovski norm inRn,
‖(x1, . . . , xn)‖∞ := max1≤i≤n |xi|. Letting � → 0 in Definition (8.8.20)
we get the Kolmogorov distance in F(Rn):

lim
�→0

L�(F1, F2) = ρ(F1, F2) := sup
x∈Rn

|F1(x) − F2(x)|
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The limit of �L� as � → ∞ is given by (8.8.18), i.e.

lim
�→∞

��(F1, F2)

= inf{ε > 0 : inf[F1(x) − F2(y) : y ∈ Rn, ‖x − y‖∞ ≤ ε] = 0,

inf[F2(x) − F1(y) : x ∈ Rn, ‖x − y‖∞ ≤ ε] = 0 ∀x ∈ Rn}
= W(F1, F2) := inf{ε > 0 : F1(x) ≤ F2(x + εe), F2(x) ≤ F1(x + εe)

∀x ∈ Rn}. (8.8.21)

Example 8.8.4. (Lévy probability distance L�,H ,� > 0,H ∈ H). The Lévy
metric L� (8.8.19) can be rewritten in the form

L�(F1, F2) :=inf{ε > 0 : (F1(x) − F2(x − �εe))+ < ε,

(F2(x) − F1(x − �εe))+ < ε ∀x ∈ Rn} (·)+ := max(·, 0)

which can be viewed as a special case (H(t) = t) of the Lev́y probability
distance L�,H(� > 0, H ∈ H) defined as follows

L�,H(F1, F2) := inf{ε > 0 : H̃(F1(x) − F2(x + �εe)) < ε,

H̃(F2(x) − F1(x + �εe)) < ε ∀x ∈ Rn} (8.8.22)

where

H̃(t) :=
{
H(t)t ≥ 0

0 t ≤ 0.

L�,H admits a Hausdorff representation of the following type:

L�,H(F1, F2) = max
{

sup
x∈Rn

inf
y∈Rn

max
[

1
�
‖x − y‖, H̃(F1(x) − F2(y))

]
,

sup
y∈Rn

inf
x∈Rn

max
[

1
�
‖x − y‖, H̃(F2(y) − F1(x))

]}
.

(8.8.23)

The last representation of L�,H shows that L�,H is a simple distance
with parameter KL�,H := KH (see 2.3.3). Also, from (8.8.23) as � → 0,
we get the Kolmogorov probability distance

lim
�→0

L�,H(F1, F2) = H(�(F1, F2)) = ρH(F1, F2) := sup
x∈Rn

H(|F1(x) − F2(x)|).
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Analogously, letting � → ∞ in (8.8.23), we have

lim
�→∞

�L�,H(F1, F2) = W(F1, F2). (8.8.24)

We prove equality (8.8.24) by arguments provided in the limit rela-
tion (8.8.21).

For additional examples and further information on the Hausdorff
construction, see Rachev (1991).

The Lambda structure
The probability semidistance structure � in X = X(U) is defined by
means of a non-negative function � on X × X × [0,∞) that satisfies
the relationships: for all X,Y,Z ∈ X,

(a) If Pr(X = Y) = 1 then �(X,Y; t) = 0 ∀t ≥ 0
(b) �(X,Y; t) = �(Y,X; t)
(c) If t′ < t′′ then �(X,Y; t′) ≥ �(X,Y; t′′)
(d) For some K� > 1, �(X,Z; t′ + t′′) ≤ K�[�(X,Y; t′) + �(Y,Z, t′′)].

If �(X,Y; t) is completely determined by the marginals P1 = PrX ,
P2 = PrY, we shall use the notation �(P1, P2; t) instead of �(X,Y; t).
For the case K� = 1, we provide the following definition.

Definition 8.8.4. The probability semidistance � has a�-structure if
it admits a �-representation: that is,

�(X,Y) = ��,�(X,Y) := inf{ε > 0 : �(X,Y; �ε) < ε} (8.8.25)

for some � > 0 and � satisfying (a) to (d).
Obviously, if � has a �-representation (8.8.25), then � is a proba-

bility semidistance withK� = K�. In Example 8.8.1 it was shown that
each probability semidistance has a Hausdorff representation h�,�,B0 .
In the next theorem we shall prove that each probability semidis-
tance � with Hausdorff structure (see Definition 8.8.3) also has a
�-representation. Hence, in particular, each probability semidistance
has a �-structure as well as a Hausdorff structure.
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Theorem 8.8.7. Suppose a probability semidistance � admits the
Hausdorff representation � = h�,�,B0 (8.8.16). Then � enjoys also a
�-representation

h�,�,B0 (X,Y) = ��,�(X,Y) (8.8.26)

where

�(X,Y; t) := max

{
sup
A∈B0

inf
B∈A(t)

�(X,Y;A,B), sup
A∈B0

inf
B∈A(t)

�(Y,X;A,B)

}

and A(t) is the collection of all elements B of B0 such that the
Hausdorff semimetric r(A,B) is not greater than t.

Proof. For a proof, see Rachev (1991). �

Example 8.8.5. (�-structure of the Lévy metric and the Lévy distance).
Recall the definition of the Lévy metric in P(Rn) (see (8.8.19)):

L�(P1, P2) := inf
{
ε > 0 : sup

x∈Rn
(F1(x) − F2(x + �εe)) ≤ ε

and sup
x∈Rn

(F2(x) − F1(x + �εe)) ≤ ε

}

where obviously Fi is the d.f. of Pi. By Definition 8.8.4, L� has a
�-representation

L�(P1, P2) = ��,�(P1, P2) � > 0

where

�(P1, P2; t) := sup
x∈Rn

max{(F1(x) − F2(x + �te)), (F2(x) − F1(x + �te))}

and Fi is the d.f. of Pi. With an appeal to Theorem 8.8.7, for any
F1, F2 ∈ F(Rn), we conclude that the metric h defined below
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admits a �-representation:

h(F1, F2): = max
{

sup
x∈Rn

inf
y∈Rn

max
{

1
�
‖x − y‖∞, F1(x) − F2(y)

}
,

sup
x∈Rn

inf
y∈Rn

max
{

1
�
‖x − y‖∞, F2(x) − F1(y)

}}
= ��,�(P1, P2)

where

�(P1, P2; t) = max
{

sup
x∈Rn

inf
y:‖x−y‖∞≤t

(F1(x) − F2(y)),

sup
x∈Rn

inf
y:‖x−y‖∞≤t

(F2(x) − F1(y))
}
.

By virtue of the �-representation of the L� we conclude that
h(F1, F2) = L�(F1, F2) which proves (8.8.20) and Theorem 8.8.5.

Analogously, consider the Lévy distance L�,H (8.8.22) and apply
Theorem 8.8.7 with

�(X,Y; �t) = �(P1, P2; �t)

: =H
(

sup
x∈Rn

max{F1(x) − F2(x + �te), {F2(x) − F1(x + �te)
)

to prove the Hausdorff representation of L�,H (8.8.23).

Example 8.8.6. (�-structure of the Prokhorov metric π�). Let

�(P1, P2; ε):= sup
A∈B(U)

max{P1(A) − P2(Aε), P2(A) − P1(Aε)}

= sup
A∈B(U)

{P1(A) − P2(Aε)}

Then��,� is the�-representation of the Prokhorov metric π�(P1, P2).
In this way, Theorem 8.8.6 is a corollary of Theorem 8.8.7.

Example 8.8.7. (�-structure of the Ky Fan metric and Ky Fan dis-
tance). The �-structure of the Ky Fan metric K� (see 4.7.57) and
the Ky Fan distance KFH (see 4.7.56) is handled by assuming
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that in (8.8.25), �(X,Y; �t) := Pr(d(X,Y) > �t) and �(X,Y; t) :=
Pr(H(d(X,Y)) > t), respectively.

The zeta structure
LetCb(U) be the set of all bounded continuous functions onU. Then,
for each subset F of Cb(U), the functional

�F(P1, P2) := �(P1, P2;F) := sup
f∈F

∣∣∣∣∫
U
fd(P1 − P2)

∣∣∣∣ (8.8.27)

on P1 × P1 defines a simple probability semimetric in P1. The metric
�F was introduced by Zolotarev (1976) and it is called the Zolotarev
�F-metric (or briefly �F-metric).

Definition 8.8.5. A simple semimetric � having the �F-representation

�(P1, P2) = �F(P1, P2) (8.8.28)

for some F ⊆ Cb(U), is called semimetric with �-structure.

Example 8.8.8. (Engineer metric). Let U = R and X(1) be the set of all
real valued r.v.s X with finite first absolute moment, i.e. E|X| < ∞.
In the set X(1) the engineer metric EN(X,Y) := |EX − EY| admits the
�-representation, where F is a collection of functions:

fN(x) =

⎧⎪⎨⎪⎩
−Nx < N

x |x| ≤ N

N x > N,N = 1, 2, . . .

Example 8.8.9. (Kolmogorov metric and θp-metric in the distribution
function space). Let F = F(R) be the space of all d.f.s on R. The
Kolmogorov metric ρ(F1, F2) := supx∈R |F1(x) − F2(x)| in F has �F-
structure. In fact

ρ(F1, F2) = ‖f1 − f2‖∞ = sup
{∣∣∣∣∫ ∞

−∞
u(x)(F1(x) − F2(x))dx

∣∣∣∣ : ‖u‖1 ≤ 1
}

(8.8.29)
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Here and subsequently ‖ · ‖p (1 ≤ p < ∞) stands for the Lp-norm

‖u‖p: =
{∫ ∞

−∞
|u(x)|pdx

}1/p

1 ≤ p < ∞
‖u‖∞: = ess sup

x∈R
|u(x)|.

Further, let us denote, by F(p), the space of all (Lebesgue) a.e. differ-
entiable functions f such that the derivative f ′ hasLp-norm ‖f ′‖p ≤ 1,
hence, integrating by parts the right-hand side of (8.8.29) we obtain
a �-representation of the uniform metric ρ

ρ(F1, F2) := sup
f∈F(1)

∣∣∣∣∫ ∞

−∞
f (x)d(F1(x) − F2(x))

∣∣∣∣ = �(F1, F2;F(1)).

Analogously, we have a �F(q)-representation for θp-metric (p ≥ 1)
(see 4.7.40):

θp(F1, F2):=‖F1 − F2‖p
=sup

{∣∣∣∣∫ ∞

−∞
u(x)(F1(x) − F2(x))dx

∣∣∣∣ : ‖u‖q ≤ 1
}

=�(F1, F2;F(q)).

It turns out, however, that not all metrics admit a zeta repre-
sentation. The following lemma shows that �p = L̂p, (p > 1) has no
�-representation.

Lemma 8.8.3. If a s.m.s. (U, d) has more than one point and the
minimal metric L̂p, (p > 1) has a �-representation (8.8.27), then p = 1.

Proof. For a proof, see Rachev (1991). �

By Lemma 8.8.3 it follows, in particular, that there exist simple
metrics that have no �F-representation. In the case of L̂p-metric, how-
ever, we can find a �F-metric which is topologically equivalent to L̂p.
Nevertheless, there exist metrics for which this cannot be done: that
is, it is impossible to find a topologically equivalent �F-metric which
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implies that the �-structure is not universal. For additional details
and examples, see Rachev (1991).

An generalization of the notion of the �-structure, which represents
a universal structure, is provided below.

Definition 8.8.6. We say that a probability semidistance � admits a
�-structure if � can be written in the following way:

�(X,Y) = �(X,Y;F(X,Y)) = sup
f∈F(X,Y)

Ef (8.8.30)

where F(X,Y) is a class of integrable functions f : 	 → (R,B(R))
given on a probability space (	,A,Pr).

In general � is not a probability semidistance, but each probability
semidistance has a �-representation. Actually, for each probability
semidistance �, the equality (8.8.30) is valid where F(X,Y) con-
tains only a constant function �(X,Y). For additional details and
examples, see Rachev (1991).

We completed the investigation of the three universal metric
structures (h, �, and �). The reason we call them universal is that
each probability semidistance � has h-, �- and �-representation
simultaneously. Thus, depending on the specific problem under
consideration, one can use one or another probability semidistance
representation.

Notes

1. Probability semidistances are introduced in Chapter 2. In the appendix
to Chapter 2, we briefly discuss probability quasi-semidistances and
how they differ from probability semidistances.

2. In section 2.4 of Chapter 2, we defined probability quasi-semidistances
and make a similar parallel with probability semidistances.

3. The discussion will not change in a fundamental way if we consider
general random elements taking values in a general functional space.
We consider one-dimensional random variables for the sake of sim-
plicity.
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4. Different types of stochastic dominance relations are discussed in
detail in Chapter 3.

5. A detailed discussion of primary, simple, and compound probability
metrics is provided in Chapter 4.

6. The dual quasi-semidistance d−1(x, y) corresponding to a given quasi-
semidistance d(x, y) is defined in the following way, d−1(x, y) = d(y, x).
A more detailed discussion is provided in section 8.8.2 in the appendix
to this chapter.

7. The dual order �d−1 corresponding to a given order �d is defined in
the following way, x �d−1 y if and only if y �d x. For a more detailed
discussion, see section 8.8.2 in the appendix to this chapter.

8. For a detailed discussion, see section 3.3 of Chapter 3.
9. For a detailed discussion, see section 3.7.2 of Chapter 3.

10. More details are provided in sections 8.8.3 and 8.8.4 in the appendix
to this chapter.

11. This paradox is discussed in Levy (2006).
12. Similar examples can be constructed for SSD and higher-order stochas-

tic dominance as well. See Levy (2006) for additional examples.
13. See, for example, Kelly (1975).
14. See, for example, Steiner (1966).
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